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Spin and quasifree proton-proton scattering on He and He
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Theoretical expressions for the differential cross section of symmetric, coplanar (p, 2p)
guasifree scattering on 3He and 4He are derived in the plane-wave impulse approximation
with full account given to the spin effects of the nucleon-nucleon interaction and the nuclear
bound states. The phenomenological M~2 matrix is utibzed as are correlated functions
and Eckart parametrizations of the distribution functions for the light nuclei. Shape fits to
experimental data for the Eckart parametrizations are found to be extremely good although
theory overpredicts the magnitudes of the cross sections. It is shown that an intuitive exten-
sion of the attenuation model of Rogers and Saylor is able to remove this latter discrepancy
in 3He(p, 2p)2H. We also indicate the possible usefulness of our matrix elements in polar-
ization studies.

NUCLEAR REACTIONS H, '4He(p, 2p), E =20-160 MeV; calculated o.

I. INTRODUCTION

where the 6 function expresses conservation of
energy and momentum, and (f ~

M
~ f} is the r e-

duced scattering matrix element. This matrix
element can be expressed more explicitly as

E= (k(, k,', ks. & I~u I k„A) .
M» is that part of the total scattering matrix

(2)

Reactions involving the breakup of light nuclei
by protons in the quasielastic region, e.g. (p, 2p)
reactions, ' ' have been investigated extensively
in recent years as an important source of infor-
mation on the structure of such nuclei. GeneraQy,
in the theoretical description of the (p, 2p} quasi-
free process, the plane-wave impulse approxima-
tion~' (PWIA) is used for the analysis of data.
Implicit in this approach is the assumption that the
reaction mechanism is direct, wherein the in-
coming nucleon interacts strongly with only one
of the protons in the nucleus while the rest be-
haves as a "spectator. " Thus the process may be
represented by the diagram shown in Fig. I. Nu-

cleon 1, with momentum k„ is incident on the
nucleus A and interacts with nucleon 2. It scat-
ters at an angle 8, with respect to the direction of
incidence while nucleon 2 scatters at an angle 8„
leaving the residual nucleus denoted by B. If 8
is the scattering operator, the probability for all
time and space for the transition from the initial
state 4& to the final state 4f is

Pff 4f 4g

= )f(k, +k„-k,'-k-k,')(f )m)f)(, (1)

which corresponds to the interaction of the in-
coming nucleon and nucleon 2 of the target. In
PWIA, E is written as

&=(k,', k2 I~,2 lk„ks)&,
where the first factor is the free nucleon-nucleon
matrix element and 4 is defined by

(k„ks, 8~A}=5(k~+ks)4 .
The 6 function represents the fact that the two
elements of the target have zero total momentum
and 4, the overlap integral of the target and
residual nuclei, represents the effective momen-
tum distribution function in the nucleus A of nu-
cleon 2.

When Eq. (2) is substituted into Eq. (1), with
the density-of-states factor added, the proper
kinematical integrations performed, and off-shell
effects neglected, the differential cross section
for the (p, 2p) process takes the factorized form

=z —
iaaf .

dQ ~d Q2dE~ dQ

The kinematic phase-space factor is denoted by
K, while (do/dA)~ &

is the free p-p on-shell dif-
ferential cross section. This latter factor is
usually obtained from experiment for the appro-
priate final-state energy. Direct comparison of
experimental cross sections for 'He(p, 2p)~H and

'He(p, 2p}'He and PWIA calculations with simple
forms for 4 has led investigators" to the fol-
lowing conclusions:
(1) The simple pole mechanism dominates at
small momentum transfers, and under such con-
ditions the shape of the cross section is mainly
sensitive to the asymptotic form of the coordinate-
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II. SPIN EFFECTS OF THE FULL N-N INTERACTION

AND NUCLEAR BOUND STATES

In this section, we reconsider the reduction of
the matrix element Il. We rewrite Eq. (2) as

—C

initial

space, target-nucleus, wave function. Attempted
theoretical fits to the cross sections for a wide
range of values of the momentum transfer are
generally too broad.
(2) The magnitude of the PWIA cross section, as
given by Eq. (5), is also too large, indicating the
importance of multiple scattering and distortion
effects.

