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A kinematically complete experiment that exannnes the 'H(p, pp}a reaction at several qnasifree
angles has been performed. The results are compared with calcuhLtions performed with a program based
on the code of Ebenhoh that solves the Faddeev equations with separable two-body potentials. The
calculations are compared with two other programs that use a different integration contour, and the
numerical differences are found to be small. The Ebenhoh code is used with three S-wave Yamaguchi
potentials. Two of the potentials difFer primarily in ther predictions of the singlet p-p scattering
length. The third potential fits the two-body n p and pp scattering data below 30 MeV. The
potentials give generally good fits to the breakup data, but do not provide a precise fit to the angular
distribution for the quasifree peaks. The potentials themselves differ by about 30% in the predicted
quasifree peaks. The calculations explictly show that interference efFects are important. It is concluded
that a precise fit to the N-N data is not sufficient alone to guarantee a fit to quasifree deuteron
breakup data and that the Yamaguchi form factor is inadequate for this purpose.

NUCLEAR REACTIONS H(p pp) E =23 MeV measured do quasielastic
angles. Faddeev calculation, 3 potentials, 3 codes.

I. INTRODUCTION

An exact theory of the nonrelativistic three-nu-
cleon problem has been available since the work of
Faddeev. ' However, considerable computational
difficulties still exist for the N-d scattering prob-
lem above breakup threshold for general local (or
nonlocal) two-nucleon (Ã N) potential-s. The theo-
ries of Mitra, ' who pioneered the separable poten-
tial approach, and of Amado, '4 I.ovelace, ' and
Phillips, ' which employ separable two-body poten-
tials, render the Ã d scattering problem tractable.
76th separable potentials, the Faddeev equations
reduce to one-dimensional integral equations that
can be solved by standard numerical techniques.
Only recently has the more complicated problem
of solving the Faddeev equation for simple S-wave
local potentials been attempted for breakup. '

The initial calculations of deuteron breakup
cross sections were compared to single-counter
experimental data. + 8 0 Relatively few kinemati-
cally complete experiments have been analyzed
with separable potentials. "" Kinematically com-
lete experiments preserve the most information

possible since one does not integrate the breakup
amplitude over all phase space for one of the par-
ticles. Thus, these experiments are useful in the
study of certain regions of phase space where re-
sults may be sensitive to particular details in the
assumed internucleon force.

The inquiry into what nuclear physics can be
learned from deuteron breakup experiments re-
quires a great deal of data and many calculations
compared with the same data. The data set should
be self-consistent as well as consistent with work
at other laboratories. Furthermore, the data
should be obtained under kinematic conditions such
that interesting features are expected. The present
experiment is part of a program which is attempt-
ing to meet these requirements.

Previous work has shown that there is the great-
est difference between (p, pn} and (p, pp) cross sec-
tions in the vicinity of 23 Mev ~ and has demon-
strated that there is a large difference in the (p, prt)
and (P, PP) tluasielastic angular distributions. "
Other laboratories have measured the (p, pp) cross
section under similar situations. "'~ Our previous
(P, PP) measurements" were obtained under experi-
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mental conditions in which it was difficult to ob-
serve the final-state interactions. As the results
indicated that interference effects were very strong,
it was decided to make a detailed study of the reac-
tion at a set of quasifree angles. In this situation,
one observes both quasifree scattering (QFS) and
final-state interactions (FSI) and does not concen-
trate on just one or the other. As the relative
strengths change drastically, interference effects
may show up clearly.

The relative effects of the Coulomb forces are
not understood. There is some indication that the
exact calculations, excluding Coulomb forces, are
adequate to within approximately 1-MeV proton-
proton relative energy in the final-state region of
phase space. ~ In the present experiment, the p-p
relative energies are always above 3.5 MeV, and
the P-P angle in its two-body center-of-mass frame
is greater than 40. If Coulomb effects are ever
small, it should be under these conditions.

This paper presents the results of a kinematical-
ly complete experiment of the H(P, PP)n reaction
at 23 MeV for several quasielastic angles. The ex-
perimental cross sections are compared with those
predicted by three separable-potential models.
The potentials contain the Yamaguchi form factor, "
but fit the experimental P-P cross sections over
different energy regions. The n-P interactions in
the potentials are virtually identical and fit the
free n-P cross section up to 30 NeV in the labora-
tory system (lab).

A separable-potential computer code written by
W. Ebenhoh" is used to calculate the (p, pp) cross
sections. These results are compared with the
results obtained from programs written by J. Wal-
lace" and by M. Jain, ~ who employ the Cahill-
Sloan' version of the Amado model. ' In principle,
these programs should give identical results for
the same potential. Due to different numerical
techniques, however, the three programs give
slightly different results, but the computational un-
certainty is small compared to the experimental
errors. Section III discusses the relative merits
of the three programs.

The study of deuteron breakup has reached the
stage where one can compare calculations with ex-
periment to see what basic nuclear physics can be
learned. This aspect of the problem is discussed
in Sec. IV, which compares the results obtained
from the different potentials with each other and
with experiments. In light of the importance of
interference effects" ~ in determining the cross
section, the single scattering, multiple scattering,
and their interference contribution to the cross sec-
tion are calculated. The effects of different con-
tributions to the cross sections, i.e., the P-P and
n-P contributions and their interference terms,

are also discussed. Section V suggests further
calculations and experiments to help elucidate the
role of the N-N interaction in explaining the deu-
teron breakup data.

