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Self-consistent quasiparticle-phonon coupling
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Using a Green's function formalism, the quasipqrticle self-energy in a finite Fermi sys-
tem is derived from the particle-particle-hole response function with the assumption that
particle-particle and three-body correlations are negligible. An approximate calculation of
the self-energy includes the usual core-polar ization diagram, a backwards exchange dia-
gram with ground-state correlations, and higher-order diagrams which correct for exclu-
sion-principle violations in the propagation of the quasiparticle and the microscopic phonon.
Intermediate lines in the self-energy are described self-consistently, thereby including
multiple-phonon core excitations. It is shown that the equation for the self-energy may be
solved by matrix diagonalization by coupling the even- and odd-nuclear eigenmodes. Re-
normalized phonons are calculated by taking into account the distribution of quasiparticle
strength by quasiparticle-phonon coupling in the solution of the Bethe-Salpeter equation.
The self-energy and phonon are calculated self-consistently.

I. INTRODUCTION

It is usual to classify the modes of motion in a
spherical nucleus as either single particle or vi-
brational in nature. ' In Eeroth order, these can
be regarded as independent normal modes. How-
ever, one frequently observes in odd-mass nuclei
that properties associated with the independent
particle and with the collective vibration are
mixed into the same nuclear state. Thus, if the
physical. simplicity of concepts like orbiting nu-
cleons and coherent nuclear motions is to be re-
tained, a coupling Hamiltonian must be defined or
derived which mill mix basis states of the types:

~ j), a single-particle state with angular momen-
tum j, and

~ [j„N(B)J), a particle with angular
momentum j, coupled to N vibrational excitations
each with angular momentum A. This treatment
approximates the nucleus very crudely since,
among other effects, it ignoxes ground-state cor-
relations and higher-energy nuclear modes. How-
ever, it produces a very simple matrix diagonal-
ization problem and provides the conceptual basis
for all particle-core or particle-vibration coupling
treatments, and such calculations are very useful
in explaining experimental data. The coupling
Hamiltonian is often taken to be the scalar product
of the particle's coordinate and the macroscopic
coordinate of the vibrating core." In other in-
stances, 4 ' the phonon is described microscopi-
cally and the coupling Hamiltonian defined as a

linear combination of two-body matrix elements.
This latter approach is more definitely related to
the fundamental many-body problem.

The aim of this paper, and several to follow, is
to extend the Fermi liquid theory in a natural way
(using the six-point function) to guasiparticle-pho-
non coupling (QPG)' and thereby prescribe unam-
biguously the inclusion of higher-order nuclear
processes into the @PC problem.

The framework of our discussion will be that of
Qreen's functions and diagrams. " In Sec. IIA we
introduce intuitively the higher-order diagrams in
which we are interested. In Secs. II B and IIC the
theory is developed. We conclude by comparing
our equations to those obtained by other methods.
The considerations here will be limited to normal,
spherical nuclei. The extension of these ideas to
superfluid and deformed nuclei and the calculation
of transition probabilities is under way and will be
the subject of future installments.

H. THEORY

A. QPC concepts

The usual microscopic intermediate coupling
problem (cf. Ref. 4) can be derived by consider-
ing the diagram shown in Fig. 2 for the single-nu-
cleon self-energy. The eigenvalues of the odd nu-
cleus are then obtained by inserting this approxi-
mation for the self-energy into Dyson's equation,
which is shown graphically in Fig. 2.
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FIG. 1. The quasiparticle-phonon coupling (@PC) ap-
proximation for the mass operator or self-energy. On
the left-hand side, the line represents a one-nucleon
Green' s function. The wiggly line is a phonon, and the
dots correspond to @PC vertices. On the right-hand
side, the string of bubbles is just the usual microscopic
description of the phonon.

The diagram in Fig. 1 describes the core-polar-
ization process and is important to the calculation
of the quasiparticle self-energy because, when we
put a shell-model particle into the nuc. leus, there
is a good chance that it will scatter into a differ-
ent configuration. This lowering of probability for
stable single-particle propagation is reflected in
the distribution of residues of the Qreen's function.
There is single-particle strength at several poles
of the odd-mass nucleus because single-particle
and core-coupled states mix. Thus, the QPC ap-
proximation can.explain the satellite peaks in one-
nucleon stripping and pickup reactions. "