Now, in the derivation and use of Eq. (5) a num-
ber of other approximations are also often as-
sumed besides the impulse approximation. Firstly,
spin effects are neglected so that the detailed
spin structure of the transition ampbtude is not
obtained. Secondly, distortions of the incident
and emerging waves and multiple scattering ef-
fects are taken to be absent. Thirdly, the in-
fluence on 4 of short-range correlations and ad-
mixed states in the nuclear wave functions is
neglected. And fourthly, the free on-shell nucleon-
nucleon cross section from experiment is used
in the expectation that off-shell effects are small.

In this paper we wQl seek to test the quasifree
scattering hypothesis in PWIA by removing, or at
least weakening, some of the above approxima-
tions. First, all spin effects consistent with
quasifree scattering will be included, and a sim-
ple asymmetry experiment is suggested. More-
over, multiple scattering effects will be included
phenomenologically by using a simple extension
of the attenuation model of Rogers and Saylor. '0

An estimate of the effects of short-ranged cor-
relations is made by using Eckart forms for the
nuclear overlap functions. %e maintain the as-
sumption of on-shell scattering.

In this'expression X„, X, „X&,X», and X~ are
representative spin and isospin states of the tar-
get nucleus, the incident nucleon, the scattered
nucleon, the knocked-out nucleon and the residual
nucleus.

Now, the spin matrix elements for two inter-
acting nucleons are given by"

m=&k, , k,'i~ ik„k, )

V s s t ~s s'
X X X X

S t~l
S S

0 0 0 t 1 1= ~oo Xo Xo + ~00 Xo Xo

+ ~0&( x. x, —x. x,)

+ '~co('xx 'xo —'x x 'xo)

+~»(x, xi+xi x ~)

11( X I Xl XX X 1)I

where s~ are the usual spinor states for two-
S

spin —, particles and

~"s"s ""s~ (5)

These coefficients contain all the kinematical in-
formation about the scattering of the two nucleons.
When Eq. (7) is used in the evaluation of Eq. (6),
the spin dependence breaks the matrix element
into a series of terms containing the 'M

S S'
Treatment of the kinematics involves transforming
to the c.m. frame for the system, and the expres-
sion is simplified by the judicious choice of kine-
matical parameters. Following Redish et al. ,'
we find that Eq. (6) takes the form

spNl, 1$0$plA

Xsx~xayiif Xxmc Xw(&g I-ks~&s) &

with

M = (Pf iM„(Ey) i P, ) .

E= &k,', k.', k;, E, ix.x~x&»x...x.ik„,&.
spin, isospin

final + k2
L

FIG. 1. Diagram showing the geometry of the (p, 3p)
quasif ree reaction.

In this expression, P~ ,(kf= -'k,'),-P, = ~(k, + ks),
and Ez is the relative energy of the two protons in
the final state. Noting that P& =k,'- ~k, + ~k~
=k,'(c.m. ) and P, —k, (c.m. ).in the nonrelativistic
limit when k~- 0, M can be approximated by the
on-shell c.m. nucleon-nucleon scattering matrix
element. As we are mainly interested in spin ef-
fects, this assumption is made. The spin coef-
ficients sM», can then be determined directly
from the p-p phase shifts. To consider Eq. (9)
further, we need the spin and isospin treatments
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for the light nuclei involved. We use the classi-
fication schemes of Hefs. 12 and 13 for the few-
nucleon states.

For example, the three-nucleon ground state
has quantum numbers J"=~" and T= ~. Its moat
general wave function is a linear superposition
of 'S„„'&,~, 'P„„and 'D„, functions. This can
be written as

(13)l~.&
= l~.('8.)&+ I~.('P.)&+ I~.('D.)& .

We can now evaluate Eq. (9) for the two reactions
under study.