II. EXPERIMENT
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FIG. 1. Block diagram of the electronics used in this
experiment. Delays are not indicated. The points desig-
nated by M are used during setup and for monitoring of
the electronics.

The experiment was performed in a 76-cmQrtec
scattering chamber using solid-state detectors.
Qne particle was detected in a ~-E telescope
with particle identification. The other particle
was detected using only an E detector, which fa.-
"ilitated detection of low-energy protons. The
fast signals from a timing single-channel analyzer
in each leg were taken to a time-to-amplitude con-
verter, which was followed by a stacked single-
channel analyzer set for real and accidental times.
An "or" between real or accidental events gated
the particle identifier. The identification of a pro-
ton in coincidence opened gates allowing an E sig-
nal, a 4E+E signal, and a time signal to go to the
analog-to-digital converters (ADC). The E signals
could be displayed in a two-dimensional array dur-
ing a run, and all three signals were recorded on
magnetic tape. Later playback with windows set
for reals or accidentals produced the final data
for analysis. Figure 1 shows a schematic of the
electronics.

The target was a CD, foil less than 10 p.m thick.
The use of this target and the bare E detector in
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one leg enabled clear detection of low-energy pro-
tons. This was checked by observing p-p and p-4
elastic scattering at angles such that the scattered
proton had a production energy of 1.0 MeV. The
detectors had widths of 1' in the horizontal plane
and 2'in the vertical plane. The relative coplanar
angles of the two detectors were checked by ob-
serving P-P elastic scattering in coincidence, and

the results indicated that the accuracy was within

0.1'. A fixed monitor at 30'enables the absolute
cross section to be obtained from known elastic
scattering cross sections. This removes the ne-
cessity of accurate measurement of target thick-
ness and integrated beam current.

HI. COMPUTATIONAL METHOD

Before presenting the experimental and theoreti-
cal results, we compare three computer codes of
the Amado' (separable-potential) model for the
benefit of those who may wish to employ one of
these programs in the future. All three codes
solve the three-particle Faddeev equations exact-
ly for separable, S-wave, spin-dependent N-N in-
teractions. The N-N potential is of the Yamaguchi
form. The programs compared are the following:

Code 1. A code written by Jain and Doolen. ~
This work follows that of Cahill and Sloan" with
some corrections and modifications appropriate
to kinematically complete experiments. For an-
gular momentum l «3, the integral equations are
solved exactly by matrix inversion with 28-point
Gaussian quadrature, with the integration contours
of Cahill and Sloan. The second iterative solution
of the Faddeev equation is retained for 4 & l ~5,
while the first iterative solution is retained up to
l = 7. Born terms are calculated analytically and

thus include all partial-wave contributions.
Code 2. A code written by Wallace" which again

employs the Cahill-Sloan integration contours.
The integral equations up to l = 11 are solved by
iteration to give the Faddeev-Watson multiple scat-
tering series, which is summed by the method of
Pads approximates. ' Again, the partial-wave
summed Born term is calculated analytically. A
32-point Gaussian quadrature is used for the in-
tegrations. The chief difference between Jain's
and Wallace's codes is the calculation of the final
cross sections from the Faddeev amplitudes. This
will be discussed .later.

Code 3. A code written by W. Ebenh5h" and run

by Haftel. Ebenhbh employs integration contours
that, unlike the Cahill-Sloan contours, leave the
real momentum axis only when necessary. Con-
sequently, the physical "on-shell" amplitude is on
the contour of integration. Furthermore, unlike
the Cahill-Sloan contours, the contour required in
the final-state region [see Fig. 2(b} of Cahill and
Sloan and Fig. 2(a) of Ebenh6h] is independent of
the final-state momentum. The solution of the in-
tegral equations is obtained by matrix inversion
for l +2, by first iteration for 3 & l ~5, and from
the Born term for /~ 6. The contours are divided
into three regions, each of which is integrated over
by a Gaussian quadrature formula, with a combined
total of 31 points.

Each code has its advantages. Code 1 has been
very carefully checked and probably has the least
computational inaccuracy. Code 2 provides the
multiple scattering series as a by-product of the
Pads approximant method. Codes 1 and 3 are very
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FIG. 2. The results produced by three different "exact"
codes for calculating deuteron breakup cross sections.—code of Ebenh'oh, --- code of Jain and Doolen, ~ ~ ~

code of Wallace. The angle pairs are on opposite sides
of the plane for all of the cases in this paper.
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FIG. 3. The results of three different calculations of
deuteron breakup. Curves correspond to those of Fig. 2.
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FIG. 4. Observed and calculated spectra. Three of
the curves were obtained using the three different nucle-
on-nucleon potentials: A (--), B (—-), and C (—),
discussed in the article. The fourth curve ( ' ' ) repre-
sents the Born terms for potential B (x $}.

compact and useful for experimentalists. Figures
2 and 3 illustrate the 'H(p, pp)n cross sections as
calculated by the three codes at two pairs of quasi-
elastic angles. All calculations are for the "P-Y
model" of Cahill and Sloan, '" which corresponds to
the potential A. of Sec. IV of this paper. The codes
give almost identical results with a maximum
spread of about 7% at the quasifree scattering peak
at 8, = -8,=41.7'. As one proceeds closer to the

FSI region, the Ebenh5h and Jain results become
very close, but the Wallace results are in some
disagreement.

