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L D. Millert
University of Maryland, College Park, Maryland 20742

{Received 1 August 1973; revised manuscript received 3 October 1973)

The relativistic Hartree formalism for nuclei is extended to include the exchange potentials which

result from various kinds of one-boson-exchange interactions. A numerical simplification is presented

which uncouples the relativistic Hartree-Fock equations and enables local {though state-dependent)

single-particle potentials to be de6ned for the exchange interactions. Calculations are presented for a
vector-scalar nucleon-nucleon force model. Comparison of these calculations with Hartree calculations

{using the same model) indicates that the exchange terms contribute a net attraction of about 1.5 MeV

per particle in light nuclei, while rms radii are reduced by about 0.03 fm. A study is also made of the

exchange potentials resulting from the pseudoscalar part {one-pionwxchange) of the nucleon-nucleon

interaction. These terms appear to be important, although self-consistent calculations are not possible in

the present framework due to numerical instabilities induced by the pseudoscalar term. The instabilities

appear to be related to an incorrect enhancement of the effects of virtual N-N pair creation which is

present in the coordinate space relativistic one-pion-exchange potential.

NUCLEAR STRUCTURE ~6O, 40Ca, 48Ca; calculated binding energies, eigen-
values, charge radii, exchange potentials. Relativistic Hartree-Pock method,

spherical nuclei.

I. INTRODUCTION

It has recently been shown' that a relativistic
nucleon-nucleon (N Aj inte-raction, consisting of
potentials obtained from single exchange of vector
and scalar mesons, can reproduce the total binding
energies, rms charge radii, and single-particle
eigenvalue spectra of doubly magic nuclei when
used in a relativistic Hartree approximation. The
most important characteristic of this N-N model
was the large strengths of the resultant vector and
scalar potentials. In a nonrelativistic reduction
the vector and scalar contributions to the static
central potential are of opposite sign, whereas
the contributions to the spin-orbit potential, the
velocity-dependent potential, etc. are of the same
sign. This fact enables the static central (non-
relativistic) potential to be weak (through can-
cellations between vector and scalar interactions),
while the relativistic corrections (spin-orbit etc.)
become much stronger than mould be expected
from an analogy with the electromagnetic inter-
action. It mas, indeed, shown' that the good nu-
clear saturation properties of the calculations
presented in Ref. 1 mere due to large relativistic
corrections to the single-particle kinetic energy
expectation values. The strengths of the vector
and scalar interactions had completely invalidated
the nonrelativistic form for the kinetic energy
operator.

Relativistic corrections to the binding energy of
nuclear matter have recently been calculated by

Brown, Jackson, and Kuo, ' by Bhakar, ~ and by
Richards, Haftel, and Tabakin. ' The authors of
Ref. 3 obtain the relativistic corrections by using
a modified form of the Reid soft-core' potential
which reproduces the experimental N-N phase
shifts when used in the Blankenbecler-Sugar'
equation. The scattering amplitude so obtained
obeys a relativistic elastic unitarity relation.
These authors note that the relativistic equation
for the scattering amplitude is equivalent to the
Lippmann-Schwinger equation with an energy-de-
pendent potential. They obtain the relativistic
corrections by calculating the binding energy of
nuclear matter with the modified energy-dependent
potential and comparing it to the result obtained
with the nonrelativistic form of the Reid potential.
This prescription yields an attractive relativistic
correction of 0.5 MeV/A to the binding energy of
nuclear matter. The author of Ref. 4 calculated
in first-order perturbation theory the expectation
value of the Galilean noninvariant potential mhich,
when added to the Tabakin potential, produces a
potential mhich transforms as a relativistic scalar
to order (v/c)'. This potential expectation value
mas then added to the expectation value of the
relativistic correction to the kinetic energy oper-
ator to obtain the relativistic correction to the
binding energy of nuclear matter. This alternate
prescription produces a correction of 0.5 MeV/A
but of opposite sign to the correction of Ref. 3.
The authors of Ref. 5 performed a similar calcu-
lation to that of Ref. 3 mith the exception that a
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different off-shell convention for the modified po-
tential was imposed by including retardation ef-
fects in the generalized Yukama terms. This pre-
scription results in a relativistic correction of 1.4
MeV jA and of opposite sign to that of Ref. 3.

While these calculations reached no firm con-
sensus regarding the sign and size of the rela-
tivistic corrections to nuclear-matter binding,
they all may be characterized as what is referred
to as "minimal" relativistic corrections. Each
work starts with a nonrelativistic model of the
N-N potential and adds to it a minimal correction
which makes the modified interaction satisfy some
relativistic property such as Lore'ntz covariance,
relativistic elastic unitarity, or retardation. The
relativistic effects for finite nuclei investigated in
Refs. 1 and 2 and in the present work are clearly
in a different category, which might be character-
ized as "maximal" relativity inasmuch as the rela-
tivistic effects are largely enhanced by building

large cancellations between the central static
lntera, ctlon terms.

The strengths of the vector and scalar inter-
actions of Ref. 1 were chosen specifically to pro-
duce good nuclear saturation properties. Never-
theless, such caneellations would have to be judged
problematical were it not for the fact that they are
qualitatively consistent with the vector and scalar
interaction strengths found in recent one-boson-
exchange analyses' "of the nucleon-nucleon ex-
perimental phase shifts. ""It is thus plausible
that these relativistic effects play a significant
role in determining the saturation properties of
nuclei.

The possible importance of relativistic effects
(other than spin-orbit) for nuclear physics has
been suggested many times before ~~22 Such sug
gestiong have not been followed up for the nuclear
many-body problem because of interest in the ef-
fects of two-body and higher-order correlations in
nuclei. Still, the inclusion of tmo-body correla-
5.ons in many-body calculations has not produced
agreement with the experimental saturation proper-
ties of nuclei except when at least partly phenom-
enological effective interactions have been used. "