Nevertheless, there are several diagrams,
which are only slightly more complicated and con-
tain some important physics, but which are usual-
ly neglected in QPC calculations. The diagram in
Fig. 3(a) recouples particles and phonons, and
takes into account certain violations of the Pauli
principle. To see this we construct in Fig. 4 a
partially-labeled phonon plus particle. This con-
figuration might be present, for example, as part
of the core-polarization diagram in Fig. 1. Note
that the particle-hole configuration ~13) cannot be
excited while the orbital labeled 1 is occupied be-
cause this situation is a violation of the Pauli prin-

(o) (b) (c)

FIG. 3. Higher-order corrections to @PC: (a) cor-
rects for exclusion-principle violations (EPV's) shown
in Fig. 4; (b) is the so-called backwards" diagram
which results from ground-state correlations; (c) and

(d) are two-phonon contributions to the self-energy;
(d) can be obtained by "dressing" the intermediate line
in the lowest-order @PC diagram of Fig. 1.

ciple. Such violations are usually ignored because
the phonon is calculated independently of the quasi-
particle. However, the diagram shown in Fig. 3(a)
exactly cancels the illegal contribution.

Another Pauli principle violation is shown in
Fig. 5. It results from the zero-point core vibra-
tion, or ground-state correlation, which coexists
with the propagating quasiparticle. Although Gold-
stone's theorem states that we do not have to eval-
uate such unlinked diagrams explicitly, the ex-
change (or backwards) diagram shown in Fig. 3(b)
should be computed. It is clearly a repulsive con-
tribution to the self-energy of the quasiparticle
because fewer degr'ees of freedom are allowed for
the zero-point motion of the core. One can expect
this sort of interference to be important whenever
a particle state is occupied with high probability
in phonon-type ground-state correlations.

Another higher-order effect is that after the
propagating quasiparticle excites a core vibration,
the quasiparticle-plus-core excitation may polarize
yet another core mode. If the original core excita-

iI ~

FIG. 2. 13yson's equation for the two-point or one-
nucleon Green's function. The double line represents
the exact propagator, the single line the unperturbed
propagator, and M the mass operator.

FIG. 4. A violation of the Pauli exclusion principle
which occurs when a phonon, calculated separately in
the microscopic RPA, coexists with an extra particle.
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FIG. 5. A violation of the Pauli exclusion principle
vrhich occurs vrhen a ground-state correlation, calcu-
lated for the even nucleus, coexists with an odd particle.

tion disappears first we obtain the staggered dia-
gram shown in Fig, 3(c), while if the second ex-
citation deexcites first, we obtain the nested dia-
gram shown in Fig. 3(d). Since core polarization
fractionates single-particle strength, these higher-
order polarizations will further redistribute the
strength.

All of the above considerations not only have an
effect on the eigenenergies of the odd-mass nucle-
us but also influence the eigenenergies of the even-
mass excited states. This can be seen by inspect-
ing the higher-order random-phase approximation
(RPA) graphs in Fig. 6. The descriptions of even
and odd nuclei are not independent and should be
formulated self-consistently. We shall call such
a theory self-consistent quasiparticle-phonon cou-
pling (SCQPC).

8. Self-consistent qussiparticle-phonon coupling

Empirically, it has been demonstrated that QPC
provides a qualitative description for low-energy
states of many nuclei. The intent of this section
is to examine the reasons for the success of this
approximation for the self-energy, and to justify
the inclusion of higher-order diagrams from the
many-body theory. This section is organized as
follows: first, we state some preliminary formu-
las from the theory of finite Fermi systems. Sec-
ondly, the particle-particle-hole (pph) or six-point
response function is introduced to facilitate calcu-
lation of the mass operator. A renormalized inte-
gral equation for the (pph) response function is de-
rived in terms of the (ph) response function and the
(ph) interaction. Finally, the equations are simpli-
fied by making the phonon approximation for the
(ph) and (pph) response functions and then the cou-
pled equations for the two- and six-point functions
are reduced to a single matrix-diagonalization
problem.

&eliminary formula

In order to shorten the development, we first
write down a number of results from the theory of
finite Fermi systems. "" The one- and two-nucle-

FIG. 6. @PC corrections to the particle-hole bubble
approximation, i.e. , RPA.

on Qreen's functions are defined

(1)

(2)

where T is the time-ordering operator, and the
subscripts represent both the quantum numbers
for an arbitrary single-particle basis and the time
variable. As usual, IO& is an exact ground state of
the even nucleus. The spectral representation of
612 is

12( } ~ ~ (E(i) E(0)}+I()l(/+1) &+ 1

&o I y,'li& &~ I y, lo&Z ~+ (E(J) E(0)) I()
'

S(N-1)

The one-nucleon Qreen's function may be deter-
mined exactly from Dyson's equation (see Fig. 2).

