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The form, as determined by the coherence formalism, of the final-state-interaction (fsi)
amplitude for three-particle breakup reactions is derived from the Faddeev equations in the
case of n-d breakup. A parametrization of the Faddeev amplitudes in the fsi region is pre-
sented and interpreted. The detailed analytic form of fsi differential cross sections is ob-
tained, showing that the most important fsi parameters are the two-particle scattering
length and an effective target size, which exhibits dilation effects. Analysis of experiments
with the theory implies charge symmetry of nuclear forces.

NUCLEAR REACTIONS n (d, nn)P; final-state-interaction theory. Coherence
formalism, Faddeev-amplitude parametrization, initial-state interaction.

I. INTRODUCTION

In three-particle scattering theory the under-
standing of final-state interactions in breakup
reactions of the type 1+ (2, 3)-1+2+3 is an impor-
tant problem. In particular we are interested in
knowing how the information about a given pair's
interaction is distributed over the entire amplitude
and hence in the differential cross sections. The
particular example we shall use to illustrate the
general theory is the breakup reaction n+d-P++
+n, for which the n-n pair interaction is of special
interest, particularly the n-n scattering length&„„.
Previous analyses of this reaction were, in most
cases, based on extreme and unjustified approxi-
mations, which essentially involved using only low-
order multiple-scattering diagrams. The resulting
extracted values for a„„had a large and inconsis-
tent spread, making it difficult to finally resolve
the question of charge symmetry or charge inde-
pendence of nucleon-nucleon forces.

In this paper we present a detailed analysis of
the Faddeev scattering equations in the final-state-
interaction regions of the n-d breakup reaction. In
Sec. II we derive the general structure of the final-
state-interaction (fsi) amplitude. This analysis
reveals the form and importance of the coherence
between different types of scattering processes,
namely those that involve, say, n-n rescattering
and those that do not. This coherence effect is of
paramount importance in understanding and analyz-
ing fsi in kinematically incomplete experiments.
The coherence formalism achieves an additional
simplification. The usual description for calculat-
ing the fsi peak shape, say in the proton energy
spectrum from &-d breakup, involves an integra-
tion, over final states, of a linear combination of
various component amplitudes, which are solutions

of the Faddeev equations. The exact coherence
formalism, however, expresses the fsi amplitude
in terms of only one component amplitude. Knowing
the analytic form of this component amplitude, which
we determine in Sec. III, we thenobtainin Sec. IV
the detailed but simple structure of the fsi cross
section for single-particle energy spectra. Be-
cause we have performed a complete analysis, the
spectra calculated with this theory agree complete-
ly with those obtained directly from the Faddeev
equations.

The results show how, say, the &-& scattering
phase shift appears in the cross section. It also
shows that of the three-particle parameters which
enter into the cross section, the most important is
one that is effectively a measure of the deuteron
size, and that furthermore the value of this pa-
rameter, when determined and compared from both
low-order multiple-scattering amplitudes and the
exact numerical solutions of the Faddeev equations,
shows an apparent deuteron dilation effect in the
exact solution. This dilation strongly influences
the width of the fsi peak.

The general form of the fsi peak resolves a num-
ber of puzzles —namely why the simple Watson-
Migdal fsi theory fails in kinematically incomplete
experiments and why analyses with this theory
favor charge independence. As well we determine
criteria for the use of the Watson-Migdal theory
in both kinematically complete and incomplete ex-
periments. As a simple application of the new fsi
theory we reanalyze, approximately, some earlier
experimental proton spectra from &-d breakup
which when previously analyzed with the Watson-
Migdal theory gave obviously erroneous results.
For example, the extracted value for a„„, which if
anything implied charge independence, depended
strongly on the three-particle energy of the exper-
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iment. - The new fsi theory gives a charge symme-
try value for a„„of—17 fm from this experiment
and shows that the energy dependence of a„„in the
Watson-Migdal-type analysis can easily be inter-
preted as due to the energy dependence of the deu-
teron dilation effect.

We present evidence that this deuteron dilation
effect can be understood in terms of the strong n-d
initial-state interaction. The parameter which
measures the apparent deuteron dilation can be
measured in the proton energy spectrum in the
n-n fsi region and from the quasifree scattering
peak width. It would seem particularly worthwhile
to perform such experiments in order to systema-

tically study this effect.
We also show that the very strong influence of

the coherence effect on fsi in n-d breakup depends
very much on the sign of the scattering length of
the pair interaction involved in the fsi. The exper-
imental results then imply that a„„is negative,
which could not be determined from the Watson-
Migdal-type analysis.