Each state ia represented by products of functions
in spatial, spin and isospin coordinates. Likewise,
the ground-state wave functions for the deuteron
and the a particle are conveniently written as

(12)

where Xo, y ', and X" are obtained from Xo, g ',
and y, respectively, by interchanging a and P.
The deuteron exists in three spin-1 states, namely,

I'H&i='xo(3 4)XO(»4) l~&

I'H), = 'g, (3, 4)'X,(3, 4) lse&,

I'H), = 'g, (3, 4)'X,(3,4) lcv& .
(19}

Here 'Xs (3, 4) are the triplet spinor states for
nucleons 3 and 4, and X,(3, 4) is the corresponding
isosinglet spinor state. It follows that Eq. (9)
takes the form

+(g -
g&

H
I xi' x2gMxg . I He&g,

where i = 1-3 and j= 1, 2. It should be noted that
the antisymmetrized M matrix is used for the
j'p, 2p) reaction to ensure that the identity of the
final-state protons is taken into account.

If the spin orientations of the outgoing protons
are not measured, the helium target is unpolar-
ized, and the deuteron states not distinguished,
Eq. (20) contributes the following to the differen-
t al cross section:

He(p, 2p) 8
We delay consideration of B-state contributions

to the quaslfree scattering cross section to a
future publication. Thus the 'He bound state is
represented by its spatially symmetric (8) and
mixed symmetric (8') components of the 28,

&2

state. For (8,) = ~k,

(14)

(21)

Each process is uncorrelated and assumed equally
likely. If, in addition, the incident proton is
polarized in a plane perpendicular to the direction
of incidence, the initial state is

q... ISHe& =(sa, +I j,) I'He),

where lsl'+ I&I'= l. Equation (21) becomes

where the detailed forms of the spatial functions

I N &, I ex&, and I e, & will be presented in the next
section, and

W = [I,+ 21m(s*f ) lm(u, )]
& l(jul(l —kg, u&+ I

—k„e,&)l', (22}

(15)

where Io is the proton-proton differential cross
section, Im denotes "the imaginary part of,"and

m, (e, y) =(I/VY)['m %S,*,+VS„(%S,*,-RS*„)],

with the doublet spin and isospin functions

n'=(I/~)(v, v,5,+ v, d, v, —26, v, v,),
q" = (I/W)(v, v,5,—v, 5,v, ) .

Here a and P are the Pauli-basis spinors and p

and 5 are the isospin-basis spinors for the proton
and neutron states, respectively.

The reversed state is

I'He&, =X~lu&+ X'Iv, &- X lu, &,

where e and p are the c.m. polar and azimuthal
scattering angles for proton 1. For an unpolarized
incident beam, a=b= 1/W and A=I, times the
overlap integral, which agrees with Eq. (5). It
should be noted that M, (90', P) =0, in which case
A =I, times the overlap integral.

Explicit forms for the M matrix element are
given in Ref. 11, and the azimuthal dependence of
M, is sing. The polar axis is along the direction
of inciden"e, and the y axis is along k, xk,'. Thus,
the second term of Eq. (22) introduces an asym-
metry in the scattering cross section when the
incident proton beam is polarized. For example,
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if the incident beam is polarized along the y axis,
then a=(1/vY) and 8=(i/vY) .In this case, mea-
surements made with the scattering plane oriented
at p = 90 and 2 VO' yield

the Hulthen wave function

(rju)) =N, (e ""-e 8')/r,

where

(28)

A(90'}—A(2VO') Im Pf,(e, 90')]
A(90')+A(2VO') I,

This result is independent of the nuclear bound-
state contributions, and hence it is a direct test
of the quasifree scattering hypothesis. In the
special case when the laboratory energy of the
incoming proton is 150 Mev and the c.m. scat-
tering angle is 8=60. the asymmetry is e=0.184."

He(p, 2p) 8

As will be noted subsequently, the S'-state con-
tribution is a small correction to that of the S
state in the cross section. For this reason and
for simplicity, it will be omitted in this discussion.
The 'He bound state is taken to be

where

g4 =(I/2~)(~, P.~,P, 2&A~—~o.—2o'~o'A&s

P2+A+5 PI+9+4i 5 +Si3i4 5) 1

h4
—a(&gPg —Pma'p)(&gPS P4&5)—,

and q~, q, are defined similarly, with v and 5 re-
placing a and P, respectively.

