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A useful way to characterize the hole-energy spectrum excited in a direct particle-removal reaction Hke

(p, 2p) or (e, e'p) is through the centroid or mean removal energy. We derive the rules for
computing this quantity in a linkedwluster expansion, and give some examples. We demonstrate the
close relation of the mean removal energy to Brandow's self-consistent orbital energy, and discuss briefly
the connection arith Green's function theory.

NUCLEAR STRUCTURE Linked-cluster theory of mean or centroid removal
energies measured in (p, 2p) or {e,e'p); applications and relation to other hole

energies.

1. INTRODUCTION

The subject of this paper is the single-particle
removal energy, or hole energy, in nuclei. Hole-
energy spectra are measured by a variety bf di-
rect reactions in which one particle is removed
from the nuclear target, such as the (p, 2p) or
(e, e'p) reactions. The hole energy also plays a
role in the theory of the ground state of nuclei;
the most familiar example is the self-consistent
orbital energy in Hartree-Fock theory. The theo-
retical problem is how to make a proper compar-
ison between the experimentally measured hole
spectra, god the theoretical hole energies from
nuclear structure theory.

The hole spectrum for a given target nucleus A
(with P nucleons) may be characterized by a spec-
tral function Pg, E) which gives the probability
that the final nucleus B (with A - 1 nucleons) is
left with excitation energy E, if a nucleon in a
single-particle orbit ~ is removed from the ground
state of A. Extraction of this function from (p, 2p)
or (e, e'p) experiments requires the use of the
plane-wave or distorted-wave impulse approxi-
mations. ' ' A number of experiments have been
analyzed ~ ' assuming the validity of these ap-

,proximations. For the purposes of this paper, we
shall assume that P(X, E) is a measurable quantity.

The spectral function is a complicated theoreti-
cal quantity, which contains considerable informa-
tion about the structure and spectrum of the nu-
cleus B. There has been little attempt to produce
the function directly from nuclear-structure
theory, except for recent work of Lipperheide and
co-workers. ' Theorists have generally tried to
characterize the spectrum in terms of a "hole en-
ergy" whose definition is to be related to an ap-
propriate theoretical orbital energy. There are a
number of possible choices, which have been

discussed Rnd compared by severR1 authors'
and which will not be reviewed here.

We choose to characterize the spectrum-by the
mean removal energy (mre) which we define (2.8)
in terms of the centroid or first energy moment
of P(A. , E) for a given orbit, X. This is a much
simpler theoretical quantity than the spectral
function itself, as will be shown in Sec. 2.
French" has stressed the connection of the cen-
troid energies for low-energy single-particle
transfer reactions to nuclear spectroscopy. Ba-
xanger" has made the particle-transfer centroid
energies a basis for defining a single-nucleon po-
tential, although he requires information from
particle addhtton experiments as well as from par-
ticle removal.

The mean removal energy may be related direct-
ly to properties of the target-nucleus ground
state. This close connection appears, for exam-
ple, in the sum rule which relates the mre to the
binding energy of the target, which has been pre-
sented elsewhere. '~~" We shaB stress this re-
lationship heavily in our development of a theory
of the mre.

Our first goal wiB be to derive a linked-cluster
expansion for the mre. This will follow closely
along the lmes of the usual linked-cluster pertur-
bation theory' "of the nuclear ground-state en-
ergy. By this development one shows explicitly
how to define and calculate the mre given any ap-
proximate theory (of the linked-cluster form) of
'the target ground state. We begin with definitions
and some formal matters in Sec. 2. The linked-
cluster expansion is developed in Sec. 3, and ex-
plicit examples are worked out in Sec. 4, for some
well-known approximations for the ground-state
energy (e.g. Brueckner theory).

Our second goal in this paper is to connect the
theory of the mre with Brandow's treatment of
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particle energies in his "compact-cluster"
theory. "" We shall demonstrate that Brandow's
definition of a self-consistent orbital energy is
identical with the mre, to any order of approxima-
tion. This discussion appears in Sec. 5. We shall
also compare these results with some features of
the Green's function theory, in Sec. 6.

2. SPECTRAL FUNCTION AND MEAN

REMOVAL ENERGY

For an orbital description, we need a complete
set of single-particle states, labeled by X, which
denotes the set of quantum numbers (e.g. {X)
={nljmt,). We need not specify the choice of the
complete set {X) at this point. We require the
operators at(X) and a(X) which create or annihilate
a particle in the state ~.

The spectral function is defined by

P(&, E)=—&Al at(X)6(E + E„—H)a(X) I A)

ber of orbits {A.), e.g.

P(K, E) = P I y, (k ) I
'P (X, E) (2.4)

to determine P(X, E) approximately. This fitting
procedure was used by the Liverpool group in the
analysis of their (p, 2p) experiments~' " They
chose the {X) to be the harmonic-oscillator or-
bits normally occupied in a shell-model descrip-
tion of the target nuclei (see Fig. 10 of Ref. 5).

The energy integral or zeroth moment of P(X,E)
gives the occupation number or summed spectro-
scopic strength for the orbit Z

n(X) -= P(X, E)dE =&Al at(X)a(X)l A), (2.5)

which is simply the (target) ground-state expecta-
tion value of the particle number operator N(X)
=- a'(X)a(X).