Near the QFS peak one needs only amplitudes cal-
culated on the "simple" contours [Fig. 2(a) of Ca-
hill and Sloan and Fig. 2(b) of Ebenh5h]. Both of
these contours stay sufficiently far from singulari-
ties in the three-body propagator so as to present
no serious numerical difficulties.

As one proceeds away from the QFS peak, am-
plitudes calculated on the more "complicated" con-
tours [Fig. 2(b) of Cahill and Sloan and Fig. 2(a)
of Ebenhbh] come into play. In this region there
is a Born-term propagator singularity on the sec-
ond sheet at zero momentum. This singularity is
removed by a phase-space factor in the integral
equation, but it does lead to a peaked kernel near
zero momentum; therefore, one has to be careful
handling this integral numerically, since large can-
cellations occur in the integration on the second
sheet. The fact that Ebenh5h and Jain get nearly
the same result encourages one to believe the nu-
merical evaluations were handled adequately. Fur-
thermore, the Ebenh5h and Jain "complicated"
contour amplitudes are numerically stable —e.g. ,
their amplitudes usually do not change more than

TABLE I. Faddeev amplitudes for F-Y model (poten-
tial A) as calculated by three computer codes.

qg
(MeV«2) i S,,

T ti (qo.) ([MeV] )
(1) (2) (3)

Jain Wallace Ebenhoh
x1p 3 x10 3 x1p 3

3.062

3.547

0 ~ 1 Re
Im

1 I] 1

2 f
0-,' 0

0

2 — 0

0 — 1

1 ~2 1

2 +q 1

0 2 0

1 — 0

2 g 0

-4.1809
-5.7297
-0.5322

0.4920
0.4319

-0.8513
-0.7786

0.2859
2.3106
2.4427

-0.4482
-0.6336

-5.4694
-7.2713
-1.8394
-1.1072

0.7270
-0.9815

1.2745
2.7314
6.1921
1.2514
0.2800

-1.6489

-4.1580
-5.7255
-0.5342

0.4890
0.4289

-0.8463
-0.7796

0.2822
2.3107

-2.4259
-0.4438
-0.6307

-1.7670
-0.9740

0.7297
-0.9616

5.7372
1.4975
0.2310

-1.4830

-4.1737
-5.7164
-0.5316

0.4895
0.4310

-0.8489
-0.7744

0.2861
2.3062
2.4358

-0.4464
-0.6315

-5.5098
-7.2905
-1.8341
-1.1095

0.7252
-0.9816

1.2643
2.7614
6.0962
1.2786
0.2618

-1.6373

1% as one doubles the number of integration points.
On the other hand, Wallace's amplitudes possess
small discontinuities which apparently arise from
the integration technique employed. One of the en-
couraging points of Ebenh5h's contour is that he
gets a numerically stable result with fewer inte-
gration points [16 points on segment 0-1-2-3-4 of
his Fig. 2(a) versus 40 points in the Jain code for
segment AB of Fig. 2(b) of Cahill and Sloan].

Differences in predictions of the three codes can
come from two sources: (1) different calculated
Faddeev amplitudes, and (2) details in calculating
the cross section from the amplitudes. Table I
compares the amplitudes calculated from the three
codes for selected values of the final momentum

(q&), angular momentum (I), total spin (S), and

two-body substate [singlet (s, =0) or triplet (s, = 1)].
The amplitudes correspond to the quantity T, , (qo)
of Eq. (17) of Ebenhbh, where the final state (o,)
has spin quantum numbers S, s„and the initial
state (o) has quantum numbers S, s= l. The quan-
tity q is the on-shell initial momentum q = (E+ «,')"'
where E is total center-of-mass energy and Kp is
the deuteron binding energy. " The disagreement
is usually less than 1%, except for Wallace's am-
plitudes for large q;. The agreement between the
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FIG. 5. Observed and calculated spectra: (a) 8& =50.0', &2=-33.5', (b) 8&=33.5, 82=-50.0'. The. two curves represent
potentials A (—) andB (—-).

amplitudes is better than the agreement between
the cross sections. This difference is to be expect-
ed because (1) linear combinations of three-body
amplitudes can cancel, (2) if there is a good deal
of cancellation between different partial-wave am-
plitudes, a small error in each individual partial-
wave amplitude can lead to a magnified error in
the final summed result, and (3) amplitudes are
squared in calculating cross sections. Therefore,
the spread in the cross sections at the QFS peak
for 8, = -8,=41.T is not unreasonable.

Another source of error spay come from the in-
terpolations required to obtain values of the Fad-
deev amplitudes at momenta for which the integral
equation is not explicitly solved. Unless one knows
in advance what the kinematic conditions will be
and is willing to solve the integral equations for a
great many values of q„an interpolation or fitting
procedure is necessary. Wallace actually solves
the integral equation where needed (a time con-
suming procedure); therefore his calculation is
free from fitting errors. Ebenh5h calculates the
amplitude at 22 values of the final momentum (q, )
and fits the amplitude to a functional form with 12
parameters. Jain uses three-point Lagrangian in-
terpolation starting from an amplitude calculated
at 99 values of q;. It is likely that Ebenh6h's cal-

culation has more fitting errors than Jain's.
It is difficult to judge which of the three codes is

best. Jain's has probably the least numerical in-
accuracies, while Wallace's has the most. Eben-
h6h's contours seem to have certain numerical ad-
vantages. Ebenh6h's results are close to Jain's,
while Wallace's results are not precise in certain
regions of phase space. Some of the difference in
amplitudes is due to slightly different nuclear pa-
rameters. " The calculations of predictions for
various potentials in the next section use the Eben-
h6h code; the maximum calculational error of this
code is probably only about 2-3% in the cross sec-
tion —certainly accurate enough for our purposes. .