There is no compelling reason to believe that
the use of highly relativistic interactions mill

remove the need for including tmo-body and pos-
sibly higher-order correlations in nuclear many-
body calculations. Nevex theless, the complete
absence of a computationally practical relativistic
many-body theory leads us to consider the Hartree
and Hartree-Fock approximations to a relativistic
many-body problem. The Hartree aPproximation
was the subject of Ref. 1. There it was shown that

only sca1ar and vector meson exchange could con-
tribute to the relativistic self-consistent inter-

actions. In the present work the formalism is
extended to lnelude the Fock or exchange parts
of the self-consistent interactions. A numerical
simplification of the exchange terms is presented
which allows a complete decoupling of the rela-
tivistic Hartree- Fock equations. This simpli-
flcatlon which ls analogous to a method used by
Brueckner and coworkers'~" for nonlocal poten-
tials, allows local (though state-dependent} single-
particle exchange potentials to be defined corre-
sponding to each type of relativistic two-body
interaction. The relativistic situation differs
from the nonrelativistic analog in that no mo-
mentum-dependent effective potential occurs. The
arbitrary length which was interpreted as the
range of nonlocality in Refs. 24-26 is thus not
present. This formalism is then use/ to perform
relativistic Hartree-Fock calculations for the
doubly magic nuclei "O, "Ca, and "Ca using the
vector-scalar model of Ref. 1 for the N-N j.nter-
action. Comparison of the results with those of
Ref. 1 yields an exchange contribution of about
1.5 MeV/A to the 'total binding energy and about
a 0.03 fm reduction in the rms charge radii of
these nuclei. Thus, while the vector and scalar
exchange contributions are important, they do
not drastically alter the saturation properties of
these nuclei.

Of perhaps more interest than the vector and
scalar exchange terms, are the effects of the
pseudoscalar (one-pion-exchange} interaction.
This interaction does not contribute at all to the
direct potentials for these nuclei. One thus has
no prior expectations as to what order of magni-
tude the exchange terms mill be. Preliminary
numerical estimates quoted in Ref. 1, which
indicated that these terms were small, were er-
roneous. Perturbation calculations will be pre-
sented in this work which show that the one-pion-
exchange contribution to the Fock exchange terms
might be quite large. Unfortunately, we are not
able to go beyond first-order perturbation calcu-
lations for these terms in the present formalism.
The relativistic Hartree-Fock equations become
unstable in the presence of the pseudoscalar terms
so that self-consistency is never achieved. The
problem is that the coordinate space form (Yukawa
function) of the one-pion-exchange potential is not
an appropriate form for the interaction between a
positive energy and a negative energy plane-wave
spinor. Such terms are, however, important for
the pseudosealar interaction because the y' matrix
18 odd

II. RELATIVISTIC HARTREE-POCK THEORY OF NUCLEI

The time-favored metric tensor (ab =a,b, —a b)
is adopted along with the fo11oming representations
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for Dirac matrices: inverse length (g =mc/if). In practice the following
form will be used for J:

3 . 0 I
y'=y'y"y y —-I

The Dirac y matrices appropriate to spherical co-
ordinates will also be used. These will be intro-
duced as tensor transformations upon the repre-
sentation shown in Eq. (1).

The basis of the present work, as in Ref. 1, is
the static, relativistic, coordinate-space form of
the one-boson-exchange potentials for scalar,
vector, and pseudoscalar mesons,

, =-(-,~-,)"y', y2 Z, ([r,—r, ~), (2)

(rl )r'2" y', y; yi y2 p &,( I r, r, I )—

(4)

The factor (7, 7;)~ establishes the isospin depen-
dence of the interaction for isovector (I= 1}and

isoscalar (I =0) mesons. The subscripts 1 and 2

denote the two interacting particles.
The functions J( ~r, —r, ~ }may be thought of as

Yukawa functions,

Z(r) =e "'/r,

where the quantity p. is the meson mass in units of

J(r) =[p /(Ii —p~)] (e &r/r-e

"(I+HI~'- p'}I/2Ajr)/r).

This form results from including a meson-nucleon
form factor, '"of the form:

F(q 2 ) A2/(P2 q
2
)

In nonrelativistic one-boson-exchange calculations
the form factor serves the function of removing
r singularities in the tensor and spin-orbit
forces. No such singularities arise in the present
formalism; however, the form factors are re-
tained since nucleons appear to have a definite
spatial extension.

The model N-N interaction consists of the sum
of terms like those of Eqs. (2)-(4), weighted by
the meson-nucleon coupling constants of the model,

V(~r, —r, ~) = g g, 'KcV, + P g„'hcV„+ g g,~hcV, .

(8)

The relativistic Hartree-Fock equations for a set
of occupied nucleon states Q&,j, may be written in

terms of the N-N interaction,

A

(cn p+pMc'}Q, (r,)+P ~ QJ(r,)V([r, r, ))Q~(r, )d—'r, Q,(r,)

p f(r, )V(
~ r, —r, ~) Q,(r,)d'r, Q~(r, ) =E,'Q, (r,) .

/=I

It was shown in Ref. 1 that only the scalar and the zeroth component of the vector interactions contribute
to the direct potential in Eq. (9}when closed-shell nuclei are considered. Our present interest is with the
exchange terms which were not calculated in Ref. 1. The nonlocal exchange potential can be converted to
local form (for the purposes of Hartree-Fock iteration) by multiplying and dividing by Q, (r,}Q,(r,),

A

U,'„(r,) =- g t p~t(r, )V( ~r, —r, ))Q,(r,)d'r, (p~(r, )g~t(r, )j/Q~t(r, )Q,(r,) . (10)

This potential, although local, appears to depend upon all the quantum numbers of the state i. If, however,
we are restricted to closed-shell nuclei, the dependence upon the magnetic quantum number is illusory.
Such dependence would violate the spherical symmetry which holds for the Hartree-Fock solutions for
closed-shell nuclei. One can thus sum independently both the numerator and denominator of the right-hand
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side of Eq. (10) over m; to obtain

One notes that the term (Qz(r, )QJ(r,)) in Eqs.
(10) and (ll) is a 4 x 4 matrix. To handle this
term we note the general expansion

M= —Q Tr(My~)y~,
1

where U is the total relativistic single-particle
potential,

U(r) = P[U,(r) +g& „y"U„"(r)+ y'U, (r}

+g„,y'y" U,"(r)+g ag„~a ~ U~'(r)],

and obtain

f rz g rg 4 g ry A f ry

The matrices yA are the 16 linearly independent
matrices formed from products of the four Dirac
matrices y". These matrices can be grouped into
five categories; scalar (I), vector (y"), pseudo-
scalar (y'=yoy'y y ), pseudovector (y'y"}, and
tensor fo""=(I/2&)(y" y"- y "y")]. The names of the
categories signify the tensor transformation
properties of the various current densities that
can be formed from these matrices.