12 12 13 34 42 & (4)

where M is the self-energy and contains all Feyn-
man graphs which cannot be separated by cutting
one line. An exact expxession is given later in
this section.

The two-nucleon Qreen's function or four-point
function depends on the scattering matrix, I', of
two particles in the interacting system

1234 13 24 14 23 15 26 5678 73 84 '

F may be reduced in the (pp} or (ph) channel. If
in the (ph) channel I represents an irreducible
block, a Bethe-Salpeter equation for I" may be
constructed,

F1234 I1234 ZE1638G7668 575274 '

A closely related quantity is the linear response
function defined by

L123» —G 123» —G13G
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The Bethe-Salpeter equation for this quantity is

L1234 = -G14G23 —&G1SG63I8765L5274 .
Thus I' and L are related by the equation

r,„,=I„„+~I„„L„„I,„,.
The spectral representation of L is given by

(8)

(9)

ergies, E~=-E„-E„', is given in Sec. IIC.

2. (pph) response function

Recently, Ethofer and Schuck" and also Winter"
have shown that the self-energy may be calculated
exactly from the particle-particle-hole (pph) re-
sponse function, L,

(s) (s)*
X13 X42

(d —(E'0 E")—+ sf)
S (N') ~ 0(N)

M443 = —V41431s ~1 1+ 4 y43'12 3121 2 3 V1'2'4'3

(16)

where

X(s) (s)+
X24 X31

(d+ (E(s) E(o))

(10)

L is the sum of all contributions to the three-nu-
cleon Green's function (or six-point function) which
cannot be separated by cutting a single line. V is
the antisymmetrized matrix element of the bare
interaction, "

CO = (d1 —M3 .

The spectroscopic amplitudes or generalized den-
sity matrix for the excited states may be obtained
from X» by

)("'&~, = (0143'e, I» = p',.",
where the integral is taken counterclockwise
around the upper half plane.

For shell-model nuclei, the one-nucleon Green's
function may be separated into a term which is ana-
lytic near the Fermi surface and a regular part,
that is

G..., .. -=-3(0IT{4 43,4 ((2, 4. 4. ) Io),

3121 2 3 3121 2 3 123 5 56 531 2

(I'I)

(18}

&v (&v, )2
I

(d —(c7
y y

It can then be shown" that

((d) ~ P123 (Pi 2 3}
4 3121 23

y

(19)

(20)

The analytical properties of L follow from Eqs.
(16) and (18) and the ansatz" that

G =Zg+R', (12)
with

where Z is the residue of the single-particle
strength which is close to the Fermi energy. It
is customary to assume that G» is diagonal, i.e.,
G»=5»G, . However, the form of Eq. (12}does
not exclude the possibility that g should have more
than one pole.

The renormalized particle-hole interaction may
be defined

E„„=-(z,z, z, z,)'"r,„,

(0141()'243 13) (310410)
P123 ~ g( $)

t (N+ 1) y

g (01k.li & (i 14,4,0.' Io&

g(S)+ 4 '
)(N -1)

and also

4 " 43 12 P123

(21)

(22)

where G5G6=456+B56 is the sum of an analytic
term (viz. A33=zszsgsg, ) and a regular term

The renormalized Bethe-Salpeter equation for
the response function is

l)234 L 3142(/\ ZZZ23Z4)' '

(-3 1g3 14 23 glg3 1635 5264 (14)

It is also convenient to define the renormalized
spectral amplitudes,

(s) p(s)/(Z Z )1/2 (15)

A homogeneous integral equation for the renormal-
ized spectral amplitudes and the excited state en-

In Eqs. (20) and (21), we have assumed that the un-
natural energy variables have already been inte-
grated upon, i.e., p is obtained by applying to some
more general quantity the operator

d(did(d2d(d3i 5((dv —(di —(d2+ (d3~3) .
Except where explicitly necessary the Fourier al-
gebra~' for these variables has been omitted.