IV. RESULTS AND DISCUSSION

Figures 4-8 present the spectra for the pairs of
quasifree angles investigated. The errors shown
are statistical, with the absolute error estimated
to be less than 3%. This error arises primarily
from the interpolation of p-D elastic scattering
cross sections. A do/dQ of 58.0 mb/sr was used
for the P-D cross section at 30 and 23 MeV. Fig-
ure 9 shows the angular distribution of the cross
sections at the quasifree peak. The peak cross
sections were obtained from semiempirical fits to
each spectrum. The fits had a y' per degree of
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FIG. 6. Observed and calculated spectra: (a) 8&
-—53.1, 82 —-30.0'; (b) 8&

——30.0, 82=-53.1 . Curves as &n Flg
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freedom of approximately 1.0.
Figures 7(a) and 8(a) show the strong final-state

interaction peak at low proton energies. Under
these conditions, the theoretical results should
allow for various experimental effects. Figure 10
shows the effect on the theoretical prediction due
to finite angular resolution, finite energy resolu-
tion, and energy loss in the target. The angular
resolution accounts for only a 0.5% reduction in
the height of the FSI peak, as the peak cross sec-
tion is changing slowly with angle. The finite tar-
get thickness has a pronounced effect as very-low-
energy protons are being observed. The figures
show the total effect calculated for three different
target thicknesses.

Figures 4-9 also include the cross section ob-
tained from two separable potential models (A and

8) and, in some cases, a third model (C). Also
included in Figs. 4, 8(a), and 9 are the single-
scattering (i.e., Born) results.

The three potentials employed in our calcula-
tions have Yamaguchi form factors, i.e., have

momentum-space matrix elements given by

(k!V!k)= g ~„g„(I)g„(e')P„,

g„(k) =N„(k'+P„') '.

cu 5-
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El (MeV)

FIG. 8. Observed and calculated spectra: (a) 8& = 60.5',
82=-20.0', curves as in Fig. 4; (b) 8i ——20.0, 82-—-60.5,
curves as in Fig. 5.
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FIG. 7. Observed and calculated spectra: (a) 8& = 57.5,
82=-24.5'; (b) 8&=24.5', 82=-57.5'. Curves as in Fig. 5.

The index n indicates the two-body spin-isospin
state [s = 0, spin triplet (s = I) isospin singlet; n = I,
spin singlet (s =0) isospin triplet] with projection
operator P„. The numbers N„, P„, and X„are such

PEAK QUASl-ELASTlC CROSS
SECTlONS

~H (p, pp)n
Eo= 25 MeV

I

r
UJ
CL

/

UJ 2-

Cs

~b 0"U 60

FIG. 9. The cross section at the quasielastic peak
plotted as a function of angle. The three curves repre-
sent the predictions of the potentials A (--), B (—-), and
C (—). The fourth curve (" ) represents phase space
contributions and the fifth (——) the Born term for po-
tential& (&& ~&),
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target thickness and energy resulution. —uncorrected, ——5.0 pm, -- 10 p, m, ~ ~ ' 20 pm. The target used had a
nominal thickness of 7.5 pm.

as to give the two-nucleon scattering parameters
indicated in Table II (only two of these numbers
are independent for each two-body channel). For
Yamaguchi form factors the two-nucleon T matrix
ls given by

(k I
T{E)11'&= g g.()t)g.(a')~.(E)I.,

( )
(P„—i')'

«„(p„+«„)(2p„+«„-1 gg )(«„+i ~@ )
'

The quantity «„ satisfies («„+tl„)'(r~ p„- 1) 3p„'
=0 and «,'=E~ (deuteron binding energy), and r~
is the effective range.

Potential A is the F-Y model of Cahill and Sloan

'|'ABLE II. Potential parameter s and effective range
parameters.

with a~~ =a„'~ = -23.VS fm. Potential B modifies the
p-P scattering length to fit the low-energy P-P da-
ta, a~~ = -V.V6 fm. To some degree potential B
takes into account the Coulomb effect on strong-
interaetion P-P phase shifts. This is the same po-
tential Ebenh5h uses; the n-P portion of the poten-
tial differs only very slightly from that in poten-
tial A.