The first energy moment of (2.1)

= g l&f Ia(~)IA&l'5(E-E, ), (2.1)
e(X) -=— EP(A, E)dE =&A.

l
at(A. )[a(X),H]l A)

(2.6)

where A labels the target ground state (an A-par-
ticle nucleus), and f the final state of the nucleus
B (with A —1 particles). The nuclear Hamiltonian
is denoted by H. The energy of the final state, Ez,
is measured relative to the ground state of A: that
is, E&=E*+E~—E„where E* is the excitation en-
ergy of f relative to the ground state of B, and

E„, E~ are ground-state energies. Note that
since H in (2.1) is evaluated in the target rest
frame, the recoil energy of B must be included in
the excitation energy E*

Analysis of the (p, 2p) or (e, e'p) measurements
under the assumptions of the plane-wave impulse
approximation' ' yields the spectral function for
proton removal P(f, E}, as defined by (2.1) with
plane-wave orbits A =f, where f is the initial mo-
mentum of the struck nucleon. In the distorted-
wave impulse approximation, one finds' that the
measured spectral quantity is off diagonal in mo-
mentum:

P(f, k', E) =&Al at(k)6(E+ E„—H)a(~')I A)

(2.2)

such that P(f, f, E) =P(K, E). One could obtain
(2.1) from (2.2) by integration

P(X, E)= ' d kd k'Qf(R)P(k, k', E)Q(K'), (2.3)

where ~(K) is the orbital wave function in momen-
tum space. With less information than the com-
plete function (2.2), one might expand the experi-
mental spectral function in terms of a finite num-

is the ground-state expectation of the operator

H(X) =-at(X)[a(X), H] .
The mean removal energy is defined by

E(' = e(~)/n4),

(2.7)

(2.8)

which is the centroid of the hole-energy spectrum.
We assume that the nuclear Hamiltonian is of the

form H= T + P where T is the kinetic energy
operator

r= Q &&I TI p& at(x)a(p) (2.9)
X, P

T(&) = Q & x
I
T

I g ) at (x)a(p. ),

V(X) =
2 g &XPI Vly6&, at(A)at(P)a(6)a(y).
1

Byh

(2.12)

(2.12)

So e(X) may be written as the expectation value of
an operator whose highest particle rank (as a
many-body operator) is two This mak. es it rather

and V is a two-body interaction operator

V = —g &o.PI Vly6), at(o. )at(P )a(6)a(y) (2.10)
1

a By&

with antisymmetrized matrix elements given by

&~PI v I r6&. =& aPI v
I r6& -& oPI v I 6r) (2.11)

It follows that H(X) may also be written as a one-
plus two-body operator H(X) = T(X)+ V(X) with
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easy to evaluate, as we shall see in the next sec-
tion. By contrast, the spectral function P(X, E) is
the ground-state expectation value of an exceed-
ingly complicated operator [see (2.1)] whose max-
imum particle rank must equal the number of par-
ticles, A.. Similarly, the second energy moment

potential

U= A. U p a~A. up (3.2)

The unperturbed Hamiltonian Ho has a set of
single-particle eigenstates lX& with energies Q'~:

E' P(Ao, E)dE = &Al (X)(E„—H)' (X)l A)
or

H, l~) = w„lx& (3.3)

E'S'(X, E)/n(~) —(E( &)'.
J

(2.15)

The operator H(X) is also simply related to the
original Hamiltonian, through

H=~T+ — HX,1
2

which is obtained by comparing (2.9) and (2.10)
with (2.12) and (2.13). Taking the ground-state
expectation value we obtain a sum rule for' ~"
the total energy E„ofthe target ground state:

(2.16}

E„=-,'&Al 7'IA)+
2 g e(~).

This has been applied to (p, 2p) reactions" in the
plane-wave representation (g =f).

(2.17)

3. LINKED-CLUSTER THEORY

In the linked-cluster theory one expresses
ground-state properties in a perturbation series,
the terms of which may be represented by dia-
grams. In this section we outline the linked-clus-
ter evaluation of the mean removal energy (2.8),
and its relation to the usual linked-cluster evalua-
tion of the ground-state energy. If we have an
approximate theory of the ground-state energy,
which is given in terms of the linked-cluster
series, then we shall also be able to evaluate the
mean removal energy to the same order of ap-
proxl Dlatlon.

For the perturbation expansion, one partitions
the Hamiltonian

H =H, +K',

Ho= T+U
H'= V- U,

(3.1)

where we have introduced an auxilliary one-body

=
& Al ut(~)[H, [H, a(~)] ] lA)

=& Al [st(X),H] [H, s(~)] lA)

(2.14)

involves the ground-state expectation value of an
operator whose maximum rank is th~ee. The
width (or dispersion} of the spectrum is then given
by

lx) =s'(~)l), (3,4)

where l) is the vacuum state. In analogy with
(2.12), we shall also need

v(x) = Q &xl Ul p& st(x)u(p). (3.5)

The ground-state energy may be written

(3.6)

where the unperturbed ground state l 0) has all
orbits filled up to some (Fermi) level F, and

H, l 0) =E,
l 0).

%e assume this state is nondegenerate, for exam-
ple: a spherical closed-shell state.

The linked-cluster expansion for the energy
shift E„is given by

o»„= g (o» (,'„» )" o) (3.'l)

where Q, =1 —
l 0) & Ol projects out of the unper-

turbed ground state. The (l.c.) refers to the re-
striction of (3.7) to include only /in&ed-cluster
terms" " (or diagrams).

It is also possible to expand the ground-state ex-
pectation value of any operator M in a linked-
cluster series"' ":

x 0 K' ' ill ' H' 0

(3.8)

The first energy moment e(X) may be expressed
as the ground-state expectation value (2.7) of H(X).
If we partition H(a) =[X(X)+U(Z)]+[V(X)- U(X)],

&~I7 lt &+&~IUIu&=g, 6.u

The potential U is arbitrary, but it is convenient
if we choose it so that the orbital states la) are
the same set of states {X)as defined for the par-
ticle removal, in Sec. 2, that is
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we find

(X
~

T(~)+ U(~)~X& = IV,n(~),

using (2.5) and (3.3), so that

e (~) = IV,n(~)+ dE(~),

where we define the removal energy shift

AE(~) =-&&I V(&) —U(~) I&) .