II. COHERENCE FORMALISM

The Faddeev equations, ' for the breakup reaction
n-d-n+n+p with S-wave spin-dependent and
charge-dependent nucleon-nucleon scattering am-
plitudes, become" coupled integral equations for

component amplitudes

N (k', q' 'k) = x, j(q'I )(E———k,"+)a)l-'k'+it )y( jc'+-', ic)

35~
fly .E k +Sf

Ilg '

4 kl kIIs),
+ Z).' f')'")" N~, ~0i",

I s~ —,')i");s),
n'=g 8 ——(&"+ 0"'+k' k "}+i e

Ng

(2.1)

where E is the total energy, k the incident momen-
tum, k' is the momentum of one nucleon, and q' is
the relative momentum of the remaining pair. The
deuteron wave function is Q and (qlt„(e) IP) is the
off-shell S-wave nucleun-nucleon scattering matrix
where n = 1 denotes the 'S, -p interaction, n = 2

the 'S, n-p interaction, and n=3 the 'S, n-n inter-
action. The three-nucleon spin is S= s (doublet-
state D) and S= —,

' (quartet-state Q}. We have one
coupled equation in the quartet-spin channel (ns&s

=1) and three in the doublet-spin channel (n„s =3).
The various coupling constants g„'„" can be dis-
played as a matrix

and for the two doublet-spin amplitudes

M~, (kq;k) = —,[NP"'(k„qs;k) —NP"'(k„q„:k)]

+s[N""'(k qs'») -N'""(ks) qs)k)])

(2.3)

and

MD, (k„q„k)= ~[N~s"s~(k„q„k)+Ns~"s~(k„q„k}]

1
2 —2-1 + ~N,'""(k„q„k}. (2.4}

x'""= --: 1 1

0i
Here k, is the proton barycentric momentum in the
final state and q, is the n-n relative momentum,
while k, and k, are the neutron momenta,

while for the quartet-spin state there is only one
coefficient g„' = —1.

The four amplitudes N~ '(k', q';k) are easily in-
terpreted. For example, N, ~ sums all multiple
scatterings which end in n-n rescattering. The
three remaining component amplitudes account for
n-p final rescattering in various spin states.

The various cross sections are determined by

and

i. ~
ks=g, —sk,

q, = -Iq, —4k,

k3= —q~ —p k~,

and the n-p relative momenta are

IMI'= vlMcl'+sly)il + s I MD I',

where the quartet-spin amplitude is
and

3w
q, = —&q, +4k, .

Mo(k"lq~' k isis~ k" q"k N~ss~s) k" q"k ' (2'2 The laboratory-system proton differential energy
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spectrum is Eq. (2.5) becomes

(2.5)

+&(E.)B (q„z,), (2.7)
where k~ is the proton laboratory momentum. The
corresponding neutron differential energy spectrum
is given by

where P(E1,) is the phase-space factor in Eq. (2.5).
Here

B (.„.,)=-.' g IMP' (q„z,)l'
lm, 1 &0

(2.8)
+ de p Mq +3 Mg)~ (2.8)

We first consider the high-energy end of the pro-
ton spectrum, from Eq. (2.5), which is dominated
by the large narrow s-s fsi peak (curve 1 of Fig. 5).
In this region M and ~Qy are very small due to the
n san-tisymmetrization evident in Eqs. (2.2) and
(2.3), and ~11, is responsible for the s-n fsi peak.
Furthermore it might be expected that the compo-
nent amplitude &3~"", in M11, in Eq. (2.4), corre-
sponding to final n-n rescattering is responsible
for the n-n fsi peak, with the peak perhaps broad-
ened by interference between &,'") and the remain-
ing four terms in Eq. (2.4). However, on the con-
trary, numerical calculations" have shown that
the linear combination in M» produces a much
narrower fsi peak than does Ns~'"' alone (curve 4
of Fig. 5). Thus this linear combination is coher-
ent, with the sum producing a narrower peak than
any individual term in the sum. Hence the n-e in-
teraction information is distributed over the five
amplitudes in Eq. (2.4). It is important to under-
stand the mechanism of this coherence effect since,
for example, any approximate three-particle scat-
tering theories will most likely not preserve the
coherence. This coherence effect has been exam-
ined in general terms by Amado' who considered
the Faddeev operator integral equations and con-
cluded that the coherent linear combination carries
the phase factor e' ~', and by Aitchison and
Kacser' using a simple dispersion theory. The
actual structure of the coherence mechanism has
been given by Cahill' from analysis of the Faddeev
equations for the three identical boson system.

We now derive the coherence mechanism for the
n-n fsi in n-d breakup and show how this leads to
an understanding of how the n-& scattering informa-
tion is contained in the fsi peak structure.