Potential C uses the same form factors and pa-
rameters as potential B, except with the two-body
T matrix modified by

&1 I T(E) Ik'& = Q g„(I )g„(II')~„'{E)&„,

where

r„'(E) =r„(E)p„(E)(I 3«'iE"' -'g( 'E)~„( )E

x[I p (E)]}-

Potential

5,423
1.76
2.2246
1.405 81
0.231 61

-23.7S
2.67
1,177 11

-0.039 92
-23.78

2.67
1,17711

-0.03992

+6 =triplet (fm) ~ 5.415
oo {fm) 1.75

y (MeV) 2.2246
Pp (fm ~) 1.415 47
~o (fm-') b 0.231 61

=singlet (fm) ~ -7.76
& g (fm} 2.86
Pg (fm ) 1.19918

(fm i) -0.11119
(fm) -23.68
(fm) 2.67

P) (f i) 1.17733
(fm ) -0,040 08

~ As calculated from the effective range formula, z»

The x» are defined in Ref. 8.

p.(E) =1+ i(E+ «.')i(E.+ «.')1&.(1+e ") '.
The parameters E„h„, and P a.re chosen such
that the on-shell T matrix elements (E = II'= II")
lead to two-nucleon cross sections that give good
fits to experiment. For potential C, the parame-
ters E,=15 MeV, P=-,' (MeV) ', L,(P-P) =0.291,
4,(n-P} =60(n-P) =0 yield a good fit to the experi-
mental p-p and n-p cross sections at 90' (c.m. )
and up to 30 MeV (lab). The P-P 90'(e.m. ) erose
sections for each potential and the cross sections
obtained from experimental phase shifts" appear
in Fig. 11. The T-matrix modification of Eqs. (3)
and (4) is similar to that employed by Wallace. "
Equation (4) assures that the two-body K matrix
(I.e. pl'lllelpal value T Illa'trlx) is Illultlplled by

p„(E}rather than the two-body T matrix as in Wal-
lace's method. Since the K matrix is real
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[&klK(k')I k) =-tan5(k)/(2v'k) where 5(k) is the
two-body phase shift] the modifications of Eqs. (3)
and (4) retain two-body on-shell and off-shell uni-
tarity. The use of potential C required a minor
modification in the basic Ebenh5h computer code.

Two main features manifest themselves in the
experimental and theoretical spectra. First is the
QFS peak that occurs when the momentum (in the
lab frame} of the undetected spectator neutron is
a minimum. The QFS peak occurs in the Born
term as well as in the final result. The second
feature is the narrower FSI peak that occurs when
an outgoing proton and neutron (undetected) have
a minimum relative momentum (near zero). This
peak varies from being practically nonexistent at
8y —8, = 4 1.7' to being ve ry pronounc ed at 8, = 60.5',
8 =-20'.

The basic ingredient that accounts for the QFS
peak is the behavior of the deuteron wave function
which is peaked around zero relative momentum.
Qne can most easily see this feature in the single-
scattering (Born) approximation where the cross
section is given by

10~
E~ ~

E

0

IO~

~ EXPERIMENTAL p-p
CROSS-SECTION
(90'c.m. )

———POTENTIAL A

POTENTIAL B

0 5.0 IO.O 15.0 20.0 25.0 50.0

E Iqb (MeVj

FIG. 11. The free p-p 90' center-of-mass differential
cross sections as predicted by potentials A, B, and C
and by the phase-shift analysis of the experimental data
of Ref. 32.

d 0' do~~ "' ' de~"
(Born) = (kinematic factors) do I p, (-k,) I'+

d I Q,(-k, ) I'
can. off ~ c.m. off

(2)
+

I Q,(-k,) I'+ interference terms
can. off

where the deuteron wave function Q,(k, ) is given by

Po(ki) =go (k, )(ki'+ ao') ',
and k„k„and k, are the momenta of the two protons and the neutron, respectively, in the laboratory sys-
tem. The half-off-shell cross sections are given by

d ne (3)
=4v'I

& a(k, -k,)l T", (h(k, —,)l')I 2( +k, )&l'
can. off

n (x)
= 4v'&, I&-'. (k. —k3& I

T"([-', (k. —k3&]2) I —.'(k+ k,» I'+ .I & —.'(k2 —ks& I T~O([ -', (k. -ks&]')
I

-', (k+ k, )& I'].
can. off

oft (2)
=4v'&,

I &-,'(k, -k, )l T',"(I:—,'(k, -k, )]'&I-', (k+k.» I'+, I&-,'(k, -k, &l T'."([-',(k, -k, )P&l -', (k+k, )& 19,
c.m. off

where T„ indicates the two-body T matrix in spin-
isospin channel n [see definitions after Eq. (I)],
and k is the momentum of the incoming proton in
the lab frame. At the QFS peak k, = 0; therefore,
the term with

I Q,(-k,)l' in Eq. (5) dominates. If
one approximates tne cross section by the first
term on the right-hand side of Eq. (5) [this is re-
ferred to as the plane-wave-impulse approxima-
tion (PWIA}], the only T matrix element that comes
into play is

( ~(k, —k,)l T,([ 2(k, —k2)] )I ~(k+ks)).

At the QFS peak, this T matrix element is nearly
on shell (i.e., lk, -k,

l
= lk+k, l ); consequently, it

can be approximated by the on-shell T matrix ele-
ment" which can be directly extracted from the
P-P data. The PWIA is not the whole story since
the multiple scattering series does not converge
at the low energies under consideration. However,
the QFS peak does survive in the fully summed
scattering series although its magnitude is much
smaller and its shape altered [see Figs. 4 and 8(a)].

The FSI peak occurs mainly because the n-p two-
body scattering amplitude has a narrow singlet-S
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virtual state at zero relative energy. This peak is
not seen in single scattering since it is weighted
by the momentum tail of the deuteron wave func-
tion. At 8, =60.5, 82=-20', the FBI contribution to
the Born term [Eq. (5)] is weighted by P,(-k,}
(here k, =k,} compared with Q,(-k,} for the PWIA
term A. s E,=19.4 MeV [E,=()I'/2m)h, '], and E,
=0.6 MeV, P,(-k,) is down by a factor of 17 from

P,(-k,). The FSI makes itself felt in multiple scat-
tering leading to a, strong, narrow peak when the
I-P relative energy is close to zero.