(3.9)

(3.10)

(3.11)

Z Z
a& ~ ~ ~ aP «F SX ~ ~ ~ afy&F

D*(a" P ). (3.i4)

Then b, E„is simply the sum of all diagrams

(3.iS)

lent" lines may be absorbed into the definition of
(3.13).]

Then hE(X) may be expanded in linked-cluster
form, using (3.8), where M= V(X) —U0t). Similar-
ly, the expansion of ng) is obtained from (3.8)
with M = at(X)a(X).

The mean removal energy is given by

( ) hE(A. )
n(~)

(3.12)

In order to evaluate the terms of the expansions
(3.7) and (3.8) in terms of the one- and two-body
matrix elements of H' (and M ), it is useful to con-
sider perturbation (e.g. , Feynman or Goldstone)
diagrams. For the present discussion we do not
require the rules for explicit evaluation of dia-
grams (for which, see Refs. 17, 21, and 22) but
will need some of the general structural features.

Consider first the series (3.7) for AE». The
diagrams are closed connected figures made up of
vertical directed line segments representing hole
or particle states, and horizontal segments rep-
resenting interaction matrix elements. A simple
example is shown in Fig. 1(a). Upward directed
lines represent particles (X &F); downward lines
represent holes. We include "inert" lines which
return to the point of origin with the holes (e.g.,
a„of Fig. 1.) The wiggly lines denote antisym-
metrized two-body matrix elements of V (2.11),
and dashed lines one-body matrix elements of (-U)
from (3.2}. The value of each diagram is an ex-
pression containing these interaction matrix ele-
ments, and the unperturbed energies W„ for the
particle and hole line states.

Consider a diagram which has p hole lines and
o particle lines. (If the diagram is pth order in
V and qth order in U, then 2P + q = p +a.} We la-
bel the hole lines, in some order, by the orbital
quantum numbers a„a„.. . , az (ac E) and the
particle lines by p„.. . , p, (p &F). We denote
the value of this diagram by

(o)

2

Wv v v Tv% YYYYvp

————X

a~

(b)
QYYYVYVQ PFYVTVVTVQ

~ ~ ~ ~ X

Now consider the linked-cluster diagrammatic
series (3.8) and (3.11) for LEg), the removal en-
ergy shift. The diagrams will also be closed fig-
ures with p hole lines and g particle lines. In ad-
dition to the (horizontal) interaction lines for V or
(- U), each diagram will have one horizontal inter-
action line representing a matrix element of either
V(A) or [-U(A)]. In Fig. 1(b) we have illustrated
a set of diagrams contributing to d, E(X), for the
hole case (X &F), whose configurations are most
similar to that of Fig. 1(a). The horizontal double
bar stands for an antisymmetrized two-body ma-
trix element of V(X), and the dotted line for one-
body matrix element of [-U(X)].

We see from (2.13) and (3.5) that at least one line
emerging from a V(X) or U(A) interaction must
carry the A. label. We may construct all the dia-
grams of AE(X) by first selecting those diagrams
(3.15) for which some line is labeled X. Then we
replace the interaction line from which the A line
emerges, V or (-U), by V(A. ) or -U(X), respec-
tively. If we do this in Fig. 1(a), for X ~F, we ob-

D'(a a 'g P) (3.13)

where x distinguishes different diagrams with the
same p and a. Figure 1(a) illustrates a specific
diagram whose value is D*(a„a„a„a„P„P„P,).

To obtain the contribution of all the different
labelings of D* to aE», we sum (3.13) over all
particle and hole states. [Any factors for "equiva-

FIG. 1. (a) An example of a Goldstone diagram for
EEz, with hole lines labeled by a, particle lines by P.
Matrix elements of V are denoted by wiggly lines, and
of -U by the dashed line. (b) Diagrams for contributions
to EE(A, ), obtained from diagram (a); the doubled line
denotes a matrix element of V(A.), and the dotted line a
matrix element of -U(A, ).
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tain the diagrams of Fig. 1(b): one for each of the
four hole lines in 1(a).

In changing one interaction V to V(A} in a dia-
gram, one changes an antisymmetrized two-body
matrix element (2.11) of V to the same two-body
matrix element of V(X). But these two matrix
elements are identical, as one can verify by com-
paring (2.10) with (2.1$). Remember that one par-
ticle must carry the quantum number X for this
matrix element. Similarly, changing an interac-
tion U to U(X), replaces a one-body matrix ele-
ment of U by one of U@). These two matrix ele-
ments are also identical, as one can see from
($.2) and ($.5). Therefore, the numerical value of
the original diagram, which was part of the origi-
nal linked-cluster series for b E„, is not altered
when it is converted into a diagram of the linked-
cluster series for hE(X).

It follows that each diagram of the b, E(A} series
has the value of some diagrams of the ~E„series

lines, defining

Then we may sum the entire seri.es

Note that

Dp(y A, =pD~ for X ~E,

D g =pD' for A &p,

(3.1V)

(3.18)

(3.19)

D&(ot ~ ~ ga ~ ~ P ) (3.16)
so that, for example, if A. «+, we can reexpress
(3.15) as

in which some hole line (if X cF) or particle line
(if X &F) takes the label X. For example the dia-
grams of Fig. 1(b}take the values

Dx
p=l ~ ao X~E

(3.20)

(&x&2&3+gi PxPaP3}

with n, =X, a, =A, , e, =X, o.4=A. in succession.
%e may sum over the free particle and hole

w v v w %%&

FIG. 2. (a) A 4' diagram, as in Fig. 1(a), with one
hole line specified to be A, . (b) The three diagrams con-
tributing to ~(A), which can be made by inserting the
number operator N(A) into the A. line.