Introduce the n-n relative angular momentum de-
composition for the on-shell three-particle ampli-
tude (&k +q12 = mE/R' on shell),

~„(k„q„k)= PM," (q„z,)y, (q,),

where z, = k, 4 The differential cross section in

From the antisymmetry of ~z and M~, and since
the sum in Eq. (2.8} excludes I= 0 we see that
B„„(q„z,) is zero when q, =0, that is, when the pro-
ton energy E& is a maximum, and that in the n- fsi
region B„„(q„z,) is small. The contribution P(E1, )
B„„(q„z,) to the cross section is shown by curve 2

in Fig. 5. Hence this term acts as an incoherent
background to the n-n peak, and the peak arises
solely from Mg'~(q„z, ), which is consistent with
the n-& fsi being in the n-n 8-wave state only.

We define Iwhere s; = (IPjm}q12 are final-state
relative subenergies]

(i&2) ~~ ~ (00)FS (slit zl}
(4 )1/2 s2 (qlti 1}

to be the n-n coherent fsi amplitude, where from
Eq. (2.4),

F ' (s„z,)=& "'(k q 'k)

dq N' q ——'k —'q +-'k 'k

(2.9}

which is the coherent part of M». To exhibit the
coherence we now use the fact that the three ampli-
tudes in Eq. (2.9) are related by the coupled inte-
gral equations of Eq. (2.1).

For a half-off-shell two-particle scattering ma-
trix we have in general" (for any particular par-
tial wave, here 8 wave),

&qili. (si) IP& = &q; It.(s;) I q1». (q;, P)

,.f.(s;A.(q1, P),

where clearly A„(q, q) = 1. The nucleon-nucleon
scattering amplitude f„(s) is, in terms of the phase
shift C„(s),

f„(s)=
e"'"sin5„(s)
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Putting k' and q' on shell and changing the integra-
tion variable to q" = —,k'+k", Eq. (2.1) gives that
the on-shell component amplitudes have the form

tude R~~ "i(s+is, z} and the "unphysical" amplitude
R~~"'i(s —ie, z). The full coherent n-n fsi part of
the proton energy spectrum has the form

N~s l
(q ', z) =f„(s'}a~~&(s',z),

where

(2.10) dc 4s P(E~)
dEpdA~ 9 q,

R „l (s ', z) = — s,}t~„,)A„(q', I 2 k' +k I ) }}e}(k'+z k}

nS
1 (s) d ' —q "2+i67T

"N"'(q" —2&1 I 24, + lk'I'"»

and we see that R~„ i(s, z) has a square-root branch
point at s = 0 due to the propagator, with the follow-
ing discontinuity across the branch cut [in k' this
branch point is at (zmJ.'/5')"']:

aR&„'&(s', z)

nS
~ g x„}Jdq }}')(t}'—-''k',, }-,'t}'+'k'}l;k}.

2lT ni

(2.11)

Using Eqs. (2.10) and (2.11}and the values for
y'„'„"', Eq. (2.9) becomes

i$ (s&)
E&'i'&(s z ) = '

'.

3

x
I ~[""'"R""'(s„z,)]i' (2.»)

whereas the n-n rescattering amplitude alone gives

do' 16w P(Zp)
dE~dQp 9 q

2

x Isin6, (s,)R,""'(s„z,) I'. (2.14)

We shall return to Eqs. (2.13) and (2.14) in later
sections to determine why the coherent form pro-
duces the much sharper fsi peak.

There is a similar though more complicated co-
herence effect in the n-P fsi region of the neutron
energy spectrum, from Eq. (2.6). More compli-
cated because the &-P fsi occurs in both the '8, and
'S, &-p spin states and hence all 11 terms in Eqs.
(2.2}-(2.4) exhibit either n-P rescattering or are co-
herent with n-p rescattering. Taking the angular mo-
mentum decomposition of Mo, Ms„andM, with re-
spect to, say, the n-p final-state relative momentum

q„we obtain

x ~[e "~'i'R""&(s„z,)], (2.12)

where 6[ ] denotes a branch-cut discontinuity.
Equation (2.12) is the basic expression of the co-
herence effect for the n-& fsi. We see that while
the n nrescatterin-g term, N~~"'i in Eq. (2.4), by
itself does not describe the &-n fsi, since the five
terms in Eq. (2.4) are coherent, the N3~"" ampli-
tude nevertheless does contain all the fsi informa-
tion, as shown by Eqs. (2.10) and (2.12). Equation
(2.12) involves however both the "physical" ampli-

„„=P(E„}[+M,""(s„z,) I'
dEn dOn

+31M'"' (s„z )I'

(2.15)

where Mp} (s„z,) differes from M&", }(s„z,), and
where 8„~(s„z,) is a small incoherent background
term which does not exhibit any fsi effect. Using
the coupled integral equations of Eq. (2.1), Eq.