According to Migdal-watson theory, the shape
of the FSI peak is given by do/(dQ, dA,dE, ) = (kine-
matic factors )(s'+ p') ' where p is the relative
n-p momentum, and (» —,r, »—')= I/a where s is
the scattering length and x, is the effective range.
One has to be extremely close to p=0 to see this
peak because of the large value of the n-P singlet
scattering length. At 8, = -8,=41.7; the minimum
relative energy is 0.25 NeV while at 8, = 60.5', 8,
= -20, the minimum relative energy is 0.02 MeV.
We observe from Fig. 4 (41.V; -41.7') and Fig.
8(a) (60.5; -2(P) how critically the n-P FSI peak
depends on this minimum energy. Although not
shown in the figures, the Migdal-Vfatson singlet
shape corresponds almost exactly to that predict-
ed by the exact theory.

Multiple-scattering effects also play an impor-
tant role in understanding the spectra. The full
breakup cross section is given by

= (kinematic factors)
~ T» ~,2

I T» I'= 3 lMq, l'+ ll Mq. l'+ 3IMql'

The two doublet (M», M») and quartet (Mq) matrix

elements can be expressed in terms of breakup am-
plitudes as follows:

M»= -g &ST',„'~2 (I)+,IS T~~2 (2) + x'v 3 T~~m (2)

Mq = ,' T"-~2-(1)+ T~~2(2) . (7)

T (i) =I&3T,((E+K ')'" o:S,a=1)

e, :S, s„p, = 2(k& —k») (i,j, k' cyclic},

q, =(2&3) '(k~+k»-2k, )

[see Eq. (17) of Ref. 16], where s, =1 if n=0, and

s, =0 if n = 1. The quantities k, and k, are the mo-
menta of the outgoing protons, k, is that. of the out-
going neutron, and k that of the incoming proton.
The index i = 1 or 2 i~plies the two-nucleon label
n-P while i = 3 indicates the label P-P. Each T„(i)
in Eq. (7) can be written as the sum of a single-
scattering contribution and a multiple-scattering
contribution, i.e.,

T„(i)= T„(i)(Born) + T„(i)(MS) .

For separable potentials the breakup amplitudes
Tf(i) (S= total three-body spin} are solutions to
coupled (S= &) or uncoupled (S= —',) one-dimensional
integral equations. The number in parentheses for
each T~(i) refers to a pair of nucleons j, kai In.
the notation of Cahill and Sloan"

Ta (i}= 2%~.l„l(k„2(kI-k»); }t) (i,j, h cyclic),

where n'(0) =1, n'(1) =2 for n-p, n'(1) =3 for pp.
In the notation of Ebenh5h

Likewise, each matrix element M can be written as the sum of single-scattering (Ma"") and multiple-scat-
tering (M"~) contributions. Therefore,

~ T» ~' becomes

(T»['= —', (jMq",'"('+ [Mq", )'+2[Mq"&')+-.'([M" )'+ [M" ['+2)Mqs(')+cross or "interference" terms. (8)

In Figs. 12 and 13 we illustrate the contributions to the cross sections due to single scattering [i.e., the
first term in Eq. (8)], multiple scattering (the second term), and interference. Except in the FSI region,
the multiple-scattering contribution is relatively flat. The multiple scattering interferes destructively
with the Born term. At both 8, = —8,=41.V'(Fig. 12) and 8, =60.5, 8, =-20'(Fig. 13), the resulting QFS peak
is much reduced and less pronounced than in single scattering.

Another way to look at QFg, FSI, and interference effects is to investigate various contributions to the
fully summed Faddeev amplitudes and the resulting cross section. As in Eq. (8}, one can write each M
matrix element as the sum of "n-p" terms [contributions of T„(i)=1, 2] and a p-p term [contributions of
T„'(3)], i.e.,

M = llP~ (i = 1, 2 contributions) +M~/ (i = 3 contributions) .
Likewise, ( T»~' becomes

I T»I'=k(I~i»I'+ IMq2I' 2IM+q I')+k(IM~, I'+ IM~~ ]'+ 2[M~P')+interference terms. (8)
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In Figs. 14 and 15, we indicate the contributions
to the cross sections for potential A at 41.7',
-41.7' and 60.5;-20 from Faddeev P-P and n-P
amplitudes and interference (INT). Figures 16
and 17 show corresponding curves for potential B.
The "n-P" curve corresponds to the first term in
Eq. (9), the "P-P" curve corresponds to the second
term, and TNT corresponds to the sum of all cross
terms.

The final cross section results from the destruc-
tive interference of a peaked P-P term with a flat
e-P term. Qf course, the n-p term contributes
the FSI peak in the 60.5', -20' spectrum. The n-P
contributions to the FSI peak differ slightly in Fig.
15 (0.742 mb/sr2MeV) and in Fig. 17 (0.71S mb/sr~
MeV) although the n-P interactions are virtually
identical. The difference occurs because the n-P
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Faddeev amplitudes contain the sum of all multiple
seatterings where only the last scattering is re-
stricted to be between a neutron and proton. Mul-
tiple scatterings that include P-P interactions do
contribute to the n-p amplitude at the FSI peak.
Qne can also understand this difference in terms
of Amado's observation that two-body information
is distributed in the entire summed Faddeev am-
plitude rather than in any one contribution. " Nev-
ertheI. ess, the shapes of the P-p and n-p contribu-
tions have the qualitative features one would ex-
pect from P-P and n-P scattering alone (QFS for
P-P, FSI for n-P).