Using these properties for the exchange poten-
tials, one obtains the most general local single-
particle Dirac equation for the relativistic Har-
tree- Fock equation,

(co. p+P[Mc'+ U, (r) g„+„y~U„"(r) y'+U (r)

+g& „y'y "U,"(r)+g„~&zo&Us, ~(r)'])f,(r)

(14)

The functions U(r), lP(r), U, (r), U,"(r), and U","(r)
are referred to as the scalar, vector, pseudo-
scalar, pseudovector, and tensor relativistic
single-particle potentials, respectively, for the
Dirac equation. Before going on to the specific
expressions for these potentials, it is instructive
to consider the simplifications resulting from the
restriction to closed-shell nuclei. For this case,
the single-particle nucleon states are states of
good total angular momentum and parity. The
relativistic single-particle potential mulct then
commute with the total angular momentum and
parity operators,

[U(r), i]= [ U(r},P]=0, (15)

and J and P are the usual relativistic single-
particle total angular momentum and parity oper-
ators

J=r x p+—

and

P =pPO

(P, is the nonrelativistic parity operator). It is
well known that the vanishing of the commutators
in Eq. (15) requires the scalar and the z roth com-
ponent of the vector potentials to be angle-inde-
pendent,

U, (r) = U,(r),

Ugr}= U'„(r)

These equations also require the pseudoscalar and
pseudovector single-particle potentials to vanish;
however, radial components of the two 3-vectors,
U~ (r) and U,'~(r),j = 1, 2, S, may still contribute.
These radial components are denoted U„"(r) and
U", (r} for the vector and tensor potentials respec-
tively.

The single-particle relativistic potential thus
has the form,

U(r) =P[U(r)+yoU0(r) —y"U„"(r)—yoy'U;(r)].

(19)

The symbol y' is the radial Dirac y matrix and has
the expected form

(so)

A Dirac wave function with good J', J'„and parity
as well as time reversal symmetry has the fol-
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lowing form:

(21)

where E(r) and G(r) are the large and small com-
ponent radial wave functions, respectively. These
are real functions. The 'JJ~ are functions of spin

and angular variables,

1 1 1 ++~ + ~ 0
()9 f) dI+

2
m 2 21&m g&+((L.»(e, l))

O
+ d+

2
—. m+ 2 & 1~m )fi+~ +]J.(e (t ) 1 (22)

. The quantum number w takes the values +1 and is
related to the parity quantum number of (t) as fol-
lows,

dU(r) )[U„'(r)+ U;(r)] (J+-')

}dr Rc r

V,(r)+ V„'(r) —E, (24)

and

dd(r) )[U„'(r)- U;(r)] ir(d -',

)}dr Rc r

2 ac'+ V, (r) —V„'(r)+Z,

( I) J'+(d)l 2

Note that + has the opposite sign for the small
component spin-angular function. This angular
function thus has opposite parity from the spin-
angular function of the large component as is re-
quired for the relativistic parity, defined by Eq.
(17)~ to be conserved. For discrete single-
particle states the nodal quantum number (plus
one) of the large component radial wave function
[F(r)] may be used to further specify' the state.
Thus the set of quantum numbers (n(d Jmr, }com-
pletely specify the single-particle nucleon states
in the relativistic Hartree-Fock self-consistent
potentials. The relativistic spectral notation for
single-nucleon states can thus be made completely
analogous to the nonrelativistic notatio:~ for single-
particle states when a spin-orbit potential is
present. It must be remembered, however, that
this notation rigorously represents only the large
component of the relativistic wave function.

Using the wave function of Eq. (21) and an eigen-
value appropriate to a positive energy solution
(E'=Ac'+E), the Dirac equation appropriate to
rotational, parity, and time reversal invariances
can be reduced to radial form:

Eqs. (24) and (25} are the basis for numerical so-
lutions to the Dirac equation. One immediately
notices in Eqs. (24) and (25) the imaginary unit (i)
multiplying the potentials U„" and U,". This is no
cause for concern because it will later be shown
that the potentials U," and Ut are pure imaginary.
In fact, one can infer that U," and U", are imagi-
nary by requiring the single-particle potential,
Eq. (19), to commute with the time reversal oper-
ator.

At this point one may note a very unusual proper-
ty of the potential U„'. If the potentials in Eq. (19)
are not state-dependent, then a requirement that
U(r) be Hermitian would imply that U, is real, in
contradiction to the requirements of time reversal
invariance. Of course, the HF potentials are al-
ways state-dependent in such a way that hermi-
ticity is restored even when U„ is purely imagi-
nary. One is left, however, with the curious fact
that the state dependence of U," is absolutely neces-
sary for U," to represent a physically valid inter-
action and not just an unfortunate aspect of our
Hartree-Fock Method. It is really this curious
property of U," which enables one to replace the
nonlocal exchange potential by an equivalent local
(state-dependent but momentum-independent) form.
Such replacements are not possible in nonrela-
tivistic quantum mechanics. A paper devoted to
analyzing these curious properties of U," and
their possible physical consequences is in prep-
aration. "

III. REDUCTION OF LOCAI.

EXCHANGE POTENTIALS

The general form for the local exchange poten-
tial resulting from a particular two-body inter-
action term [V( 1 r, —r, 1)] is given in Eq. (11). One

may now reduce this general equation to radial
form and obtain the radial single-particle poten-
tials which will actually be used in numerical
computations. As the full reduction of these po-
tentials is tedious, the reduction appropriate to
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the scalar two-body potential [Eq. (2}]will be
sketched and the final results will then be given.
The local exchange potentials appropriate for the
electrostatic interaction in atomic relativistic

Hartree-Pock theory have already been published 2'

Suppressing the isospin factor for the moment,
one finds the following expression for the local
exchange potential resulting from the scalar two-

body interaction:
-, -1 A 16

U,'„(r,) =—p Qt(r, )(j),(r, ) g g QJ(r, )y,J,(lr, -rJ)g&(r, )d'r, yo g [(j)~(r,)y„(j)z(r,)]y", .
mg j=1 A=1

(26}

The fact that only four terms of the A sum contribute to Eq. (26) when the spherical representation of the

y is used is an important simplication. Comparing Eq. (26}with Eq. (19), one finds the following four
contributions to the radial potentials:

(2V)

(28)

(29)