For the calculation of the mean removal energy
Eq. (3.12) we also need a linked-cluster expansion
for n(X) This . may be obtained directly from Eq.
(3.8) by taking M to be number operator N(X)
—= at(X)a(X). The expansion (3.8) may be treated as
an extension of (3.V}, as if one had added to the
perturbing interaction II', an external one-body
potential N(X) (diagonal in X), which is to be kept
to first order only.

The diagrams corresponding to the series for
s(A) can be obtained from these of the ~'„series
(3.13)-(3.15) as follows. First consider the hole
case (X &F). There is contribution of unity from
the zeroth-order term (in ff') (0~ st(y)s(Z)~ 0}=1.
To obtain the rest of the series, we start with the
expression (3.16) for a diagram with some fixed
hole line ~. However, ~ may not be an inert loop
[as in the first diagram of Fig. 1(b)]. As an ex-
ample, consider Fig. 2(a).

Now we create new diagrams by inserting the
number operator into the ~-hole line. If the dia-
gram (3.16) has r interaction vertices (V or -U)
spanned by the X-hole line (that is, occurring on
other particular or hole lines, at positions be-
tween the beginning and end of the A, -hole line),
then there are r +1 distinct positions for insert-
ing N(X) (between other interactions). Thus r + 1
distinct diagrams are created, which include
N(X) to first order. For the example of Fig. 2(a),
three distinct diagrams contribute to n(X); they
are shown in Fig. 2(b).
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The effect of inserting the operator N(X) into a X-
hole line, on the value of the original diagram, is
to replace the energy denominator (E, —Ho) appro-
priate at the point of the insertion by (E, H,-}',
and multiply by (-1}. This (-1) is the linked-clus-
ter contribution of N(X) = at (X)a(X) = 1 —a(X)at(X).
The denominator (E, —K, ) takes the value

d, =Q W~ —QWS, (3.21)

) &E.

Similarly, for a particle line X

(3.22a)

where the sum is over all hole or particle lines
which appear at the same level (horizontally: same
"time") as the insertion denoted by q. So for each
diagram of the form (3.16), with X as a hole line,
we obtain a contribution to n(X)

f+1,( „..p) g { i p}.
q=l C

state energy. Using (3.3}and (3.12), the sum rule
may be written

E„=g [ W~n(X)+ 2bEh}] -2{&I&I» {325)

It can be shown (see Appendix) that if s(X), bE(X),
and ( U) are all calculated from a given set of
diagrams (3.16), the value of E„obtained in (3.25)
is identical with that calculated directly from (3.6)
using the same set of diagrams (summed over ).).
Note that this is not a trivial application of (2.1V)
to an approximate state since (3.25) is not, in any
given diagrammatic approximation, equivalent to
an expectation value.

If the unperturbed target ground state is degen-
erate, the linked-cluster treatment must be modi-
fied. There are several possible procedures;
see, e.g. Ref. 17.

4. APPLICATIONS

(3.22b}

To obtain the complete linked-cluster series for
n(A) we sum (3.22) over all particle and hole states,
and permutations of X:

p,",(Z) = g g E*(n, ~ ~ P,)
g& ~ ~ ~ y~F 81 ~ ~ ~ Ba~ +

, P fy

x P g, . ~ Qa, , ) (s.as)
j- j. /=1

and over all diagrams

n(X)=1+ g g g F' (y), gcE (3.24a)
P= 1 fy =0 x

We now outline the calculation of the mean re-
moval energies for several familiar examples of
approximation to the ground-state energy. We
consider the contributions to bE„ in the linked-
cluster expansion, including the terms represent-
ed by the various diagrams of Fig. 3. The contri-
bution of each diagram will be denoted by C(f),
where j =a, b, . . . in the index of the diagram (or
subset of diagrams) in the figure. For a given
approximation we write b,E„=Q, C(i), specifying
the set {i), where the ground-state energy is E„
= Eo+ b.E~.

g g F~,(A}, X&E. (3.24b)
p=l g=O

By combining the linked-cluster expansions
(3.18) for bE(X) and (3.24) for n(X), we may evalu-
ate the mean removal energy (3.12). As we have
noted, both bE(y) and l(X) are expressed in terms
of diagrams (3.16), which also appear in the ex-
pression for the ground-state energy shift bE„,
through (3.20). This means that if we are con-
sidering a particular approximation to the ground-
state energy which can be expressed by specifying
which diagrams (3.13) are to be included in bE„,
we can immediately generate E~z~ to the same ap-
proximation by including the subset of diagrams
(3.16) of the chosen set (3.13), in the calculation
of (3.18), (3.24), and (3.12).

In fact, the values of E~~ &, n(a), and E„given in
such a diagrammatic approximation, are interre-
lated through the sum rule (2.17) for the ground-

{c)

X ——

t +

(d) (e)

(h)

FIG. 3. Diagrams representiag the linked-cluster ex-
pansion for b.E& through second order in (V-U), with two
selected diagrams of third order (g) and (h).
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In the Hartree-Fock approximation (HF},

E„=C(a)+ C(b)

1
&~q(V[~y.).—g &~(U]~&. (4.1)

X.~E

The usual Hartree-Fock self-consistency condi-
tion gives

&X)U( v) = Q &Xli ) V) vP), (4 2)

from which it follows that

E~(HF) =Eo 2-Q &~ IUI»
1

XTA +Kg.1

gxP
To include all terms of second order in (V —U),
we add the diagrams c, d, e, f (of Fig. 3). How-
ever the HF condition (4.2) makes the sum C(d)
+ C(e) + C(f) = 0, so that

(4.3)

E&(2)=
2 g (&~l &I»+ W, )+C(c),

p~p ~ g&~ X. & n 8

C'(a) = — Q & Xp,
~

G
~
Xy, )..1

X, P~Z
(4.5)

If we also include the two third-order terms g and
h, we get no change in (4.4), since C(g)+ C(h) =0,
due to (4.2).