The residual nucleus is jfIe& = j'H)„, , where
j'H), , is of the same form as j'He), , given in
Eqs. (14) and (18), but the isospin part contains
v and 5 in exchanged order. If there are no po-
larization measurements in the final state, we
need to evaluate

Z, =,('H jAfq, . , j'He),

and the differential cross section is proportional
to

B- E2 (2V)

For a beam polarized in the plane perpendicular
to the direction of incidence, B is the same as
A of Eq. (22) with (uj- k~, y) now the overlap inte-
gral. Thus, an asymmetry measured as indicated
by Eq. (24) would yield the same result as in the
case of 'He target.

HL SPATIAL WAVE FUNCTIONSOF H, He, H, He

AND THE OVERLAP INTEGRAL

For our initial calculations we use explicit forms
for jsu&, ju), jv, ), and jv, )." The deuteron func-
tion is relatively well known. Vfe describe it by

0. =0.232 fm ', P=1 434 fm x,

and N~ is the normalization constant. The spa-
tially symmetric (r ju) is defined by

(r j u& =A II f(r„), (29)

f(r„)=e '"u-ce '"0,

g=Q 40 fm ' 5 =2 00 fm '

c =0.4.
The coordinate functions (r jv, ) and (r jv, & can be
written in terms of a single function g(ij, k) which
is symmetric in its first two arguments:

t

(r jv, ) =(I/W)jg(12, 3)+g(13,2)-2g(23, 1)],

(31)

(r j v, ) = (I/vT }jg(12,3)-g(13, 2}].

Numerical calculations for the reaction 'He(p, 2p}-
~H are carried out with

g(ij, k) =Bexp(-a'r„-a'r~I, -P'r, ~), (32)

(cvj-k~, u& = fie e '"~'~dp, (33)
P

where the parameters p and p have values 0.418
fm ~ and 1.90 fm, respectively. The corre-
sponding Eckart parameters for 4He are 0.843
fm ' and 1.20 fm '. These Eckart functions in-
terpolate smoothly between the expected short-
range behavior and the correct asymptotic form
of the spatial distribution function. They have
been manifestly successful in reproducing the

where u'=0. 3V fm ' and P' is determined by e'
and P~. , the probability of the S' state. These
correlated functions have reasonable asymptotic
behavior and are utilized here to extract a re-
liable estimate of the S' state contribution.

As we shall report, the contribution of the S'
state is relatively small and influences only the
magnitude of the cross section. We have therefore
also used recently developed Eckart forms'6 for
the overlap integrals (suj-k„, «) and (uj-k»y&.
For example, in the Eckart parametrization
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FIG. 2. Symmetric, copl~n~r He(p, 2P) H cross sec-
tion at 100-MeV incident-proton energy. The solid curve
is the Eckart result while the dashed curve is that of the
correlated-exponential function. The data are from
Ref. 5.

SO 80 100

E, (MeV)
120 140

FIG. 4. Experimentally determined values of the
transmission factor for symmetric, coplanar 2H(p, 2P)n
quasifree scattering, plotted as a function of laboratory
bombarding energy. The solid curve is the visual, best-
fit curve used in the computation of T and SHe( p, 2p)2H.

charge form factors and charge radii of 'He and
4He.

IV. RESULTS AND DISCUSSION

2g)-

He(p, 2p) H

E, = 155 MGV

E1= 80 MeV

Data for the symmetric, coplanar 'He(p, 2p)'H
reaction are available for incident proton energy
ranging from 35 to 155 MeV. Representative data
from Refs. 3 and 5 are shown in Figs. 2 and 3.
We find that theoretical curves obtained using the
correlated three-body wave function, though
giving fair fits to experiment, are broader and
consistently larger than the data. The S' state
contribution, assuming P~ to be 2%, only in-

fluences the over-all magnitude of the curves
and, in each case, decreases the result by about
9%, a relatively small effect. Our result agrees
with that of Hu et al .' who used a variational wave
function for 'He extracted from binding-energy
calculations with the Hamada- Johnston potential.
They predicted a decrease of about 10%. It is
obvious that the correlated function is not al-
together adequate. Nevertheless, its estimate of
the S' state contribution should be reliable and
suggests that dropping the S' state should not af-
fect our main conclusion.