(2.15) becomes, for the fsi part,

do'

dx„dO„
fsi

= 4rP(E„) v IE',""(s„z,}I' + BITTE
'" (s„z,) + 'E ""(s„z,) I'-

(2.16)

where the coherent fsi amplitudes are, including
Eq. (2.12),

Equation (2.16) simplifies to the incoherent sum of
three distinct n-P fsi terms,

j bn (S)
E&s&(s, z)=' .

2'L g

xb[e' " 'R ' (s, z)]. (2.17)

=4zP(E )['I E "'}I'+—'I E~""I'+ 'IE "'I']-
n n

(2.18)
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where the first term is the 'S, &-P fsi in the three-
particle quartet-spin channel, and the next two
terms are the 'S, and'8, &-P fsi, respectively, in
the doublet-spin channel.

Equation (2.1V) for the coherent fsi amplitude and
the expressions in Eqs. (2.13) and (2.18) for the
proton and neutron energy spectra in the fsi re-
gions are the basic equations of the coherence ef-
fect in fsi in the &-d breakup reaction. Clearly
similar results can be derived for other three-par-
ticle systems. The coherent fsi amplitudes carry
the nucleon-nucleon phase factor e' " '', and since
we find that the remaining part of Fi '(s, z) varies
rapidly in magnitude but slowly in phase [because
Ri )(s, z) is not a real analytic function, this factor
cannot be real], the phase factor e' "i') describes
the rapid phase variation of Fi ) (s, z), as conjec-
tured by Amado. 4 While the occurrence of this
two-particle phase factor is a manifestation of the
coherence effect, nevertheless it is the remaining
factor of E„which describes the fsi peak struc-
ture. The simple and explicit form of this part is
one of the main results reported here. ' Amado's
conjecture amounted to an extension of Watson's
fsi theorem' to the case of three strongly inter-
acting particles. When combined with analyticity
assumptions, Watson's theorem in the two-particle
case (4 +B-2+3) implies' that the two-particle
fsi amplitude can be factored into a part which
varies slowly with s (the "production factor") and
into a part (the "enhancement factor") which is
rapidly varying, and which is approximately
proportional to the 2-3 scattering amplitude.

Equation (2.1V), however, shows that in the
three-particle case we do not obtain a separation
into enhancement and production factors. To ap-
preciate this point we note that from Eq. (2.1V)
Fi„)(s,z) satisfies the general discontinuity con-

.straint

F(s, z) =f (s)G(s, z), (2.20)

where f (s) is the enhancement amplitude and f (s,z)
the production amplitude, then Eq. (2.19) implies
&G(s, z) =0, which is inconsistent with, for exam-
ple, Eq. (2.9) for FP" (s, z) which involves a term
of the form f(s)R(s, z), but for which 4R(s, z) ss0.
Hence we are led to generalize Eq. (2.20} to the
form

F(s, z) =f(s)R (s, z) +C (s, z), (2.21)

where C(s, z) describes additional processes co-
herent to the final rescattering. Equation (2.19}
then implies that, if &C(s, z}= 0,

and we obtain

kb(~)
F(s, z)= . 6[e' "R(s,z)],

2$Q
(2.22}

in agreement with Eq. (2.1V). Hence two-particle
fsi amplitudes in three-particle systems are in-
herently more complicated than the usual Watson
form, Eq. (2.20), which has been commonly used
in three-particle reactions, and which implies that
Isind(s) I' is the dominant term in the expression

Im(R )"2 R2(I/2}(q 2)

0.422 -0 5-

continuity, in S-matrix theory. Equation (2.19) is
similar to the form of the unitarity constraint in
two-particle multichannel reactions when we as-
sume one particular channel dominates the on-
shell intermediate states. ' If we attempt a solution
to Eq. (2.19) of the form

F„(s+is,z) —F„(s—i s, z) = 2i q F„)(s sic, z)

xf„(s+ie),

(2.19)

D — N

represented diagrammatically in Fig. 1, and which
is familiar"'" as a subenergy normal threshold dis-

-Q5

l (
(z=cos(20'))

I

y-o. Io

&-005 ~ q=0.00

Oem
(I/2)( ) ib (I/s)!)(

)i+ q

Re(R )

0.20 ~~

FIG. 1. The general fsi subenergy (uppers signs indi-
cate sheet) threshold discontinuity constraint on the fsi
amplitude in a three-particle system (lovrer signs indi-
cate three-particle total energy is in physical region).

FIG. 2. The Argand plots of R2 ~ @,z) for c.m. angles
of 0 and 20' and for q in the physical breakup region.
The dashed parts show analytic contfnuations to ne)sative

q values. The fsi region is IqI &0.15 fm andRtu~ =R&~ .
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for the cross section. The complication arises
from &R„40, which follows from the properties
of the three-particle propagator in Eq. (2.1).