We may also include the Brueckner-Hartree-
Fock (BHF) approximation, if we now understand
the wiggly horizontal lines of Fig. 3 to denote the
antisymmetrized two-body matrix elements
& aP~ G~ y5), of the Brueckner reaction (G) matrix,
rather than of the interaction V(2.11). Denoting
the contributions by C'(i), we have

2
X T A. + S'a. 4.6

X&F

As discussed in the previous section, the linked-
cluster diagrams for hE(X) (3.11) are obtained
from those for ~„by fixing in turn, each hole
line (for X & F, or particle line, for X &F) in the
orbital X, summin~g all other lines, as in (3.17).
Starting with Fig. 3, the resulting diagrams are
shown in Fig. 4, where diagram 4(a) comes from
Fig. 3(a), and so on. We denote the contributions
to ~~ by C„(&). We have omitted diagrams which
cancel because of (4.2): C„(d)+C~(e)+C~(f) =0,
and Cz(g)+Cz(h} has only the nonvanishing term
shown in Fig. 4(g).

In Fig. 5 we give the diagrams which contribute
to n(X), and which we obtain from Fig. 3 through
(3.22) (see Fig. 2). We denote the contributions by
Nz(f); again we have omitted canceling diagrams:
N~(d)+N~(e)+N~(f) =0, N~(g)+N„(h) =0.

In HF (or BHF) we have, for X &F

~E, = C, (a)+ C, (b)

= g &Xq(V(zq). -&X) U]X)
p c' g

which vanishes under condition (4.2). The mean
removal energy is obtained from (3.12), which is
in this case

(4.7)

E&-&(HF or BHF) = W~, X & F . (4.8)

That is, the mean removal energy for holes is the
HF orbital energy, as is usually assumed. Note
that since in HF,

n(x) =1,

=0, A. &F, (4.9)
E~-& is not defined for ~ &+.

If we calculate to second order in (V-U), we ob-
tain

We must now exclude C'(c), whose contribution is
already included in (4.5). We also replace V by G
in (4.2) to get BHF self-consistency, and obtain

E„(BHF)= C'(a) + C'(b)

(o)

(b) (ci)

~E, =C,(a)+C,(b)+C, (c1),

AE„=Cz(c2), X & E,
(4.10)

(cz) (o) (ci) (cz)

FIG. 4. Diagrams contributing to AE(A), correspond-
ing to those of Fig. 3, omitting those which cancel be-
cause of Eq. (4.2).

FIG. 5. Diagrams contributing to n(A, ), corresponding
to those of Fig. 3, oxjdtting those which cancel because
of Eq. (4.2).
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where

x 2 ~ ~ gp + ~ gp
y~p ~ g~p X. & e

(4.11a)

X.~E

+ g [W,A, (c2)+-,'C, (c2)] . (4.15)

this order, (3.25) can be written

E„(2)= g (W [I+ N„(cI)]+ —,
' C (cI) - -,' & g

~
U ~g &}

2 „8 g~+ ~„-+~ —+8
A, &I'- (4.11b)

To this order, following (3.22) we obtain

s(X) = X,(a)+X,(cl)

&~ui vi ap&, '

(4.12a)

Consider a very simple ease in which, for X &g,
all orbits have 9~= W„and for A. &g,
with W, & W, . Then it is easy to show from (4.4)
and (4.10)-(4.12) that

g W,X,(cl)+ g [W„X,(c2)+-,'C, (c2)]

=(W, —W)
2

+C(c)=0.2C(c)
1 2

(4.16)

w +w -w -'w
~„~p 8&y & u X 8

A. &I' . (4.12b)

The mean removal energy to second order is giv-
en by

Q;l= W„+C„(cl)[1++,(ci)]-'
= Wg+Cg(cl), A. «F,

E~;& = w, + C,(c2)N, -'(c2),

(4.13a)

(4.13 )

where we may drop the second-order correction
&„(c1)for A «F. However, we must retain N~(c2)
for A. &g, since there is no zeroth-order term in
the denominator n(z) in (4.13b).

Comparing (4.4) and (4.11), we see that

C(c)=2 g C,(cl).1

Then, using (4.13a) we may express the second-
order ground-state energy (4.4) in the form

E„(2)=
2 g (&~~r~~&+E~;~). (4.14)

This relation also holds for the HF and BHF ap-
proximations, as can be seen from (4.3) and (4.8).
It can be extended to include any linked-cluster
diagram with two hole lines (as in the BHF series
for 0)

However (4.14) differs from the exact sum rule
(2.11), which involves a sum over all orbits X. As
discussed in Sec. 3, the sum rule in its linked-
cluster form (3.25) holds to any order of approxi-
mation. (This is proved in the Appendix. ) In par-
ticular then, to second order in (V —U}, (3.25)
must give the same value of E„as does (4.14). To

Therefore (4.15) becomes

E„(2)=g [W, +-,' C,(cl) =2&XIUI»l (4 II)

AE, = C,(c»+ C,&g),

d E~ = C~(c2), X &E,

where

Cg(g)= Q &&u I&I&u&.[ (p)s-I]

(4.19)