If an irreducible block, K, in the (pph} channel
is introduced, L obeys the integral equation

3121 2 3 G33 ( 11 22 12 21

+GV'3' i3 23 2M3'3'7' 33'3'i'2'7 ~ ( )

The interaction K contains" three-body and par-
ticle-particle correlations which we henceforth
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neglect except during a brief discussion of the
Brueckner model. Thus, we approximate the

(pph) interaction by a sum of (ph) interactions,
Viz.

y

(24)

This approximation for K when substituted into

Eq. (23) gives

r(21) r (21) r (21)
3121 2 3 3121 2 3 3122 1 3 3211 2 3

(21)+ Lsu2'x's Gsa'(Gix'G22' Gn'Gin')~

(25)
where L " obeys an integral equation appropriate

for a particle-hole pair and an additional particle,

~3121 23 233 2 11 27 3 6 15 75656 7 356 1 27&

zr(»). . .—r. . .r, r756567 647 5 44 5746 5345 33 44 647 2 22 2736

(26)

(27)

The graphical equivalents of these equations are
shownin Figs. 7-9. Thederivationof Eqs. (25)-(27)
may be most easily accomplished using diagrams.
Note that the free part (GGG) is seen to correct
the lowest-order contribution to Ll' [Lt'l = -GG
and H " = 0] for double counting, when summing
over the indices of two identical particle lines.

These expressions for the (pph) response func-
tion may be substituted into Eq. (16) to obtain the
graphs shown in Fig. 10. Note that L" is not
antisymmetric with respect to exchange of the in-
dices 1 and 2, but that the interaction is. This
explains the deletion of the factor of I/4, also.
It has been shown previously" that the bare inter-
actions in this figure may be replaced by the
Brueckner matrix F ', if the intermediates in the

self-energy are restricted to a model space. "
We further assume that the unperturbed 6' in-
cludes the Brueckner-Hartree-Fock self-energy
contribution.

We thus obtain the analytical expression

(26)

In the spirit of the approximation of Migdal" and
Landau" discussed earlier, we separate the self-
energy into terms which have poles near the Fermi
energy and those which do not,

M =M(»+M(» (29)

and

g( 1) =G(0) + G(0)M( R)g(1)

1 2 3' = zg("+z (30)

( "')

1' 2' 3

1 2 3'

Ji

3l 1 2
J(

l
x

1I 2I

1 2

2' 1'

With the ansatz

2 3'
1 2 3'

1 2 3'

L(21) —(1' ~ 2') —(1 2)+(1' ~ 2') (1 ~ 2)

Jl

1
I 2I 3

„(21)

JI

1' 2' 3
1' 2' 3

H(21)

FIG. 7. The particle-particle-hole (pph) response
function when only particle-hole correlations are con-
sidered. The straight lines represent exact one-nucleon
Green's functions. L 2, which obeys the integral equa-
tion of Fig. 8, is not antisymmetric with respect to ex-
change of particle indices. The explicit contributions to
L required for antisymmetry are indicated. (Note
that the graph of L3 includes the ingoing and outgoing
lines. )

1' 2' 3

FIG. 8. The integral equation obeyed by the (ph)
correlated contribution to the six-point response func-
tion. L2 is just the usual (ph) function of linear re-
sponse or RPA theory.
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4ji
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5 6 7'

H(21)

4I

32

+ ~ ~ ~

41 42

4I

Ji

5' 6' ?

5' 6' 7
52

2'

1f

6' 7

FIG. 10. The equation for the mass operator when a11

(ph) correlations are included. The dotted horizontal
lines represent the "bare" interaction. The first graph
on the right-hand side is the Hartree-Fock term, hence-
forth presumed in the zeroth-order propagator. The
last term is neglected for the @PC approximation which
follows.

FIG. 9. The "interaction" between the (ph) response
function and an extra particle. The ingoing and outgoing
"stubs" are not part of the interaction. Intermediate
lines labeled 2, 3, 4, etc. are exact or "dressed" prop-
agators. I is the irreducible (ph) interaction. A11 poss-
ible time orderings of the I blocks are implied in this
diagram.

we obtain

G = G(1'+ G(»M(»G

while the exact energies

(34b}

The g are reduced residues since the quasiparticle
Green's function already includes only the percent-
age of single-particle strength which is of analytic
importance for ~= A. .

The equation for m may be formulated entirely
in terms of renormalized quantities, viz. ,

= Z(g ~ » +g ~1~M~ 1~G) + (ft + ffM&»G ), T„„=(z,z,z, z,)'"r,",„, (35)

and finally

(» (»
g12 g12 g13 34 g42 &

where

(32)

and the renormalized (ph) interaction, E, and re-
sponse function, l, defined previously.