To exhibit the full content of Eqs. (2.13), (2.17),
and (2.18}we need to know the detailed analytic
form of R&„&(s,z), which we now determine.

R& &(s, z)=s& (z)

~ b„"&(z)exp[i y&„z&(q, z)], (3.1)

where a&z (z) and b&z&(z) are complex and the phase
y&z&(q, z) is real and has the form

p& &(q, z) =2r& (z)q+ p, (z}f' (3.2)

Furthermore, if we iterate Eq. (2.1) we find that
the single-plus-double scattering (spds) ampli-
tudes R &' z& (s, z) also have the parametrization of
Eq. (3.2) in the same region.

To illustrate this parametrization we show in
Fig. 2 the Argand plot of the amplitude RP'&(s, z)
for the complete physical breakup region 0 ~ s(mE/ff' and for scattering angles of 0 and 20' for
the case E„„~=14.4 MeV. The fsi region is ap-
proximately 0 & s &1 MeV corresponding to 0 (q
&0.16-fm '. In terms of the above parametriza-
tion a„z&(z) is the center of the circular section in
Fig. 2 and ib& &(z}i is the radius, while p&z&(q, z}
determines the variation with q of R &z&(s, z} along

III. AMPLITUDE PARAMETRIZATION

To study the form of R&z&(s, z) we have solved
numerically the integral equations of Eq. (2.1) us-
ing, for simplicity, charge-independent rank-one
Yamaguchi separable potentials and the contour-
deformation method. ' The potential parameters
are given elsewhere, ' but in particular a„„=-24
fm and, because of assumed charge independence,
RP/2) R(1/2)

2
We find, from the numerical results, that in the

forward direction and in the fsi region all the am-
plitudes R&z&(s, z) can be very accurately paramet-
rized by the particularly simple form

the complex plot. In the fsi region this variation
is almost linear in q, indicating that the contribu-
tion from p&z&q' in Eq. (3.2) is small.

As well, we see from Eq. (2.17) that the coher-
ent fsi amplitude requires the "physical" ampli-
tude R&z& (s+is, z }as well as the "unphysical" ampli-
tude R&z&(s —ie, z}. This amplitude is easily ob-
tained from Eq. (3.1) by analytic continuation in

q from positive to negative values, and R&,'"& (s
—i e, z) is shown in Fig. 2 by the dashed plots.

The various parameter values for the forward
direction (z =+ 1) are shown in Table 1 for both the
exact solutions and the spds approximation, and
we see that this approximation is in general very
poor. This result is not unexpected, since for the
doublet-spin channel the multiple-scattering ser-
ies is divergent" "at this energy.

There are some important and interesting fea-
tures exhibited in Table I. First, in general
(

b&z&i is larger than i
a&z&i for the exact solutions

(at this particular total energy) ard as a conse-
quence, as we show in Sec. IV, of all these pa-
rameters, the shape of the fsi peak is determined
mainly by the value of r( ). The variations in

p, ( ) are unimportant since 2r( )q» p. ( )q' in the
fsi region. Hence the parameter of primary phy-
sical interest to fsi is r(s). An important feature
of the y(s) values is that, in the doublet-spin chan-
nel, rp'& and realm&, for the exact solutions, differ from
their mean value by less than 3%. The same ef-
fect is seen for the spds approximation. Hence,
in all cases r(s) is, too a good approximation, in-
dependent of the nucleon-nucleon interaction label
pg, which also labels the coupled amplitudes, and
thus r&z&(z) depends only on the three-particle
channel-spin quantum number $, apart from z.

Thus 2~(' ) —9.91 fm and 2y(' ) =7 59 fm
which are, respectively, 25 and 10% larger than
the 2r&z& channel values from spds (V.85 and 6.80
fm), at 8=0'. This conclusion has important phy-
sical implications for our understanding of three-
particle reactions, since these large variations

TABLE I. Forward-scattering parameter values [the a„and b„values differ from the
definition in Eq. (3.1) by a normalization factor] for exact solution (E), single-plus-double
scattering (D), and initial-state-interaction modified D (M).

a(s)an b(s)
2+s)
(fm) &(s)

2. 3

1.135+i1.810
0.199+i2.680

1.054+ $1.696
3.911+ i3.164

0.317—i0.252
-0.630-$0.993

0.111—i0.2 73

0.192 + i3.475
-0.726+ i3.775

2.453+ i3.317
3.269+ i6.006

-0.112—i0.717
-0.243 —$1.274
-0.011—$0.759

7.59
6.80

9.78
7.74

10.05
7.96
9.28

—34.7
-23.1
-34.5
-31.7
—21.3
—31.6

2303

(E)
(D)

(E)
(D)

(E)
(D)
(M)
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proximation. In this interpretation the constants
4&' ~& = 1.03 fm and d('I'& = 0.40 fm are then a mea-
sure of the deuteron dilation. in the two uncoupled
channels.