(4.20)

and n(A) is still given by (4.12). Then, to this
order

E~;l(3)-=W„+ C,(cl)+C,(g), X «p, (4.21a)

E ~;&(3)= W, + C,(c2)N„-'(c2), ~ &Z. (4.2lb)

Combining (4.20) and (4.21a}with (4.2), we find

which agrees with (4.13)-(4.14). It also follows
from (4.13b) for this simplified case, that for
A. &E,

Ef;l = w, +2(w, —w ) = w, + (w, —w, ) «w, .
(4.18)

That is, the mean removal energy for a normally
unoccupied orbit is shifted downward from the un-
perturbed value g„by twice the average excita-
tion energy (W, —W, ), so that it falls below the
occupied (unperturbed) orbital energy W, . It is
this extra binding energy of the unoccupied orbi-
tals which makes it possible for the sum rule
(3.25) to agree with (4.14}. This downward shift
of E~ & for unoccupied relative to occupied orbi-
tals is in fact, more general than the simple ex-
ample of (4.18).

If we now include the third-order term of Fig.
4(g) in AZ~, we obtain
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that E~~~ for ~ &g is modified from its second-
order value (4.13a) to

E &-& (3) = (Z (
7'

) X ) + Q (XP ( V ) X p ),n(p ) + C~(c 1).

C'(g) = Q (Xp~c~ Xp), [s(p) —1], (4.23)

and the mean removal energies are

E~ ~[lBHF(g)]=(X)T (X)+ g (Xp(G)ip), n(p),

A. &E, (4.248)

E~z «[BHF(g)] = Wz+Cz(c2)N& (c2),

(4.24b)

The quantity in (4.24a) has been called the "re-
normalized" BHF single-particle energy (for X

~F) Its inclusion in the Brueckner theory has
been suggested by Brandow" ". and has been used
in recent calculations23'4 of the ground-state en-
ergy E„. The equality of this single-particle en-
ergy with the mre (to the same order) has been
obtained previously' "and is a special case of a
more general result (5.7) obtained in the follow-
ing section.

We noted below Eq. (4.4} that the insertions C(g}
and C(h) give no net contribution to the binding
energy E~, because of the HF condition (4.2).
However, as is seen from in (4.19) and (4.24),
Cz(g) does modify the mre Et~& for A &F. It fol-
lows that the HF relation (4.14) between E„and
E&„& no longer holds, although the general sum
rule is still valid.

(4.22)

So the effect of the insertion of Fig. 4(g) is to re-
duce the potential term in W = T+ U, since n(X) - 1.

In the BHF expansion we would have the third-
order term

In the linked-cluster theory, the development is
in terms of "insertions" into particle or hole lines
in the diagrams, e.g. for binding energy. An in-
sertion is part of a diagram, connected to the rest
by two line segments. Some examples of inser-
tions are shown schematically in Fig. 6, where we
use shaded blocks to stand for the diagrammatic
form of the insertion itself. The blocks contain
connected particle and hole line segments, and
interaction lines, as in the diagrams of Figs. 1-5.
The value of an insertion has the dimension of en-
ergy. Insertions may be summed. We denote the
sum of a specified set of insertions by Mq„(E},
where E is an energy parameter, which may de-
pend on the diagram in which the insertion appears.
The idea of a self-consistent theory is to sum

large classes of these insertions in such a way that
the effect of M„„(E)may be given by a single-par-
ticle potential. Finding the potential is a self-con-
sistent problem, since the potential is defined in
terms of insertions diagrams which in turn depend
on the potential, through further insertions.

Brandow's approach is to separate the insertions
into two classes, denoted by M'" and M ", refer-
ring to on- and off-energy shell insertions. The
distinction is given in terms of diagrams: Inser-

(b)

(c)

5. SELF-CONSISTENT ORBITAL ENERGIES

Self-consistent orbital energies for particles in
bound systems appear naturally in the shell theo-
ries of atoms and nuclei. The ideas which first
appeared in the Hartree-Fock approximation have
been incorporated into the development of linked-
cluster theory. We saw in the examples of the
previous section, that for some approximations,
like HF and BHF, the self-consistent orbital en-
ergy may also be the mre for that orbit. In this
section we show that this equality may be gener-
alized if we use a suitable definition of self-con-
sistency. For this we shall follow the definitions
of Brandow '8~" who has also reviewed other gen-
eralizations of self-consistency. " '

Fi

FIG. 6. Examples of insertion diagrams, where the
blocks may contain connected particle, hole, and inter-
action lines, . as in Figs. 1-5. (a), (b), and (c) are of
type M ", (d) and (e) are of type M', (f) is of M ', and
is reducible to two M'" insertions.
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(g —Wg)q~ = Q Q~"p(g )IPg, (5.1)

(5.2)

tions for which the external lines overlap in "time,"
that is, can both be cut by some horizontal line,
as in Figs. 6(a)-(c), are contributions to M'". If
the external lines do not overlap, so that for some
"time" [horizontal dashed line in Figs. 6(d) and

(e)] neither external line is cut, the diagram con-
tributes to M'". Brandow has shown" that the
M'"(E) insertions are on energy shell in the sense
that the value of E is determined only by the ener-
gies external g —p) line segments, and not by the
rest of the larger diagram. This leads to a defi-
nition of the self-consistent potential.