The renormalized expressions for the self-ener-
gy are as follows:

rn34 = (z,z,—)'"M',4" .
We shall adopt the approximations that g ' has

only one pole, while g may have more due to ef-
fects such as QPC. Thus, we introduce the con-
cepts of "bare" and "dressed" quasiparticles.

Although the above formulation for the self-ener-
gy leaves the division of terms into two classes
arbitrary, it does clarify exactly the analytical
construction of the self-energy contributions which
derive from (ph) correlations. We make for sim-
plicity the further approximations that g ', m,
and g are diagonal in the single-particle represen-
tation. We thus have the following expressions for
g "andg:

(33a)

1 ~
4 4 43 12 3121 2 3 1 2 43

) y(21) 1
43 12&"3121 2 3 2 g33 gll g22 j 1 2 43 &

(dv)(yY)* (19')

(20'}

P123' P123'~(Z1Z2 Z3')

4 43 12t 123
y = 7

(21')

(22')

and

g, (21)
7565 6 7 64 7 5 g44 5746

53 45 g33 g44 64 7 2g22 2 736

(26')

3121 2 3 233 2 gll "27 3 6g15 7565 6 7 "35'6 1 2 7 &

g(f)

t(N+»
(33b)

3. Phonon approximation

E, =+(4, —X), (34a)

In the above notation, the E, is always positive and
is approximated by the shell model as follows The four-point response function, when written

in the energy formalism, usually contains a sin-
gularity corresponding to a collective state, com-
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X(s)X(s) X(s)X(s)
(~) 13 42 31 24

1~4 o] —Es + Es
(36)

Secondly, the (pph) amplitude is factored into a
phonon and a quasiparticle contribution.

This is accomplished by setting

s&o
(37)

In fact, Eq. (37) is exact. In anticommuting the
creation operator and excluding I 0& =

I S&, we have
used Eq. (2.24) of Ref. 13. Of course, this factor-
ization is useful only if we limit our attention to
(ph) correlations. The approximation is to trun-
cate the set of states I S& to the important collec-
tive state(s). (We leave the summation over more
than one such phonon implicit. )

monly called a phonon. In the case of 2+ and 3-
states, the phonon is the lowest in energy and
most likely to affect the low-energy structure of
odd nuclei by quasiparticle-phonon coupling. Fur-
ther, the spectroscopic amplitudes for the phonon
are coherent, i.e., if all the matrix elements are
attractive, all amplitudes are positive. This
means that the QPC interaction, which, as we
shall see, is a linear combination of matrix ele-
ments times amplitudes, is particularly large for
the collective state.

Thus we. are motivated to make the following ap-
proximations: First of all, we consider only the
collective pole(s) of the four-point function,

where

x,'" -=&1 lq,'Io&gaze 3

Equation (20) may be rewritten

~(s) y (s')+
3121 2 3 23 lS3 1 S 2 3

where

~ tIt, (tI,", )*
1S, 1'S'

y y

(42)

g XtiPX

y y

(43)

replaces I'21l in Eq. (26'). If we assume that 13'21l

does not depend on the unnatural energy variables
(which will be the case if E is completely energy-
independent), this yields a homogeneous Bethe-
Salpeter equation for the amplitudes, P,s,

t 1S IlS (jeff )1S,1'3' t 1'2 '
si

where

(44)

I 12 = gf (%1)
1

271 g (d —Es +4~ (d+Es —$5

The physical significance of Eq. (42) is that both
the (ph) and (pph) response functions have been
approximated by the product of two (ph) ampli-
tudes and a phonon part.

The final step to obtaining a phonon approxima-
tion to the six-point function is to identify the ana-
lytical expression for l with l ", viz. ,

&Ol P,&2&, li&= -X,',"X,s"(Z,Z, Z, )'",
where we have used the definitions (15) and

x,',"=- &sl y, li&/vz, .
Similarly, we may factor

(38a)

(39)

(45)

(46)

x 6(fef —cu —&u, )dfddre,

g(a) ((1)
1

uf -E',"-E, ~ (u +Ep~+Es '
k(N+ 1) y s, (N -1)

&i I e,e.ee I
o&= -&i I e, l && &&I q,

' e, l 0&

-=-x"'x"'(z z z )'" (38b)
~(s)g, (21) ~(s')+

eff)IS ~ 1 S 23 3121 2 3 2 3 (47)