—U,"'(y,) =—g (j)~t(r,)(j),(r,) p g Jt (j)&t(r,)y'J, (~r, —r, )) ((())r,)d'r, [ j(()r,)y„y t0&(()r,)]. (30)

The term Q, Q, (r,)p((r, ) is common to all four single-particle potentials and reduces to the following an-
gle-independent form:

g Pt(r, ) j(()r,) = (2J, +1)/4vr, '[E,'(r, )+ G&~(r,)]. (31)

Further simplication of Eqs. (27)-(30) is accomplished by utilizing the following theorem which has been

given in slightly different form by Rose, Biedenharn, and Arfken":

(32)Jl
)l "(e y5

'
(e () =(4w)-'" g(-)"'""& ~ '""-"a

( )z()z) z' ',z5).., .(e, (), -
L

where

1 =J+ (()/2 . (33)

The primed quantities I,', J', and u' are related
similarly. The left-hand side of Eq. (32) is just
the contraction of two general central field spinors
of the type defined in Eq. (22). The right-hand
side is just the expansion of this contraction in
ordinary spherical harmonics. The symbol Z is
the Z coefficient of Blatt and Biedenharn. " The
phase convention for the Z coefficient used in this

work is that of Messiah. "
Another useful relation for simplifying the ex-

change potentials is the expansion of the Yukawa

function in spherical harmonics:

&-P I 1'1-r& I

4v f,(t' r )'JJ„,(8 Q,)'(l„(8 Q ),

(34)
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7, r2=r„r„+2(r„r2 +7; 7„), (36)

where z, and v are the isospin raising and
lowering operators, respectively, for the nucleon
state with the space coordinates r . Consider
first the v„v„part of this operator. Here the j
sums in Eqs. (27}-(30)are restricted in exactly
the same way as they were for the isoscalar scalar
meson. This term represents the contribution to
exchange diagrams mediated by the uncharged
member of the isovector triplet of scalar mesons
and hence can only occur when both states i and

j have the same third component of isospin. In
contrast, the remaining terms in Eq. (36) (in-
volving only raising and lowering operators) con-
tribute only when the j sums of Eqs. (2V)-(30) run
over states whose third components of isospin are
different from that of state i for which the poten-
tials are being calculated. These terms represent
exchange diagrams mediated by the two charged
members of the isovector triplet of scalar mesons.
Note that this sum carries the factor of 2, since
for any two states i and j the isospin matrix ele-
ments for only one of the two operators 7,+ r, and

7; 7,+ will be nonzero.
After properly restricting the summations to ac-

count for the isospin of the meson exchanged, one

where

f,(r,r, ) = (r,r, ) '~K„»2(ilr, )I„+»2(ilr,) . (35)

The I and K are the modified spherical Bessel
functions of the first and third kind, respectively.
The symbols z, and r, are the lesser and greater
respectively of the radial variables r, and r, .

So far the isospin dependence of the two-body
interaction has been ignored. Actually our intent
is that the single-nucleon wave functions P, are
not only four-component Dirac spinors but also
two-component isospinors which indicate whether
the state i is a neutron or proton orbital. Suppose
the scalar meson exchanged is isoscalar. Then
the interaction used in Eq. (26) is the appropriate
one, however, the spinor contractions in Eqs.
(2V)-(30) represent isospin contractions as well.
It is clear that these contractions give zero unless
both states g, and gz have the same third com-
ponent of isospin. The sum over the states j in
Eqs. (27)-(30) should thus be restricted to states
with the same isospin as the state i for which the
potentials are being calculated.

For the case of charged scalar meson exchange,
the interaction of Eq. (26) should be modified to
include the isospin factor 7; 7;. The effect of this
factor upon the single-particle exchange potentials
is best observed by expressing the factor in the
form:

scalar

time vector U'

Uf
A vector

pseudoscalar U'

The upper (scalar} component represents the case
of scalar meson exchange which has just been dis-
cussed [Eqs. (27)-(30)]. The two middle com-
ponents represent contributions from vector meson
exchange. The time-vector component represents
the term in the sum y,"y» where p, is zero. The
8-vector term represents the term in the sum
whereby il is the r index of Eqs. {19)and {20).
This obviously implies the sum y,"y» is to be
evaluated in spherical coordinates:

p 0 r 8
Yl y22 yly20 yl 2tyl y28 Y'l Y2 lb '

Straightforward application of the tensor trans-
formation properties of 4-vector densities under
transformation to spherical coordinates yields:

1 1 0 Qyr' sin'8 ~ x sin8 -v@ 0 (40)

Our claim of simplicity for the remaining terms of
the two-body interaction does not apply to the
terms involving y and y~ in Eq. (38). These terms
are thus excluded from the vector representation
of Eq. (3V). The difficulty with these latter terms
will be discussed at the end of this section. Final-
ly, the last component (pseudoscalar) of Eq. (3V)
represents the exchange potentials resulting from
pseudoscalar me sons.

Using the notation introduced in Eq. (37), the

can multiply Eqs. (27)-(30) by the factor g,2' and

sum over the scalar mesons of the model [as in
Eq. (6)] to obtain the total Hartree-Pock exchange
potential resulting from the scalar mesons.

The Hartree-Fock exchange potentials resulting
from other terms in the two-body interaction may
be obtained by straightforward application of the
methods that have been used for the scalar case.
To facilitate the expression of the results for
these interaction terms, one may introduce a
notation'whereby all of the single-particle exchange
potentials U,', U,', U,"', and U, ' are four-component
objects
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single-particle exchange potentials are:

«U'(r, ) =— [(2J,+1)[E,'(r, )+G,'(r, )]) ' g ~

Z(l( J/I/ J/,' ~ l )E,(r,)E/(r, )

-Z(l, J,l, J„-,'l )E, (r,)F,(r,)
Z(l/ Jg l f J/ Q l )Eg(rg)G/(rJ)

~Y(l,J, l/ J/ ', —,'l )E,(r,)G/(r, )

Z(l, J, l/ J/; -'l)
~ E,(r,)E/(r, ) f,(r,r,)dr,

p ( )((Vg ~/)/2

Z(l,' J, l/ J/,' ~l )G,(r,)G/(r, )

Z(l,' J( l/ J/,' 'L) G/(r, —) G/(r~)

Z(l,' J,l/J» —,'l)E, (r,)G/(r, )

Z(l q Jq l/ J/,' 2l)F)(rg)G/(rg)