A dilation in coordinate space corresponds to a
narrowing of the momentum distribution, and
there is experimental evidence for this. To mea-
sure the momentum distribution of the deuteron
components one performs a kinematically com-
plete experiment and observes the so-called quasi-
free-scattering peak, ' ~" where the width of the
peak is a measure of the momentum distribution
of the nucleons in the deuteron. One observes'4 "
in fact, for E„„b= 14 MeV, that the width is nar-
rower than that predicted by an unperturbed deu-
teron. Ideally the quasifree-scattering (gfs) pro-
cess corresponds to scattering in which, in gen-
eral, all but one of the target particles have their
momentum unchanged, and where that one parti-
cle scatters the incident particle. However, clear-
ly, when there is a strong isi between the inci-
dent particle and the bound-state target as a
whole, which we expect at low energies in the n-d
case, the qfs condition cannot be attained. It was
shown" that incorporating explicitly" the isi into

the usual qfs process one does obtain a nax rowing
of the qfs peak in agreement with experiment.

The concept of a certain definite target dilation
during the breakup of that target clearly requires
some consideration, particularly as we are work-
ing in a time-independent formalism. In a time-
dependent formalism the bound-state, target is of
course undilated before the scattering event and
the size is essentially undefined after the event
when the bound-state components have separated.
The above results, however, show that if we wish
to xeproduce certain significant features of the
exact solution of the Faddeev equations by using
.the spds approximation, then in that approxima-
tion we should use an effective deuteron wave func-
tion which is more extended in coordinate space
than the normal deuteron state. This dilation is
some effective value between the initial and final
values in a time-dependent view. This effective
dilation is one important consequence of the high-
er-order multiple scattering events that are ne-
glected in spds. An important feature of these
higher-order multiple scatterings is that they con-
tain implicitly an isi mechanism. " We find that
an isi modification of spds increases the r&"'&

value by 16%.
In the next section we show how the important

physical parameter r& &, which includes the isi
process, strongly affects the fsi peak shapes.

IV. fsi CROSS SECTIONS

Combining the amplitude parametrization of Eq.
(3.1) with the fsi coherence formalism, Eg. (2.1V),

2.0

m/2

1.0

0.16

50-

E

c 20

M

q (fm-')
0.12

I

Blob=0'

0.054
I

O. I

q (fm-&)
0.2 IO

FIG. 4. Various phases, with 6 the ~80 n~ phase
shift for a scattering length of -24 fm and an effective
range of 2.67 fm. Here p is the phase of 8&2 ~ &(q, s), in
the forward direction (8=0 ), as defined in Eq. (3.1).
The phase of the fsi amplitude is 6+/, showing that the
variation is described by 6 in the fsi region. The rapid-
ly. changing phase 5+/ essenttally determines the n-n
fsi peak shape, rather than 5 alone as in the %'atson-
Migdal approximation.

I I.O

~6
2I

11.5
E&(Mev)

12.5

FIG. 5. Proton energy spectra for n-d breakup in the
n-n fsi region at 14.4 MeV. The exact result is the sum
of the pure fsi peak (curve 1) and the background contri-
bution (curve 2). The remaining curves illustrate var-
ious aspects discussed in the text.
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we obtain the explicit form of the final-state-in-
teraction amplitude:

~4bw{4l)
F&z&(s z)—

ff

&&(s &z& (z) sin5„(s)

where y&z&(q, z) =2r&z&q. Then, in particular, the
n-n fsi part of the proton spectrum is, from Eg.
(2.13),

dO' 4z P(E&)
~

&1/2& ~

5 ( ) 5&ll2&i
gE gg 9 q2 3

x sin[&4(s) + 2r ""&q]
~

'.
(4.2)

Similarly, from Eq. (2.18}, we obtain the sum of
three such cross-section expressions for the n-p
fsi part of the neutron energy spectrum.

