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Transition in tensities from projection-integral wave functions*
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Possible deviations from the Alaga rules based on the use of projection-integral wave func-
tions are investigated. It is shown that while such deviations, in principle, exist, they iden-
tically vanish in the region of heavy deformed nuclei, if it is assumed that these nuclei can
be described by "semirigid" intrinsic wave functions.

NUCLEAR MOMENTS Deformed nuclei; calculated B(E2}deviations. ,Projec-
tion integral wave functions.

I. INTRODUCTION

When dealing with heavy deformed nuclei the
adiabatic wave function, which treats the nucleus
as a rigid rotator, is normally used; that is

where
~ Px) is some axially deformed intrinsic

state with J~ projection K on the body-fixed Z
axis. An alternate description utilizes a micro-
scopic intrinsic wave function from which is pro-
jected a laboratory wave function with a good
angular momentum quantum number. The pro-
jection -integral wave function can be written,
as follows:

) J~& = [(2J+ I)/Iev'C(JK)]

de ft(fl)[D„',*(Il)
( y )„

these formulas. The deviations are generally
attributed to band mixing; adjustments~' to the
Alaga formulas have been derived under that as-
sumption for the effect of the band mixing. %'hile
differences in the definitions of important pa-
rameters in these various approaches make it
difficult to compare them with each other, the
results of these efforts are mutually consistent.
The results in this paper will be compared with
those reported by Mottelson, '

If projection-integral wave functions are used
for estimating electromagnetic transition proper-
ties, nonadiabatic terms of the type produced by
band mixing can result. v Thus it has been sug-
gested' that the deviations from thy Alaga rules
are not symptomatic of band mixing, but instead,
reflect the implicit simplifying assumptions about
the nucleus which are made when adiabatic wave
functions are used.

II. CHARACTERIZATIONS OF DEFORMED

SEMIRIGID NUCLEI

The projection-integral wave function has the ad-
vantage of avoiding the problem of redundant
variables which axe implicit in the adiabatic wave
function, and, in addition, does not require an
ad'hue separation of collective and intrinsic mo-
tion. However, the general success of the adia-
batic wave function in its various applications,
along with the simplifications it introduces, argues
strongly for its use. Many investigators, es-
pecially Alaga et al. ,' have used the adiabatic
wave functions to investigate electromagnetic
transitions in deformed nuclei, and to derive
formulas for the associated B(E2,J,K, J,K,)'s.
Much interest has been shown in deviations from

The actual structure of the intrinsic state in a
projection integral is determined by the type and
number of nucleons present along with the effec-
tive particle- particle interaction which obtains.
As a result, each intrinsic state depends in some
detail on the particular nucleus being considered.
In order to use projection-integral wave functions
to furnish a general description of a wide range
of nuclei, a way must be found to describe the pro-
jection-integral intrinsic state, which is both suf-
ficiently typical in a broad sense of the nuclei
being discussed and relatively independent of the
precise structure of each given nucleus.

Fortunately, such a description exists. Many
authors' ' have shown that projection-integral
results can be obtained by approximating the in-
trinsic matrix element (pJ e '8~& T~

j gz& as fol-
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For all but the very lightest nuclei this will be a
sharply peaked function of P. It is well known~"
that as (J') gets very large (i.e., for heavy nu-

clei) the results obtained by utilizing (3) and (4)
will go over to the standard results obtained by
using adiabatic wave functions. Thus, in effect
nuclei with large &J'), which have intrinsic wave
functions that satisfy Eqs. (3) and (4) can be said
to be semirigid nuclei. It should be noted that for
light nuclei for which the SU(3) model can be ex-
pected to be a good approximation, the correct
expression (assumingK=0) for q(P) is given by

3i(P) = [cos(P)]' '"' (5)

which is also a sharply peaked function of P dif-
fering from the result given in Eq. (4) around the
point P =0 only in terms on the order of P4.