Z(l Z~lg JI' l)f Sj(F )Ej(F )/(mr )«

Z(l, J, l, J„'-', l ) Jl E,(r,)G,(r, ) f, (r,r,)dr,

Z(l( Jg l/ Jy j al) Jl Fg(rm)G/(rm) f((rearm)«,
Q

Z(l,' J, l,'J„,'l) G,-(r,)G,(r,)f (r,r, )dr,
"0

( )(IV/ -w/ )/2

-Z(l,' J, l,' J„'-,l ) G, (r,)G,(r,)f,(rp, ) «,"0

Z(lf J, l/ J/,' ~l)
"0

&i(r2}G/(r2)fi«arm)«2

Z(l,' J, l/ J/; —,'l) j F,(r,)G,(r,)f/(r, r,)dr,
0

V'„'(r,) = [2-J,+ C)[F,'(r, )+G,'(r, )j)
J~ PBl~ g

Z(lq Jq l/ J/,' 2l )F)(r,)E/(r~)

Z(l( J( l/ J/,' 2 l )F)(r,)E/(r~)

Z(l, J, l/ J„-,'l )E,(r,)G,(r,)
Z(lg Jg l/ J/l 2i)Fg(rg)G/(rg)

( )(8g (V/ )/8

Z(l,' J, l,' J„-,'l )G,(r,)G,(r,)
-Z(i,' J, l,'J„,'l )G,(r,)G,(r,-)

(lg J( 1/ J/ 2l )Gg(rl) f( g)

Z(l,' Jq l/ J/, 2l }G((r~}E/(r,)

Z(l, J, l/'J/ i -', l ) Eq(rm)E/{r2) f/(r, r,)dr,"o

Z(lg Jj l/ J/ gl ) J) E(r, )F/(r2) f/(rjr, )«,
0

Z(l, J, l/ J/; —,
' l ) F/(r, )G,(r,}f,(r,r, )dr,

0

Z(l~ J, l/ J/', ~l) E,(rm)G/(r2) fg(rp~) «2"0
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Z(l,' J, // J/,' ,'l -) G,(r,)G/(r, )f,(r,r,)dr,
0

( )(@~ -~j )/2

-Z(l;J, //'J/; ,'/) —G,(r, )G/(r, )f (r,r,)dr,
4 p

Z(l,' J, //' J/; ~/) F(r, )G/(r, )f,(r,r,)dr,
w Q

(42)

Z(/ Jq// J/ p Q/ } F/(rm)G, (r, )f,(r,r,)dr,
0

Z(l, J; l, J» —,'l )F,(r,)G,(r,)

Z(l, J, l/ J,. ; —,'l )F,(r,)G/(r, )
U„"(r,}= —

4 ((2J, + 1)[F,'(r, ) + G,'(r, )]j

l

Z(l, J, l/' J» —,'l )F,(r,)F/(r, )

Z(l, J, l/ J/; —,'l ) F(r,)F/(r, )f,(r,r,)dr,
0

+ ( )(&g ~g)/2

Z(l,' J, l/ J/; ,'l)G, (r,)F—(r,)

-Z(l,' J, // J/; —,'l)G, (r,)F/(r, )

Z(/(' J( l,' J/,' 2 l)G, (r,)G/(r, )

Z(l,' J, l/ J» —,'l)G, (r,)G/(r, )

Z(l, J, l, J/; ,'l) F,(r—,)F/(r, )f,(r,r,)dr,
0

&Q

&(4& &l&~' '&)I +j(&.)&i(&.)/(&A)«

Z(/f J; l/ J/; —,'l ) Jt G,(r,)G/(r, }f(r,r, )dr,
0

( )~+4-~/ ~/2

Z(/& J, l/ J»-—,'l ) G,(r,)G/(r, )f,(r,r, )dr,
0

Z(/» Jq l/ elf y Q l ) Fq(r~)G/(r~) f,(r,r,)dr,
0

Z(/q Jq l/ J/ j p l ) F/(r2)G)(r, )f (r,r,)dr,
0
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and

92Jj+ 1)Pi'(r))+ G j'(r))) )
J~ 8~ l

Z(/j J& lj J» 2/)Ej(r, )G/(r, )

Z(l, Z, lj J~; —,'l)F, (r,)Gj(r, )

Z(l, Z, l, J~; ,'l }F,—(r,)Fj(r,)

Z(l, J, lj Z~; ,' l )E,(r,}—Fj(r,)

Z(/( ~) ljj / 2/) I Ej(r,)E/(r. )f (r,r,)«.
40

( }((0j Ql j )/2

Z(/, 'J, l,' J, ; —,'l)G, (r,)F,(r,)

-Z(/, 'Z, /jZj; .'/)G,—(r,)E(r,)

Z(l,' J, /J Zj,' ~ l )G,(r,)Gj(r,)

Z(/j c/j /j~/ I 2/)Gj(rl)G j(r))

Z(l, J, lj Jj, —,'l) F(r,)F(r,)f, (r,r, )dr,
0

Z(l, J, lj Jf j 2l) Ej(r,)G,(r, )f,(r,r, )dr,
0

Z(l, 4, lj J, ; ~ l ) F,(r, )Gj(r,)f,(r,r,)«,
0

z(('s, ((s~; )f (a —,'(r )G (r (/fr r (dr,
'

0

( ) ((V( (dj)/ 2

-Z(l,'J; /j Jj; —,'l) t G, (r,)Gj(r, )f,(r,r, )dr,
80

Z(l,' J, /j Jj,' —,'l ) Jt E,(r,)Gj(r,)f,(r,r, )dr,
0

(44)

Z(/j jj lj Jj,' 2l ) Ej(r2)G, (r2) f)(r)r~)dr~
40

where products of two of the four-component ob-
jects appearing in Eqs. (41)-(44) are to be com-
puted as follows:

a~ b,

a3

b4

a,b,

a3b3

a4b4

(45)

These equations form the basis of the numerical
calculation of the relativistic Hartree-Fock ex-
change potentials. They are, to be sure, quite
complicated, particularly because they have to be
calculated separately for each JQ-subshell.

n, -or~
O'L+1

Pl3 = —S Ng+ ~

+2
(46)

Nevertheless, if one demands exact solutions of
the relativistic Hartree-Pock problem, one is
forced to either confront the complications of
Eqs. (41)-(44) or else solve the Dirac equation
with the nonlocal form of the potentials.