In Fig. 4 we show the s-n phase shift 5,(s), the

phase 5,(s)+ Q~&"' (q, z), and the phase g(q} of the
complex amplitude in Eq. (4.2), and g is seen to be
slowly varying in the fsi region. Hence the phase
variation of the coherent fsi amplitude is given by
the two-particle phase shift. '

The rapid variation of the phase 5,(s)+p&"2&(q,z)
from 0 through —,'&& as s increases from zero (and

E~ decreases from maximum} combined with the
observation that, because ~b&"'&/s&"'&~=1.8, the
second term in Eq. (4.2) dominates, explains sim-
ply why the observed n-n fsi peak in proton spec-
tra from n-d breakup is very narrow (after un-
folding energy resolution). From Eq. (4.2) [with
y&'l2& given by Eq. (3.2)] and the parameter val-
ues in Table I we obtain the fsi peak shown in
curve 1, Fig. 5. Combined with the small back-
ground term (curve 2 of Fig. 5) P(E~)B„„(q,z),
where we find'6

B„„(q,z)=Bq'

is a reasonable appx'oximation for small q, we ob-
tain exact agreement with the cross section ob-
tained by numerical quadrature' of Eq. (2.5}with

~M ~' given by Eqs. (2.2)-(2.4).
To demonstrate the fsi coherence effect and the

isi effect we show in Fig. 5, as well as the com-
plete results, various other cross sections. The
broad curve 4 of Fig. 5 is the cross section given
by Eq. (2.14), which includes only those processes

. ending in n-n rescattering. The resulting con-
siderably broadened curve demonstrates the ef-
fectiveness of the coherence mechanism. Vfe see
that the rescattering cross section, Eq. (2.14),
depends only on the magnitude of g{"& which
from Fig. 2 is slowly varying, whereas the cor-

1—sin[5, (s)+2m&"'&q] . (4.3)

Bond" analyzed the proton spectra using the Wat-
son form with an essentially ad Roc modification~
to include a nucleon-nucleon boundary radius P

rect fsi expression in Eq. (2.13}depends also on
the phase, as defined in Eq. (3.1), of Rs&"z& which
is rapidly varying, with the rate of variation de-
tex mined by twice the dilated deuteron size. We
see from Eq. (4.2) that when we put I&&"'& =0 we
obtain the Watson-Migdal form of the fsi peak,
which is shown by curve 6 of Fig. 5. The small-
ness of this cross section shows the unimportance
of this Watson-Migdal term in Eq. (4.2) at this
energy and that this term produces a very broad
and incorrect cross section. On the other hand,
when we put u{'"&= 0 we obtain cux ve 5 of Fig. 5,
which has a similar almost identical shape to the
exact result. Thus the second term in Eq. (4.2)
almost exclusively accounts for the shape of the
n-n fsi peak at E„»—-14 MeV. This shape is in
turn determined by the n-n phase 5,(s) (parame-
trized, say, by the scattering length a and the
effective range r„„)and by the effective dilated
deuteron size for the appropriate three-particle
channel. To demonstrate the effect of the deuter-
on dilation and thus, as interpreted here, the isi,
we show in curve 3 of Fig. 5 the broadened cross
section obtained from Eq. (4.2) when 2r&"'& is
reduced from 10.05 fm to the spds value of 7.96
fm, but with all other parameter values as given
by the exact solution. For curve 7 of Fig. 5 we
have used all the spds parameter values, and we
obtain a cross section which is 5 times too large
and very much broader than the exact result. This
broadening is caused by the smaller undilated
y{ ~ ~ value and, from Table I, the fact that
(bP"'] =

) a',""
] in this case, causing the contribu-

tion from the %atson-Migdal-type term in Eq.
(4.2) to be overestimated. Finally, in curve 8 of
Fig. 5 we show the fsi cross section obtained by
the approximation" which incorporates the isi in-
to spds. We see that the isi greatly improves
both the shape and magnitude of the spds approxi-
mation. Prom Table I we see that the amplitude
parameters show that the isi has produced the ex-
pected deuteron dilation as well as the condition
in the exact case at this energy, that the g&~& dom-
inates the c~~& term.

The theory of fsi in three-particle systems de-
veloped here finds an interesting application in the
reanalysis of some earlier proton spectra from
I-d breakup. Simplifying Eq. (4.2) by neglecting
the a{3' '~, we obtain the essential contribution of
the fsi amplitude to the cross section,
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—1.4 fm,

—sin[5, (s)+pq],
1 (4.4)

and obtained the best fit a„„=-26 fm, at E„»
=14MeV. From the similarity of Eqs. (4.3) and

(4.4} and noting that

5,(s}= -a„„q+O(q'},

we obtain an approximate correction relation be-
tween the true value of a„„and the Bond value

p 2 ( )
fly NS

(4.5)

Using the value of 10 fm for 2r&' ", Eq. (4.5)
gives g„„=-17 fm, in excellent agreement with

the charge-symmetry prediction of Noyes and Li-
pinski. "