(40)

Equation (21) may now be written

(~) (~) (f) (f)-
y X(s)~y ~ X1s X4 ~ X1s X4

pl& =
23 4 ~ E(~) N ~ E(f)+- i(N+ 1) " f(N -1)

(s) y
23 tls y (41)

The complete set of states, I 8&, must correspond
to the negative energies of RPA since the coupling
is to a hole rather than a particle. [See Eq. (45)
for the contour integration which requires this. ]
In Eq. (38b) we have used the analytic connection
between

I S) and
I &&:

X(s)* X(s)3'2 23'

Equation (43) presumes that the free part (ggg) of
l is unimportant. This is a reasonable assumption
for bound-state problems, since the energy of
three quasiparticles is several MeV greater than
that of a phonon-quasiparticle configuration. It
also assumes that the quasiparticle and phonon are
distinguishable: Even though Tl "T is antisym-
metric and l " includes exclusion-principle viola-
tion (EPV) corrections via l'3'21, there will be
double counting and consequently normalization
difficulties, when more than one phonon is con-
sidered. A simple example is that the configura-
tion 1=a, S=bc+ ~ ~ has nonzero overlap with 1'
=b, 8'=ac+ ~ ~ ~ . We shall have to assume, how-
ever, that this difficulty can be overlooked.
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lt +, ~

h eff

h eff

+ ~ ~ ~ ~

FIG. 11. The phonon approximation for the mass op-
erator after Hartree-Pock and Landau renormalization.
T is the Brueckner matrix multiplied by the Landau-
Migdal residues. I, , which includes the incoming and
outgoing straight and wiggly lines, is the phonon approx-
imation for the (pph) response function. h, (~ is the ef-
fective interaction between quasiparticle-phonon config-
urations. See Fig. 12.

4. Diagonalization

Equations (42) and (44) constitute a @PC pre-
scription for obtaining the six-point function.
Equation (19') and the relation

4 43 12~123 43 12 23 t 18
y (s) y

FIG. 12. The effective interaction between quasiparti-
cle-phonon configurations. The incoming and outgoing
lines are not part of the interaction. The two different
time orderings of the second-order contribution are ex-
plicitly shown.

gg(a) py
py — 1S

ks (~ E[k) E )I QPc (48a)

diagonalization problem for the poles and residues
of the two-point function in several steps: First,
Eq. (44) is reduced to a matrix problem. Then
Dyson's equation is combined with Eq. (19') and
(22") to obtain a subsequent matrix problem. Fi-
nally, the two matrix diagonalizations are com-
bined into one.

If we define

T4. 18~1S (22It) and

define the mass operator in terms of the six-point
function. (See Figs. 11 and 12.) We obtain a single

gg(l) py

((uy+E~& "+E~)l&P ' (48b)

Equations (44) and (46) may then be rewritten

( y Ez $)pcs [ ly iy' ] (h eff)», g'g 'prig & + [Eye t y
'] '"(brett )», ,~, p,",,

(Q7~ +E& +Q&)pt~ —[g& r&e ] (h es)» &rgip& ~ [ f& f& ] ( +ff )» &egsp$ g, .

The normalization of Eq. (49) is simply that

AS

l

This may be obtained from Eqs. (48), (26'), (44)-
(46), and (48) using the method for deriving nor-
mallzations outlined in the Appendix. If we further
take k,~ to be independent of the natural energy
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variable (a drastic approximation since the graphs
in Fig. 12 are clearly retarded) and make use of
the fact that

(~ If&4), x'8' (jeff)x's', «»

it is clear that the Hamiltonian matrix in Eq. (49)
is Hermitian and as a result the following unitary
transformation holds

Multiplying both sides by C4 and defining

((rJ)*C,= (-u&, —(u„)C„

we obtain the diagonalization problem:

VSV = 6]]) (d4 ~ (53)

Pk$ PkS

(51)
c(')

y-Z P I)

CII'). ..g(y). ..
C(&'). ..g(y). ..
C(i'). . . C(f). ..) ~)

Pk'S' Pk'$' '''
844 = +E4,

84' = Sy4 = 04~,

&»I Hl O' S') = 5~~i 5~ (E~~~+Z))

+ [Ll Cy' ] (jeff )«, 1's' 1

&»IHI t's'&=[~', "~," ']"'(t .„)„.. .