Equation (3) is equivalent to assuming that

lows:

&y.le "-"T',
I y.) =~a"n(v), (3

where r is a constant and q(P) is essentially the
overlap integral &p8le '8~ lpga). Based on
general considerations 'P'" as well as detailed
calculations'~ it is usually argued that the over-
lap integral mill be closely approximated by the
form:

tablishes that

C'(J,) ~

1
(io)

B(~,-J3) = D(J3, J,}D(J„J3) (i3)

To evaluate Eq. (13) we utilize formulas (7) and

(8). If only coefficients through the second order
(i.e., a„a„and 53) are assumed to be nonzero
then it follows that

where B(J,-J,) is the ratio of the derived B(E2)
to that given by Alaga ef al ., ' and C '(J) is the pro-
jection coefficient C(J,K =0) divided by (2J+ 1)'/',
further

(J,21-1lJ,o)
D(J3; J,) = 1+H(J3)

( 200l 0)

(J,2 2- 2 l J,o)' (J, 200lJ,0)

In Eq. (11), the form of H(J) is determined by the
effect of the Q2 operator on the intrinsic state in
question and similarly F(J)is dete'rmined by the
action of Q, on the intrinsic state. By utilizing
the Hermiticity of @33 operator, it follows that,

C (J,) ~ D(J„J,)
C'(J,) D(J3; J,)

and thus we find that

yll —P C J23(J )P (6) B(J~ J3) = [1+12A3 —16A3 (J + 3J)
—4A, (5J'+ ll J'+ 6) + 2B,(J'+ 3J+6)],

or, in particular, for the case of interest here it
follows that

2Q» =apJ»+a, J J»+ ~ ~ ~,
ap

2W

(14)

Q+3 =b0(J3l)'+51J'(J31)'+" (8) 01
1 (15)

For example, to the second order, we find using
Eq. (I}in the left-hand side of Eq. (3) that

&Ole ""&',l0) =- ' (s3e """""
2 2

(J3) -8 (34/3~/3) }

III. DEVIATIONS FROM THE ALAGA RULES

FOR E2 TRANSITIONS IN THE GROUND-STATE
ROTATION BAND

It is well known that, in general, the, action of
all the components of the tensor operator Q,

'
acting in the body-fixed system contribute to the
evaluation of the operator Q p in the laboratory
reference frame. In fact, a straightforward ap-
plication of projection-integral techniques es-

bp

2&q, '

and qp is the intrinsic quadrupole moment. Simi-
larly, the same technique can be used to evaluate
Eq. (12) which yields the relationship

C'(J+2)
C' = 1+(4J+ 6) (2A3+ 2[A,(J3+3J+ 6) —B3

+A,'(4J+12}]}.(16)

The coefficients A.„A.„and Bp can be evaluated by
utilizing either Eq. (4) or Z~ &5) along with the
definition of the projection eoeffieient, i.e.,

Ã'w'= I s ~Q)d' (p)n(p)&p,
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for the case EC = 0. If Eq. (4) is used, the result is
that

C(v+2) ~, -1, (&+2)
&(8 &~'& &~'&' -'

from which it follows that

(18)

A — (,), A, -O, 8 8A-

If Eq. (8) is used, the result is that

C(g+2) ' -1 2(a+3)
t-(J) & ) «'& «'&' '

from which it follows that

(19)

(20)

A0= (,), A, =O, and 80=0. (21)

The results given in Egs. {21)are identical to
those that are known to exist for the SU(3) model,
and when they are substituted in Eq. (14) will pro-
duce results that differ from the band-mixing re-
sult only in a static term; and therefore, will
produce identical branching ratios. Thus it can
be said that deviations from the Alaga rules of the
sort discussed in the literature do not, in them-
selves, indicate a deviation from a pure rotational
band. However, in the region of heavy deformed
nuclei of interest in the aforementioned papers,

it is usually assumed that the projection-integral
wave functions are in the semirigid limit; and
therefore, the "correct" set of values for Ao, A„
and 80 are given by Eqs. (19).

IV. CONCLUSION

The results given in Eqs. (19) when substituted
into Eq. {14)will cause the significant part of the
projection-integral corrections to the Alaga rules
to identically cancel. Thus, one must conclude
that if heavy deformed nuclei are fairly described
by semirigid projection-integral wave functions as
defined herein; no deviations from the Alaga rules
should be expected for intraband E2 transitions.
However, it must be emphasized that, as shown,
even a small deviation from the Gaussian overlap
shape can produce results which will mimic the
band-mixing results.
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