Qne can easily understand the differences in pre-
dicted QFS cross sections of potentials A and B in
terms of the predicted P-P two-body cross section.
The P-P cross sections given by potential A are
consistently higher than those predicted by poten-
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FIG. 15. The p-p, and n-p, and interference contribu-
tions to the 2H{p,pp)n differential'cross section at
8&=60.5, 2 —--20 for potential A.

FIG. 14. The p+, n+, and interference contributions
to the H{p,pp)n differential cross section at & f 82 41.7'
for potential A.
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FIG. 17. The p+, n+, and interference contributions
to the 2H(p, pp)n differential cross section at e f 60 5',
82= -20' for potential B.

tial B (see Fig. 11). The 20% difference in the
QFS peak cross sections in single scattering
(Figs. 4, 8, and 9) is fully consistent with the
20% difference in free p-p cross sections (the
relevant lab energy is about 18 MeV —see Fig. 11}.
The final predicted cross sections differ by about
30%; however, the P-P Faddeev contributions
(Figs. 14 and 16) differ by 20%. Therefore, the
difference between potentials at the QFS peak is
magnified pereentagewise by the strong destructive
interference of the n-p contributions.

As one approaches the FSI peaks, the differences
in predicted cross sections of potentials A and 8
become smaller. Here, the almost identical n-P
interactions dominate the picture. There is a re-
sidual (about 7%) difference between potentials at
the FBI peak, with potential A a,gain predicting the
greater cross section. This difference is due to
differences in the P-P contributions (1.54 mb/sr'
MeV for potential A vs 1.21 mb/sr'MeV) and in
the n-P contribution (7.42 mb/sr'MeV for poten-
tial A vs 7.18 mb/sr'MeV) and interference
(-2.23 mb/sr'MeV for potential A vs -2.15 mb/
sr'MeV for B). The p-p and s-p contributions to
the difference in heights of the FSI peak under-
score the observations that two-body informa-
tion is distributed in all of the Faddeev amplitudes.

In general, all the potentials studied give good
fits to the data. The good agreement is readily
apparent in the spectra of Figs. 4-8. The FSI
peak observed in Fig. 8(a) is consistent with that
predicted by the separable potentials if one folds
the experimental effects into the calculation (Fig.
10). There is one notable discrepancy that does
occur as can be seen in Fig. 9. The angular dis-
tributions of the QFS peaks as calculated from the
separable potentials do not agree with experiment;
the data are more nearly isotropic than the pre-

dietions.
The reason for the discrepancies regarding the

angular distribution of the QFS peak cross sections
is difficult to pinpoint. At 41.7', potential B is
close to experiment, while at 60.5 or 20', potential
A does better. Potential C, which gives the best
fit to the two-nucleon (N-N) data, gives a slightly
better over-all result than potentials A or B. The
relative energy of the outgoing protons is 9.1 MeV
(this would correspond to 18.2 MeV lab}. One
should remember that multiple scattering effects
are important, and in multiple scattering, the
relative p-p energy can range from 13.1 MeV
(26.2 MeV lab) to negative infinity. potential Q,
one recalls, gives a very good fit to the experi-
mental N Ndata up to-30 MeV lab (Fig. 11). This
potential, therefore, gives a good representation
of the N-N data. relevant to the 23 MeV breakup
experiment. It appea. rs that fitting the N-N data
alone is not sufficient for predicting the correct
QFS angular distribution.

If a precise fit to the N-N data alone cannot
guarantee the proper QFS angular distribution,
what other factors may come into playV Recall
that the destructive interference of the n-P ampli-
tude with the P-P amplitude plays an important
role in explaining the QFS data. Even slight
changes in individual amplitudes could make sig-
nificant changes in the QFS peaks due to the im-
portant destructive interference. Also, the rela-
tive strengths of the P-p, n-P, and interferenee con-
tributions vary with angle. Therefore, the influ-
ence,of changes in the X-N interaction on the QFS
peak could be angle dependent. We have already
discovered that changing the energy dependence of
the P-P T matrix without changing the form factor
merely accomplishes a renormalization of the
QFS angular distribution. The shape calculated
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from a Yamaguchi form factor seems always in
disagreement with experiment. Thus, it would be
worthwhile to investigate the effect of varying the
two-nucleon form factors on the angular distribu-
tions of Fig. 9. From Eq. (2), changes in the form
factor would lead to different types of off-shell var-
iation in two-nucleon T matrix elements. One
could retain the same on-shell results by intro-
ducing an energy dependence as in Eqs. (3) and (4).
Off-shell changes have been studied in the triton
problem, ~ but not for deuteron breakup.