The 8 and P contributions to the vector meson
sum are not so easy to include because the oper-
ators 00 and o& have very complicated represen-
tations in the space of central field spinors
'JJ~ (8, 4)). A more convenient representation of
the Pauli spin matrices for this problem is the
representation introduced by Biedenharn in his
study of two-component forms of the Dirac equa-
tion":
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The matrices n„n„and n, form a representation
of the Pauli spin matrices on any subspace of
Hilbert space characterized by good J and parity.
Their representation matrices in the space of the
central field spinors are simple as shown by the
following relations:

(47}

By use of these operators, it is possible that one
could represent the remaining contributions of the
vector meson sum to the Hartree-Fock exchange
potentials in as simple a form as the terms al-
ready represented in Eqs. (41)-(44). This pos-
sibility is not pursued further in the present con-
text because of numerical instabilities that are
induced by two-body interactions mediated by odd
Dirac operators. The use of both the R vector
and the pseudoscalar terms in the exchange poten-
tials is questionable.

tials, which are indefinite due to the presence of
x, and-r, in Eq. (35), were obtained by using a
variant of Simpson's rule. Instead of fitting non-

overlapping parabolas through successive triplets
of consecutive points and integrating, this rule
consists of averaging the two overlapping parab-
olas formed by fitting the two triplets of successive
points in any four successive points. This aver-
aged parabola is integrated between the two in-
terior points of the four-point group and the pro-
cess is continued until the entire region of inte-
gration (except for the two end-point intervals)
has been covered. The two end-point intervals
are integrated with the only possible parabolas
spanning these points as in Simpson's rule. This
rather complicated sounding procedure results in
a simple integration rule:

S(x)dx= n[83(1)+~3(2)+„3(3)+y(4)+

+ y(n- 3)+ P, y(n- 2)

IV. NUMERICAL METHODS

As was pointed out previously, the radial Dirac
equations [Eqs. (24) and (25)] and the radial form
of the exchange potentials [Eqs. (41)-(44)] along
with the radial equations for the direct potentials
[Eqs. (16), (17), (31), (32), and (33) of Ref. 1] form
the basis for the numerical solutions of the rela-
tivistic Hartree- Fock equations. The numerical
integration of Eqs. (24) and (25) is performed by

utilizing the Runge-Kutta method appropriate for
coupled linear first-order differential equations.
The integration was performed with 250 equally

spaced mesh points. Mesh sizes of 0.04 and 0.05
fm were used for the "O and ""Cacalculations,
respectively. The single-particle eigenvalues
were determined by matching the radial wave

functions resulting from both outward and inward

integrations. Agreement between the wave func-
tions of better than 5 parts in 10 000 was required
in the eigenvalue search. The outward integrations
were started from analytic expansions of the wave

functions about r =0. Sufficient terms were re-
tained to insure that the expansions were as accu-
rate as can be represented in single precision on

the Univac 1108 machine. The inward integrations
were started from analytic solutions of the dif-
ferential equations in the region where the poten-
tials were assumed to be zero (beyond 200 mesh
points) for the neutron states and from asymptotic
(semiconvergent) series which were the only forms
of solutions found for the wave functions in the
region where only the Coulomb (1/r) potential re-
mained for the proton states.

The integrals involved in calculating the poten-

+~ S(n- 1)+-* y(n)], (48)

E= +&i ITli&+ p (&ij II'Iij &-&fj Il'Ij i&).

(49}

The center-of-mass contribution to this energy
was approximately removed from Eq. (49) by the
same method that was used in Ref. 1.

In Eq. (49) the operator T is the relativistic
kinetic energy operator (discussed in Ref. 2) for
positive energy states:

T = cZ p+PMc'-Mc'. (5o)

The states Ii& are the occupied positive-energy
single-particle states in the Hartree-Fock poten-
tials. The Operator V is, of course, the sum of
the two-body interactions given in Eq. (8). The
kinetic energy expectation value for a state i may

where y(1) =y(a), y(n) = y(b), and b, = (5 —a)/n. This
result, which resembles the trapezoidal rule (only
end-point corrections) more than Simpson's rule,
does not require an odd number of grid points
(unlike Simpson's rule} and is thus well suited for
performing integrals of the type that occur in co-
ordinate space Hartree-Fock calculations.

As well as the potentials, the wave functions,
and the single-particle eigenvalues, the total
binding energy of a system is also calculated in a
H@rtree-Fock calculation. The total binding energy
is calculated in the present work by a straight-
forward summation of the terms in the Hartree-
Fock binding-energy expression:
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be shown to be:

+ [U', (r) —U„'(r) +E,]G,'(r) dr
Jp

dp

(51)

+ [E,'(r) + G, '(r)]V„(r)dr),
0

(52}

where U, and V„are the (state-independent) direct
scalar and vector potentials.

The summation of the exchange two-body matrix
elements in Eq. (49} may also be given as radial
single-particle matrix elements of the exchange
potentials:

P (ij I
V Ij &) = P (2J; + 1)

dp
[E,'(r) + G, '(r)]4 Uo (r),'„dr .

(53)

Here V'„(r),'„ is the exchange part only of the zeroth
component of the vector potential for the state ~f).
The factor of 4 in Eq. (53) is needed to compensate
for the factor of —,

' in Eq. (42}. It is necessary to
ca1culate the single-particle matrix elements in
Eqs. (51), (52), and (53) with wave functions from

where E„F„and G, are the eigenvalue and large
and small component radial wave functions, re-
spectively, of state ~i); and U'„V„", and U are
the scalar, zeroth component of the vector, and

second rank tensor potentials of the state ~f) .
The summation over the direct two-body potential
matrix elements may be written in radial form as
single-particle matrix elements of the direct
single-particle potentials:

g((j jvj(jj =P (u ~ 8( J (~ (,j —G, '(r)jU(rjdr
ij

ttiv same iteration that was used to calculate the
Hartree-Fock potentials if one is to avoid using
a mixed basis for the calculation of E. The total
binding energy was calculated for each Hartree-
Fock iteration and convergence was defined as
the point beyond which the variation in E was less
than 1 part in 5000 for two successive iterations.
The eigenvalues, wave functions, and potentials
were printed out on each iteration and it was ob-
served that fluctuations in these quantities were
usually in the neighborhood of 1 part in 1000 at
convergence.