First, consider those insertion diagrams which

can be made into two diagrams by cutting one in-
ternal particle or hole line, as in Fig. 6(f). We
define those M'" diagrams which can be so cut to
produce two (or more) M'" diagrams as reducible
Those which cannot be so cut are irredNeiwe, and

the sum of all irreducible insertions in a set
M ~"„(E)will be denoted by Q„'"„(E). [Note that this
is not the same irreducibility as required for the
self-energy diagrams for causal Green's func-
tions: Q'" may contain diagrams which can be
cut to produce one M'" and one (or more) M'" in-
sertions, which would be reducible in the Green's
function theory. ]

Now, following Brandow '8» Ie we may define a
self-consistent energy 5, and its orbital wave
function g, in terms of an implicit eigenvalue
equation

But diagrams V(c) and V(d) contribute to M ~~(g~}.
For ~ & p, there is a one-to-one correspondence
of the diagrams of V(a) with V(c), so that

(5.4)

Using Brandow's analysis of insertions" "one
finds that (5.4) can be expressed in terms of the
irreducible insertion Q'" with "dressed propa-
gators"

where P» is a weighting factor given by

(5 6)

where P„„—= s(A. ).
With the self-consistent choice (5.3), we have

b E(X)= 0 g & &) from (5.4}and (5.5). We then ob-
tain the mre from (3.12}

(5.V)

So the self-consistent orbital energies defined in
(5.1)-(5.3) are identical with the mre for the nor-
mally occupied self-consistent orbits, with one
restriction to be discussed shortly. It follows that
the self-consistent energies for A. «Fare measur-
able, in the same sense that the mre are.

It may be worth noting that the single-particle
potential could also be chosen so that Q'" is di-
agonal, but not zero, in the self-consistent repre-
sentation:

A self-consistent single-particle potential U can
be chosen so that

g„= W, +q;",(g,) (5.8)

q",„(g.) -=0; g„-=W. . (5.3}

With this choice, the linked-cluster series for
the ground-state energy is simplified, and its
convergence possibly improved, as discussed
by Brandow. In lowest order (5.3) becomes the
HF condition (4.2).

To return to the calculation of the mre; we az'e

interested in the value of diagrams of the form of
Figs. V(a) and V(b), which, as we have seen in
Sec. 3, contribute to hE~. (We now choose (A. ]
as the self-consistent basis. } In the Brandow
version, these would be "skeleton'* diagrams,
with no explicit insertions. The diagrams V(a)
and V(b) are numericaDy equal (up to a sign) to
those of diagrams V(c) and V(d), respectively,
with the external ~ lines assigned the self-consis-
tent energy g~. [To be consistent with (5.1),
there is a sign change between V(b) and V(d). ]

(a)

(c)

(e}
FIG. 7. AE p. ) diagrams (R) 8&A (4) and associated~"diagrams (c) and (d). I'"diagram (e) is not associ-

ated arith any diagram of form (b).
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in which case (5.4) and (5.5) become

«~ ™K«i)= @h(@~)s0»
and we again obtain

(5.9)

(5.11)

(5.12)

where we use Brandow's "dressed propagator"
in (5.12). For the self-consistent choice (5.3) the
mre is found to be

E~;& = W, —U„/s(~), (5.13)

Alternatively, using (5.8) we may express the
mre in the form

(5.14)

E~y ~ = Wg+M gg(by)/n(&) = g), , A. ~ E. (5.10)

The equality (5.V) or (5.10) holds not only for the
exact energies, but also for any approximation
which can be expressed in terms of a selection of
"skeleton" diagrams, in Brandow's formulation;
as always, the same diagrams are used for the
binding energy and the mre.

Now there is a difficulty with the result (5.V).

It is well known that in general, the orbitals g
in (5.1) and (5.2) will not be orthogonal, ""and
therefore the self-consistent potential U will not
be Hermitian. Our formulation of the mre theory
has assumed a complete basis of orthogonal orbi-
tals. It is not therefore clear whether the equality
(5.5) would also hold for a non-orthogonal basis.

The problem of non-orthogonality does not ap-
pear when conserved simple-particle quantum
numbers are involved, like momentum for nuclear
matter, or angular momentum in spherical nuclei.
For principal (radial) quantum numbers, non-
orthogonality appears. However, normally oc-
cupied orbits (A. ~~ F) are orthogonal to unoccupied
orbits (»E). In an approxi. mation to the linked-
cluster expansion, one may keep orthogonality by
omitting Q'„"„connecting, e.g. different principal
quantum numbers, thereby sacrificing complete
radial self -consistency.

For a normally unoccupied orbit (A. &F) the mre
and the self-consistent energy (5.3) differ. - There
is a one-to-one correspondence between the dia-
grams of V(b) and V(d), except for the potential
(-U~~) insertion diagram V(e), which contributes
to M„'~ but not to AE(X). Therefore [with the sign
change between V(b) and V(d)]

Clearly E&„"& is not identical with g for ~ &+.
This difference is not unexpected; the mre is
bounded above E~~ & &E„—Es (see Sec. 2), while

g~ is net In general g~& g„, for A&+ and ~'&+.
However, the self-consistent potential U„~ for
X &g is repulsive in general, as noted by Bran-
dow": The second term of (5.13) greatly de-
creases E&z& below Wz, since n().) «l. A simple
example of this effect was given in (4.16)-(4.18).

Finally, although E~„& g g~ for ), &F, we may
still consider g„ to be measurable, since (5.14)
may be reexpressed

(5.15)

and E&„-&, V'zz, and n(X} can all be obtained from
P(X, E)» P(&, E).

6. RELATION TO GREEN'S FUNCTION THEORIES

Several authors' ' "have approached the prob-
lem of removal energies through the theory of the
Green's function for the propagation of a single
hole in the target nucleus. Gross and Lipper-
heide' have outlined the formalism for calculating
the spectral function in a linked-cluster expan-
sion. This has been applied by Lipperheide and
co-workers' for the hole spectra of "C and "0 in
various shell-model approximations. Dieperink,
Brussaard, and Cusson have shown how several
differently defined hole energies, including the
mre, may be obtained from the Green's function.
Engelbrecht and %eidenmullerxo have used a pole
approximation to the Green's function to define a
(complex) quasiparticle (or hole) energy for orbits.