If improved fits to the N-N data and improved
K-N form factors fail to account for the QFS an-
gular distribution, one must seriously consider
the role of the Coulomb interaction. Coulomb ef-
fects are important if the two-body P-P angle is
small or if the P-P relative energy is close to zero.
At 90' p-P angle, for example, Coulomb effects
are important for Ehb ~3 MeV (see Fig. 11). In
single scattering, the P-P angle and energy are
large enough that the Coulomb interaction is un-
important. However, in multiple scattering, the
P-P angle takes on all values and the relative en-
ergy takes on all values less than 13.1 MeV. It
does not appear profitable at this time to investi-
gate the Coulomb effects by comparing p-P and
P-n quasifree scattering. The large differences
observed in these two mechanisms are associated
primarily with interference effects.

The P wave and higher partial waves in the N-N
interaction could also play a role in'quasifree scat-
tering. The P waves could bring some additional
angular dependence since the direction (but not the
magnitude) of the relative p-p final-state momen-
tum varies significantly with angle in Fig. 9. The
effect of P waves, however, should be small be-
cause even at the maximum P-p relative energy
(13.1 MeV), P waves play only a very minor role
in predicting two-body P-P cross sections. " Their
importance al'so decreases with decreasing energy.

One of the main reasons for attempting the three-
body problem is to gain information concerning the
off-shell N-N interaction and three-body forces."
We have suggested that the influence of off-shell
effects on the QFS angular distribution should be
studied by varying N-N form factors. Different
N-N form factors most likely also play a role in
predicting the FSI peak. In particular, the FSI
peak should be primarily sensitive to the zero-en-
ergy N-N interaction, both on shell and off shell.
The triton binding energy, also, is primarily sen-
sitive to the zero-energy off-shell N-N T matrix. '9

The FSI peak in deuteron breakup is primarily the
result of a two-body process. In the triton, three-
body forces may play a different role than at the
final-state peak for the H(p, pp)n reaction since
the three nucleons are on the average closer to-

gether than in the scattering process. Therefore,
any gross incompatability in the zero-energy T
matrix as "measured" by the triton binding ener-
gy and by deuteron breakup could be indicative of
the presence of three-body forces. The presence
of such forces has been indicated by both meson-
theoretic and phenomenological considerations.

At present, it is extremely difficult to disen-
tangle the roles of the many different effects (Cou-
lomb, P-wave, off-shell, and three-body forces)
that could contribute to breakup cross sections.
One should start searching for regions of sensi-
tivity to various effects. The easiest effect to
study, and the first one that should be studied is
that of off-shell effects by varying the N-N form
factors.

V. CONCLUSIONS

Calculations of the cross sections for the 'H-

(P, PP)n reaction based on the Amado model are
in good agreement with our experimental measure-
ments. The agreement is better in some portions
of phase space than in others, depending upon the
potential used, indicating that the calculations
work well but not perfectly. The computer codes
that exist for the solutions ean no longer be used
blindly. They describe the basic features of the
interaction, but the details of agreement of ex-
periment and calculations depend upon the details
of the potentials used.

Data was compared with the predictions of three
potentials. These potentials differed primarily in
the strength of the proton-proton interaction. Dis-
crepancies as large as 30% exist between theory
and experiment with regards to the height of the
QFS peaks. Moreover, for all of the potentials
considered, the shape of the calculated angular
distribution of QFS peaks is not in close agree-
ment with experiment. Three computer codes
were also compared, and, in their regions of
validity their results differ by at most a few per-
cent.

The calculations indicate that interference is
very important. At the QFS peak the P-P ampli-
tudes, the n-P amplitude, and interference all play
important roles. Consequently, changes in either
the P-P or n-p interaction could have important
consequences in improving the agreement with ex-
periment. We feel that it is necessary but not suf-
ficient to use p-p interactions that give good fits
to the two-body cross sections over a fairly large
range of energies. As mentioned in Sec. IV, both
the height of the FSI peak and triton binding are
likely very sensitive to the off-shell variation in
the zero-energy two-nucleon T matrix. One can
study the influences of this off-shell variation by
varying the two-nucleon form factors in threq-
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body breakup or bound-state calculations. Experi-
mentally, one should consider measuring the FSI
peaks over a range of projectile energies [this sug-
gestion holds for (P, PP), (P, Pn), (n, ss), and '(P, nP)
reactions]. An interesting problem would then be
to investigate whether form factors that give a cor-
rect description of the experimental FSI peaks
give the correct triton binding energy. The results
of such an investigation could have a bearing on the
role of three-body forces. For such a study to be
conclusive, one should search for form factors
that fit the experimental FSI peaks over a range
of projectile energies. One can thus be assured
that one is sampling T matrix elements roughly
equivalent to those relevant for the triton problem
(see Ref. 29). As has been pointed out in this pa-
per, one must be extremely careful in obtaining
the final-state cross sections and in comparing ex-
periment with theory in this region.

It appears that improved fits to the P-P data
alone will not explain the QFS angular distribution.
Since the P-P and e-P interaction and interference
effects all have an important bearing on the pre-

dieted QFS peaks, variations in the N-N form fac-
tor could affect the calculations of the QFS peaks.
It is important that efforts to improve agreement
with the QFS angular distribution should continue
to describe the FSI peaks. The result of such in-
vestigations may indicate how much physics we
can obtain from a simple S-wave separable-poten-
tial model. We would also hope to get some idea
of the extent to which we could ignore Coulomb
and P-wave effects. The results of this paper call
for calculations with, hopefully, improved two-nu-
cleon form factors. The success or failure of such
future calculations will indicate to what extent we
can ignore the more sophisticated aspects of the
internucleon force.
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