A basis of wave functions for starting the
Hartree- Fock iteration procedure was obtained
by first obtaining the self-consistent Hartree
solutions for each nucleus. Normally between 10
and 15 Hartree-Fock iterations (beyond the Har-
tree calculations} were required to satisfy the
convergence criterion. This iteration scheme has
been tested for stability by performing calcula-
tions with different mesh sizes and by using dif-
ferent starting bases for the iteration scheme.
Within the accuracy of the convergence criterion,
it was found to be stable.

V. CALCULATIONS

The phenomenological N-N force model which
was used in the Hartree calculations of Ref. 1 is
shown in Table I. This model consists of two
vector mesons (p and cv) and two scalar mesons.
The Coulomb interaction was treated by intro-
ducing a third vector meson with a very small
mass (0.002 MeV}. The absence of the pion in
this model reflects the fact that the one-pion-
exchange potential does n'ot contribute to the
Hartree potential for spherical nuclei. In the
Hartree approximation the parameters of this
model were adjusted to give good agreement with

experimental binding energies, rms charge radii,
and single-particle separation energies for doubly

magic nuclei over the range "0-'"Pb. In Table
II a comparison is made for binding energies and
rms radii between the Hartree (Ref. 1) and Har-
tree-Fock (present) results for "0, "Ca, and 4'Ca.
The exchange contributions of the scalar, time-
vector, and R-vector components of Eqs. (41)-(44)
are included.

TABLE I. N-N model parameters of Ref. 1.
TABLE II. Comparison between relativistic Hartree

P,ef. 1) and Hartree-Pock (present) calculations.

Meson gP Mass -binding energy/A (MeV) rms charge radii (fm)
Ref. 1 Present Ref. 1 Present

1
0+
0+

1

782.8
782.8
277.4
763.0

17.0
17.0
0.646
l.74

i6()
4oCa
48Ca

7.35
8.25
8.55

8.60
9.68

10.29

2.70
3.49
3.49

2.67
3.47
3.46
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TABLE III. Single-particle eigenvalues for Hartree and Hartree-Fock calculations.

"0 40Ca 48Ca

Neutron Proton Neutr. on
State Ref. 1 Present Ref. 1 Present Ref. 1 Present

Proton
Ref. 1 Present

Neutron
Ref. 1 Present

Proton
Ref. 1 Present

1s&/2 44.12

1p3/2 23.96
1p g/2 14.67
1d~/2
1d3/2
2Sg/2

1f7/2

44.42
24.68
13.67

39.93 40.21
20.03 20.69
10.83 9.80

56.09
41.23
35.68
25.68
16.37
14.95

55.10
41.25
35.47
26.15
15.95
12.59

48.05
33.48
27.90
18.24
8.99
7.71

47.13
33.49
27.67
18.64
8.51
5.46

56.64
42.13
37.98
26.73
18.34
16.28
11.51

55.87
42.27
37.55
27.31
17.67
13.19
12.21

55.25
42.28
37.77
27.48
18.70
14.24

55.5I
43.40
38.52
28.92
19.08
12.19

One notices in Table II that the exchange contri-
bution to the binding energy is attractive and adds
about 1.5 MeV per particle to the binding. It is
a little surprising that the contribution is attrac-
tive because in atomic Hartree- Fock calculations
the exchange energy of an interaction has the op-
posite sign to the direct energy of that interaction.
The same is true here; however, the near can-
cellation between vector and scalar two-body
matrix elements is responsible for the present
situation. The direct energy results from a large
cancellation between scalar (attractive) and vector
(repulsive) matrix elements in which the scalar
matrix elements are slightly larger in magnitude
than the vector. The exchange energy arises from
a similar cancellation; however, the-vector ma-
trix elements are slightly larger than the scalar
in thi. s case.

Note that the exchange contributions to the
binding energies are proportionately larger than
the contributions to the rms radii. The exchange
potentials then have a relatively small effect upon
the self-consistent wave functions even though the
contributions to the binding energy are significant.
Further evidence of this is shown in Table III
where the self-consistent single-particle eigen-
values are compared for the Hartree and Hartree-
Fock calculations. The eigenvalue changes are
quite small with the exception of a few states near
the fermi surface.

The exchange contributions to the total binding
energy of the scalar, time-vector, and R-vector
components of the meson model are shown for the
single-particle shells of ' Ca in Table IV. Each
entry represents the exchange energy of a shell
interacting with all other occupied shells through
a particular component of the two-body interaction
[a single term in the summation on the right-hand
side of Eq. (53)]. One notes that the R-vector
contribution is much smaller in magnitude than
the scalar and time-vector contributions. It is,
however, a significant contribution to the total
exchange energy due to the cancellation between
the vector and scalar contributions. By adding
the R-vector contributions in Table IV, one finds
a contribution of 0.18 MeV per particle as com-
pared with a total exchange contribution of 1.43
MeV per particle. This gives us an order of
magnitude estimate of the relative importance of
the 8 and g exchange contributions of the vector
mesons which are excluded in the present for-
malism. In the last line of Table IV, the state
dependence of the exchange energy per particle
is displayed. Note that the contributions of the

j= l--,' states are considerably larger than the
j= l+ —,

' state contributions. Within each of these
two categories, one notes an increase of the ex-
change contribution per particle with increasing j.
The results for the 1sy/2 and 2sy/2 states indicate
that the exchange energy per particle may de-

TABLE IV. Major shell exchange contributions to binding energy of +Ca. Direct matrix elements and kinetic energies
from all nucleons contribute -318.68 MeV. Total with exchange is -369.46.