The relation of the Green's function theory to
the main subject of this paper is obtained by con-
sideration of the self-energy function Z„&(E}(see,
e.g. Ref. 21 or 28). In the linked-cluster approach
one calculates E directly from a perturbation
series; the Green's function and spectral function
are then obtained from Z. The diagrams for Z
are of the same type as those for insertions
M~„(E), which were discussed in Sec. 5 and illus-
trated in Fig. 6. However, the diagrams for Z
are irreducible in the sense that no block in Fig.
6 can be further divided into two blocks connected
by a single particle or hole line. As remarked
above (5.1), the class of diagrams included in
Q'"(E) may include diagrams which are reducible
in this sense. If one defines an on-shell self-en-
ergy Z'" as in Ref. 10, it is represented by the
subset of irreducible (in the Green's function
sense) Q'" diagrams. (That Q'" and Z'" are not
identical has been noted in Refs. 10 and 18.)

Consider the function P'"(X, E), which we take to
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be the spectral function calculated (e.g. in the for-
mulation of Ref. 3) with the self-energy function
chosen to be

(6 1)

in the diagonal representation. It can be shown
that (for X &F)

(6.2)

where h~ is the self-consistent energy (5.8) or,
equivalently, the mre, and n(A) the occupation
probability (2.5). Clearly this approximate spec-
tral function (6.2} has the correct centroid (2.6},
although it does not have the correct functional
dependence on E. However, the approximation

proximation to the reaction theory, there are also
the problems of limits of accuracy and of kine-
matical range of the experiments. One really
wants to know more about the spectral function

P(X, E) itself, for example: How far in E is the
removal strength actually distributed'P One recent
approach to this question has been given by Diepe-
rink and Brussaard" who have examined the se-
cond energy moment of P(X, E) (2.14) and (2.15).

Note added: Since the completion of this paper
I have received a new work by Dr. L. Schafer of
Heidelberg, on the subject of the single-particle
potential, in which he has independently obtained
some of the results of Sec. 5. This work will ap-
pear in Nuclear Physics.

Z4«) =ZV.(E»" (6 3)
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APPENDIX

We prove that the sum rule

E„=P [W~n(&)+-,' &E(X}j——,'(A~ U~A) (3.25}

AZxp(E) = Zu (E} K"I «}. (6 4)

7. CONCLUDING REMARKS

We have tried to show in this paper in what ways
the mean removal energy for particles is an in-
teresting theoretical quantity, and how it may be
determined within a theory of the target ground-
state energy. There remains the large problem
of the experimental measurement of this quantity,
which lies beyond the scope of this work. Beside
the question of the accuracy of the impulse ap-

This is not identical to Z'", since (6.4) contains
interference of Z'" and Z'" .

In conclusion, if we divide the self-energy func-
tion Z =Z~'& + A Z (6.1) and (6.4) we find that Z&'l

contains the information necessary to determine
the mre and total binding E~, basically the ground-
state properties of the target nucleus A. On the
other hand hZ contains information about the spec-
trum of the A-1 nucleus.

holds for any linked-cluster approximation, in
which each quantity in (3.25) is obtained from the
same set of diagrams (which define the approxi-
mation) by the methods of Sec. 3. We first sub-
tract the unperturbed energy E,=g~ z Wz from
both sides to obtain

nE„= Q Wq[n(X) —I]+ Q Wqn(X)
X. &F

n. E~ = Q ' Q D*(n~ ' ' ' P~) .
a~@ 8»

(A2)

+2 +Eh. -~ A UA . A1

We shall prove (Al) for a single, general diagram,
whose value is denoted by (3.13); the sum follows
directly. We label with x the contributions of this
diagram to the various terms of (A1). As before,
the diagram has p hole lines and o particle lines.
If it has n interactions V and m interaction (- U),
then p+o=2n+m.

For the left side of (A1) we have, from (3.14)
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For the right side we have, from (3.21)-(3.23)

g W [s'(A}—1]+ g W n*(X)

=gw, g g(-pa, .+pa, , ) g (A3)

Note that the denominator d„and the range of the insertion index q, depend on which line e,. or p~ carries
the A label in the f o-r —j sum. We may rewrite (A3) by changing order of summation

(A4)

where P specifies the insertion level with respect
to the whole diagram D", and d~ denotes the de-
nominator (3.21) at that level. Since the diagram
has m+n interactions, there are ns+n-1 de-
nominators [see (3.7)]. The sum on i, j are then
restricted to those lines which appear at the level

. of the insertion [i.e., in (3.21)]. Performing the
X sum in (A4} eliminates the denominators d~:

(-d~) '„' (AS)
n~E 8)F 9=& D

and the p sum yields only a factor of (m+n —1).
Comparing this result with (A2) we have

g W„[s'(~) -1]+g W„n*(~)=-(m+n-l)AS„.

(A6)

From (3.15}-(3.19) we have

—,
' AZ (X)=-,'(p+o)AZ*„. (AV)

since (-U}appears m times in (3.7).
Then the right-hand side of (A1) is obtained by

adding (A6)-(A8) to get

[-(m+n —1)+(n + ~ ns)+-,' m] AE*„=DE„' (A9)

using p+o=2s+m. This proves (Al) and (3.25).

Finally we must evaluate the contribution to the
expectation value ( U) from the diagram D*.
Comparison of (3.8) with M = U, with (3.'1), leads
to

(AS)
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