In the Watson-Migdal approximation the e-n fsi
shape is determined mainly by the value of ~a„„~,
whereas the complete analysis here shows that
the shape is actually determined, in an analogous
manner, mainly by the value of -a„„+2r~' '). The
difference of 10 fm at 14 MeV indicates very clear-
ly why the use of the Watson-Migdal approximation
and related approximations confused the answer to
the question of charge independence or charge
symmetry of nuclear forces. . Furthermore, the
dilation effect contributes 2 fm to 2r&' '~ at 14
MeV, and more at lower energies. Thus the ne-
glect of the dilation effect will give a„„values in-
termediate between the charge-symmetry and

charge-independence values.
Furthermore Bond" finds the anomaly that ~as„~

as determined by Eq. (4.4) is strongly dependent
on the three-particle energy of the experiment,
and increases with decreasing energy, represent-
ing a shrinking of the n-n fsi peak. However, in

terms of the present theory this energy depen-
dence is easily understood and expected. From
Eq. (4.5), with a constant, Bond's observation
implies thaf. the deuteron dilation effect increases
with decreasing three-body energy. That is, as
the initial relative approach velocity of the neu-
tron and deuteron is decreased the isi distortion
becomes larger. Using Bond's values for ~„„, at
various energies, in Eq. (4.5), we obtain the ap-
proximate energy dependence of the deuteron di-
lation, as shown in Fig. 6. Detailed experimental
measurements of this dilation effect are required
to properly determine the nature of this effect and

the ability of theories to predict the dilation. A
consequence of this energy dependence is that the
observed qfs peak width should decrease with de-
creasing energy, compared to the width calculated
from the undilated-deuteron wave-function momen-
tum distribution. Care in the analysis of the qfs

peak width will be required due to the differing di-
lations in the quartet- and doublet-spin channels. 'o

The coherence formalism and the dilation effect
completely explain the sharpness of the n-n fsi
peak in the proton spectra. However, the coher-
ence effect can also broaden a fsi peak. From Eq.
(4.1) we see that if the fsi pair has a positive
scattering length, say the 'S, n p-pair, then the
variations in 5„and P&~& will tend to cancel rather
than reinforce, q.s in the 'So Q Q case. Hence the ~

fsi theory allows the sign of the scattering length
to be determined.

For single-particle spectra Eq. (4.2) implies
that the Watson-Migdal fsi approximation is only
valid for those three-body energies for which

( a ~'l (» (
bt'& ~, and this condition is certainly not

satisfied in a range of energies about 14 MeV.
However, it has been claimed ' that jn kinema-
tically complete experiments the Watson-Migdal
expression is a good approximation. "

In the terms of the present analysis we can es-
tablish criteria for the applicability of the Watson-
Migdal form in this case also. In a kinematically
complete experiment in which we observe, for ex-
ample, the n-pg fsi, it is possible to choose the
geometry so that only the n-n rescattering term
in Eq. (2.4) is important, unlike the situation in
the corresponding incomplete experiment where
the n-p qfs interferes with the n-n rescattering.
Then from Eqs. (2.4), (2.10), and (3.2) the differ-
ential-cross-section shape in the n-g rescattering
region is determined approximately by, except for

12.0—
I|

E 8.0—

4.0—

I I

IO

En, iob (MeV)

I

l5

FIG. 6. The three-particle energy dependence of the
deuteron effective size parameter x in the n-d doublet-
spin channel, as determined approximately from Eq. (4.5).
The error bars indicate only error analysis in data used
(Ref. 17). Energy axis starts at n-d breakup threshold.
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the phase-space factor,

—,sin'5, (s)
~
a ("')(z) +53~"')(z) exp(2ir&'") q) (

',1

and the Watson-Migdal form appears if either

/
a'"'/»/ 5'""

/

or

[
+(1/2)

( ++ [ t (l/2)
(

From Fig. 2 we see that in fact the amplitude in
Eq. (4.6) is varying only slowly in magnitude, and
to this extent the Watson-Migdal form is applicable
at 14 MeV. Again, however, we see that the devi-
ations depend on the deuteron size. The strongest
deviations from the Watson-Migdal form will oc-
cur, for complete experiments, in the intermediate

case of

(

a&i/~)
( )

i)(u
3

It is evident that we have finally obtained a clear-
er insight into the theoretical aspects of final-
state interactions in three-particle systems, par-
ticularly in kinematically incomplete experimental
configurations. The final-state-interaction theory
has recently been applied to the analysis of new
n-n fsi data from n-d breakup. " A similar reanal-
ysis of older experiments should go a long way in
removing the many discrepancies in the previous-
ly extracted s nscat-tering length values. Bo& the
approximate reanalysis above of one experiment
and the new analysis" imply charge symmetry of
nuclear forces. The fsi theory developed in detail
here for the n-d case can be formulated for other
three-particle and quasi-three-particle systems.
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