1s 1pi/2 1ds/2 1d3/2 2s i/2

Scalar 93.28 95.64 160.72 164.20 79.66 81.56 193.30 197.98 118.01 122.38 44.74 48.25

Time vector -93.18 -95.46 -163.37 -166.93 -82.32 -84.32 -199.43 -204.21 -126.82 -131.76 -45.89 -49.56

R vector -0.72 -0.73 -0.41 -0.39 -1.11 -1.16 -0.14 -0.12 -2.21 -2.35 1.11 1.19
Sum -0.62
Sum per particle -0.32

-0.55
-0.27

-3.06
-0.76

-3.12
-0.78

3 ~ 77
-1.88

-3.92
-1.96

-6.27
-1,04

-6.55
-1.09

-11.02 -11.73
-2.75 -2.98

-0.04
-0.02

-0.12
-0.06
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crease significantly with increasing nodal quantum

number.
In Figs. 1-4 the total exchange contributions to

the single particle potentials U, , U„ iU„", and

iU,", respectively, are shown for the single- par-
ticle states of "Ca. These potentials are much
smaller than the direct potentials (U, and U'„)

which are shown for "Ca in Fig. 5. Due to the
similarity between neutron and proton potentials,
only potentials for neutrons are shown in Figs.
1-5. In Figs. 1-4 one bootes the considerable state
dependence of the exchange potentials. In Figs. 1
and 2 the scale for the 1py/2 1d»» and 2sy/2 po-
tentials is multiplied by the factor 10 ' to make the
curves comparable to the 1s»„1p»„and ld»,
curves. In Figs. 3 and 4 the 1py/2 and 1d„, scales
are multiplied by 2 ' while the 2s, /, scale is
multiplied by 10 '. Note in all cases the general
similarity between the potentials for the ls, ~,
1p,~, and 1d», (j=l+-,') states and between the

1p», and 1d,~ (j= l --,') states The. potentials for
the 2sy/2 state are all characterized by a rapid
fluctuation near 2.5 fm. This structure is caused
by a node in the large component of the 2sy/2 wave
function near 2.5 fm. A nonrelativistic analog of
these local exchange potentials which did not in-
clude the momentum-dependent term of Brueckner

500-

400~U„
300—

et al.""would have a true singularity at the
nodal point of the radial wave function. The rela-
tivistic exchange potentials are large but finite at
the nodal points because of the presence of the
nonvanishing small component of the wave func-
tion in the denominator of Eqs. 41-44.

At this point one may conclude that the exchange
contributions of vector and scalar mesons are not
large enough to invalidate the qualitative conclu-
sions obtained from the Hartree calculations of
Ref. 1, although their effect is large enough to
necessitate a slight readjustment of the model
parameters if quantitative agreement with the ex-
perimental quantities (particularly binding ener-
gies) is to be recovered. Such a parameter re-
adjustment within the vector-scalar model is not
of much interest at present because the exchange
formalism provides a mechanism whereby one
may study the more interesting question of the
contributions of the one-pion-exchange potential
to the relativistic Hartree-Fock problem for
nuclei.

In Figs. 6-8 the single-particle exchange po-
tentials resulting from one-pion-exchange [Eq. (4)j
are shown for the ls»„1p»„and 1p», states,
respectively, of "O. The "0 single-particle
states are not self-consistent, but are generated
from a scalar (U,) Woods-Saxon well of depth 60
MeV, radius 3.0 fm, and diffuseness 0.66 fm via
the Dirac equation. The Coulomb interaction was
neglected. The potentials in Figs. 6-8 may be
viewed as first-order perturbation calculations of
the exchange potentials. The pion-nucleon coupling
constant was chosen to be 14 and a pion mass of
138.7 MeV was used. No vertex renormalization

200—
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FIG. 5. Hartree contributioh to the scalar (U, ) and
time-like vector (U~) single-particle potential for Ca.
The N-N interaction is the vector-scalar meson model
of Ref. 1.
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FIG. 6. Exchange potential contribution of the one-pion-

exchange interaction to the 1s&~2 state of O.16
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present. One difficulty is that the formalism, as
presented in the present work, is not appropriate
for meson-nucleon field theories resulting from
derivative coupling. This deficiency prevents a
realistic study of the p-meson contributions and
also prevents an investigation of the differences
between pseudoscalar and pseudovector coupling
for the pion. The derivative coupling formalism
for the Hartree or direct potentials for vector
mesons has been developed"; however, the
formalism for the exchange potentials is still
lacking. The isovector nature of the p meson
leads to considerable cancellation between neu-
tron and proton contributions to the direct poten-
tial. The cancellation does not occur for the ex-
change potentials, leading one to believe that it
is the exchange potentials which are the most im-
portant contributions of this meson.

The other difficulty is that the relativistic one-
pion-exchange interaction [Eq. (4)] leads to
numerical instabilities when used in relativistic
Hartree-Fock calculations. All attempts to per-
form further Hartree-Fock iterations with the one-
pion-exchange contributions reported above have
led to collapsed states of the nucleus in which the
small components of the single-particle wave
functions have become larger and larger.

VI. SUMMARY AND CONCLUSION

A formalism for treating the Hartree-Fock
exchange potentials is developed and applied to
relativistic Hartree-Fock calculations for "0,
"Ca, and "Ca. It is found that the exchange terms,
while numerically important, do not change the
qualitative results for scalar and vector meson
models of the N-N force. The state dependence
of the exchange potentials and binding energy
contr ibutions are investigated. The contributions
for spin-orbit states with J&I are found to be
significantly larger than for states with J& l.

The exchange contributions for a coordinate-
space one-pion-exchange potential are also in-
vestigated and found to be large. Such terms are

too important to be considered as a mere per-
turbation upon the previous Hartree calculations.
In fact, the first-order one-pion-exchange contri-
bution to the binding energy of "0 seems to be suf-
ficient to bind the nucleus, although the resulting
Hartree-Fock potentials would probably not bind
all the single-particle states in "O. The coordi-
nate space form of the interaction [Eq. (4)] and the
potentials and energies resulting from the first-
order perturbation calculation are suspect, how-
ever, since the one-pion-exchange terms cause
the nucleus to collapse when further Hartree-Fock
iterations are performed. Field theoretic con-
siderations suggest that retardation effects [ne-
glected in Eq. (4)] are important for exchange
processes involving one-pion-exchange inter-
actions. Neglect of retardation in relativistic
Hartree- Fock calculations of exchange potentials
appears to greatly enhance the contributions of
virtual pair creation and annihilation for odd ver-
tex operators. One may speculate then that it is
the neglect of retardation which is responsible
for the collapse induced by the one-pion-exchange
potential of Eq. (4).

While the present perturbation calculations of
one-pion-exchange effects in finite nuclei are
suspect, the magnitude of the results suggest that
one-pion-exchange may be very important for
understanding the structure of finite nuclei. The
problem of finding a form of the one-pion-exchange
interaction, which is appropriate for use in
relativistic Hartree- Fock calculations, must be
solved before one can go on to the more funda-
mental problems of going beyond Hartree-Fock
approximation in the relativistic many-body prob-
lem and determining whether the highly rela-
tivistic interactions studied in the present work
are physically reasonable.
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