We note that the Eckart curves improve con-
siderably the shape fit to data, emphasizing the
accuracy and usefulness of the Eckart para-
metrization. We believe the narrowing of the theo-

4He(p, 2p) 'W
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FIG. 3. Symmetric, coplanar 3He(P, 2P)2H cross sec-
tion at 155-MeV incident-proton energy. The solid curve
is the Eckart result while the dashed curve is that of the
correlated-exponential function. The data are from
Ref. 3.
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FIG. 5. Symmetric, coplanar 4He(p, 2p)3H cross sec-
tion at 100-MeV incident-proton energy. 'Ihe solid curve
is the Eckart result normalized to the experimental
quasifree peak. The dashed curve, which is the PWIA
result, and the data are from Ref. 5.
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TABLE I. The transmission factor T at the quasifree
peak for He(p, 2P) H at various energies. The experi-
mental values are quoted from Refs. 3 and 5.

HI2, (P,2P) 3H
-7

10

Incident proton energy
QfeV) Texpt T theor

-e
100.16

0,25
0.33
0.38
0.60

35
65
85

100
155

0.14
0.27
0.36
0.40
0,62 I

0

0 (MoV/c )

I

100200

retical curves at the quasifree peak can be at-
tributed to the correct representation of short-
range effects by the Eckart functions. In agree-
ment with other authors, we observe that the
PWIA calculations predict cross sections that are
larger than experiment. The variation of the
absolute normalization factor with energy at the
quasifree peak can be illustrated if one writes

FIG. 6. P -3H momentum distribution at 600-MeV inci-
dent-proton energy. The solid curve is the Eckart re-
sult normalized to the experimental quasifree peak. The
data are from Ref. 2.

d 0' d 0
(24)

The transmission factor T has been shown to as-
sume values ranging from 0.16 at 35 MeV to 0.60
at 155 MeV."' Our values of T at 100 and 155
MeV are close to those obtained by the Maryland
group. These results suggest that multiple scat-
tering corrections to the PWIA must be made.
In this connection, Rogers and Saylor" have de-
veloped a simple attenuation model for the evalua-
tion of T in 'H(p, 2p)n reactions. We have applied
their rescattering model to the corresponding
quasifree reaction in 'He. We altered their T
vs or (the total spectator cross section) curve to
better fit the 'H(p, 2p)s data up to 100 MeV and
projected it to 160 MeV. This is shown in Fig. 4.
In determining T for the trinucleon reaction, we
made the physically plausible assumption that
v~ "' = 20~ for the same incident proton energy;
i.e., we assumed that the final-state deuteron
behaves as two isolated nucleons in its interaction
with the final-state protons. Using this assump-
tion and Fig. 4, we extracted T. In Table I, we
show a comparison between the experimental
values of T from Ref. 5 and the theoretical magni-
tudes based on this intuitive extension of the
Rogers-Saylor model. Considering the simplicity
of the model, the good agreement is slightly em-
barassing. As one has reason to believe that off-

shell and distortion effects are likely to be small
at incident proton energies exceeding about 50
MeV, one is tempted to conclude from this that
the (p, 2p) reaction on 'He is indeed a simple
direct process whose description is mainly af-
forded by PWIA and the attenuation model.

The experimental data for 'He(p, 2p)'H are
sparse and featureless. Figures 5 and 6 show
that our Eckart curve gives reasonable fits to
data. No extension of the attenuation model is
made for this case as it is obvious that we cannot
treat 'H, a more compact nucleus than the deu-
teron, as three isolated nucleons. We are study-
ing a more detailed derivation of T based on the
ideas of Rogers and Saylor. The results of this
study will be reported in a subsequent publication.

In summary, it may be concluded that (p, 2p)
reactions on 'He and 'He can be explained by PWIA
when suitable overlap functions are used and at-
tenuation effects are included. Good fits to the
shape and magnitude of the cross sections can be
derived. If our good results are not fortuitous,
it appears that the attenuation model accurately
accounts for multiple scattering effects. A fur-
ther and sensitive test of the quasifree model is
provided by an asymmetry measurement in which
only nucleon-nucleon effects contribute. If the
model should survive even this kind of scrutiny,
further studies on the nuclear bound states could
be made by merely analyzing the overlap inte-
grals of the target and residual nuclei. This is a
far simpler procedure than would be necessary
if a many-body treatment is required.
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