(tslHI t's') =5„5„(zg' -E,)-

~~'=~» ~~ ~

If 84& is energy-independent, then V is unitary. The
physical significance of the C numbers is estab-
lished from the theorem that'

Hence C,")=X(') and, for the N+ j. nucleus, we
have

8"=
I
&'"I*=

I &f14.'I o& I'/E. (54a)

We may also reduce Dyson's equation (32) to a
matrix diagonalization. Vhth the assumption that
m is diagonal, one obtains at poles of g4 with a@4

=E,' or -E4', the eigenenergies of the N+ j.
nuclei, respectively,

1/g, ' = (e, + E,) = )n, = g( ) (s")(s')*
Ct)4 —QP~

y

and, for the N- j. nucleus,

4"' =
I &,"'I'=

I &il |t.l o& I'/&. . (54b)

Equations (51) and (53) constitute matrix diagonal-
izations for the coupling of quasiparticle-phonon
configurations and for the subsequent coupling to
quasiparticles. The two problems may be com-

bined by defining H~~

&41H»& ~ ~ ~ &41HI ts) ~ ~ ~

&t 's'IH14& &~'s' Hl &s& ~ ~ ~ &u's'IHI ts& ~ ~ ~

0

(t's'IH 14& (t's' IHI»&" (t's' IHI ts&".
(55)

(56)
where

and &O'S'IHI »), (t'S'I HI ») were defined after
Eq. (51). Ho~ is diagonalized by

w(H ~)w '=5„(u„
where 9 =VU.

Because of the analytical properties of P«[see

X(f) . . .X(g). . .
4 4

W-'= X'" ~ XC~) "~~ ~ ~

X ) ) ~ 0 0 X ) ) 0 0 0C~) (g) .
(57)

Eq. (41)] we may identify the elements of W with the
the quasiparticle and quasiparticle-phonon spec-
troscopic amplitudes defined previously, i.e.,
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where

g &qi» X,',"+p V'qi» X,',"=X,'."=(31 4, 1S)/~Z,

where

(6„)*:=f3,(,)6.( ~ -6*&4 (63)

g I X2&"I'+ g I
xi'5& I'+

I
x"'I'=1. (58)

Equations (54)-(58) constitute the odd-mass part
of the self -consistent quasiparticle-phonon coupling
problem (SCQPC). The resultant energies and
residues are also inputs to the same problem.
In addition, they depend on the phonon energies
and the amplitudes of the even nucleus which de-
pend on the odd nucleus. Thus, there are two
self-consistency problems.

C. Renormalized RPA equations

In this section, we present the renormalized
equations for the (ph) phonon in the even-even nu-
cleus. In particular, we wish to illustrate the
manner in which the splitting of the single-particle
strength alters the appearance of the usual RPA
equations. Our derivation is similar in spirit to
that of Zawischa and Werner"; however, the pre-
scription for taking the backwards residues into
account will be made explicit.

At the poles (&e= E2~3& —E„'&) of the renormalized
(ph) response function Isee Eq. (14)j, we have the
following homogeneous Bethe-Salpeter equation

1234 gl g3 1635 5264 '

Substituting the analytical expression for the un-
renormalized response function, L, given in Eq.
(10}and canceling the common terms, yields

In Eq. (60), the repeated indices imply integration
over the unnatural energy variables as well as
summation over the single-particle labels. If we
assume E,635 is unretarded, i.e., no energy de-
pendence, the integral may be performed above
the axis to yield

~13 ( 1 3} glg3 Q 1635 56
56

(61)

where X,'3'= pM3&/(Z5Z5)1/2 as defined previously.
The 1, 3 energy variables may also be integrated
to give

»(E3) Q E»35X56
56

(62)

and a similar expression exists for X,~~ . The nor-
malization of the amplitudes X ' follows from the
unitarity of U and V, hence

If we substitute Eq. (33b) for the g, and g, we ob-
tain

g( &)g(J)
1 3Z ~ E& && E(/&

&(N+1)
f(N -1)

g(k)g (l)
1 3

+ E(~) E
A(N - 1)
l(N+ 1)

(64)

Clearly A»(E3) =A»(-E3).
It is usual in (ph) RPA problems to divide the

Eq. (62) into two coupled equations for the ampli-
tudes, X „and X„(usually called Y2„) where p and
h refer to those levels whose unperturbed energies
are above and below the Fermi surface. In this
manner, each configuration, (ph), needs to be con-
sidered only once in the summation. If backwards
amplitudes are included in the analytic expression
for the renormalzied two-point function, the con-
figuration (pp') has a finite amount of particle-hole
strength. In this most general case, Eq. (62) re-
duces to the following matrix problem:

P&234 X4, + Q,334Y42 = X»/A»(14&),

Q 1234 42 1234 42 13/ 13(

where

(65)

13

X13 W13 E$ Y13 W13 E$ 1

(66)

where the. weighting matrix 8'» is defined

1

W13(E3}=
d(&L) w= E

Thus, the inclusion of more than one pole in'the
one-quasiparticle Green's functions results in two
essential changes in the (ph) RPA matrix problem.
First, the usual (&o -E, -E3) factor is replaced by
I/A»(&5&), where A» is the distribution of particle-
hole strength defined in Eq. (64). Thus the solu-
tion cannot be obtained by simple diagonalization.

1234
1234 (I 6 11/2/I 5 il/2 Q 1432 42 24 t+ iS& i + 42'

and the configurations (13) include the following
three types: (p,h, ), (p,p, ), (h,h, ) with 1 c3. The
matrices P and Q are symmetric.

The normalization condition for the amplitudes
X», Y» follows from Eqs. (10), (14), and (65) and
may be derived as in the Appendix. The result
(which differs from that of Ref. 17) is
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Secondly, (pp) and (hh) configurations must be in-
cluded, considerably increasing the dimensions of
the px'oblem. An additional point of interest is
that since

i.e., I (or E) is energy-independent while M is
complicated by @PC and thus energy-dependent,
the even-even equations proposed here are not
conserving Rnd spux'1ous stRtes Rx'8 not isolRted
a,s in the usual RPA.

III. DISCUSSION OF SCQPC AND COMPARISON

TO OTHER THEORIES

The equations which we have given prescribe a
method for calculating both even and odd nuclei
with quasiparticle-phonon coupling included. In
the odd nucleus, the symmetric matrix problem
includes exclusion-principle corrections due to
ground-state correlations (see Fig. 6) by coupling
the eigenstates of the N+ 1 nuclei. Many-phonon
contributions to the mass operator [see Fig. 3(d)]
are included by using dressed quasiparticle inter-
mediates. The higher-ordex diagrams, such as
thoseof Fig. 3(a) and(c), are calculated by defining
an h,ff between quasiparticle-phonon configurations,
i.e., the off-diagonal elements in all but the first
row or column. In particular, these correct for
Pauli principle violations in the propagation of a
quasiparticle and quasiparticle-hole pair. [Note
that Figs. 12(a) and 3(a) are identical. ] In the
even problem, the phonon is improved by including
@PC anharmonicities. The backwards QPC dress-
ing pushes the phonon higher, because of exchange
with ground-state clusters, while frontwards @PC
lowers the energy by mixing in certain 2p-2h con-
figurations.

The odd Rnd even problems we have derived are
conceptually and mathematically equivalent to a
theory in which basis states are formed by cou-
pling eigenstates of the even and odd systems.
For example, in the odd nucleus one might define
a set of quasifermions b~, 58 such that'9

where g~ creates quasiparticles, and

&as =4&Ps

where g~ creates the k'th eigenstate containing an
appreciable fraction of the single-particle strength,
1, and Q~ creates a phonon. The SCQPC equations
may be derived by considering the dyna, mical equa-
tion for

I,=- -f&O( r( f.(t)6t(0)} f O&.

The notion of an operator which creates a fermion
eigenstate (we might call it a spectron) is also use-
ful for the even nuclei. The renormalized RPA
equations of Sec. IIC are identical to the equations
we might derive by considering the quasiboson

4f ~& 4t
Thus, in the odd nucleus, we can form basis states
by coupl1ng exRct elgenstRtes of the odd system to
exact eigenstates of the even system; and, in the
even nucleus, we can form basis states by coupling
two exact eigenstates of the odd system. The idea
of coupling known physical states to one another to
obtain the most important parts of a more compli-
cated physical state is not new. However, its '

equivalence to Qreen's functions techniques has
not been pointed out before this time.

From the point of view of many-body theory
we have employed a different prescription for the
self-energy than is usual. Here, we have

I=-,' vL,'"v. (16)

~=-'vooor "'"" (68)

Equation (68) may be rewritten by using Eqs. (8)
and (9)

(69)

One may replace V by I, as is done without justifi-
cation in Hefs. 11 and 20, if the ladder approxima-
tion is adopted, viz. , V, I become T=F after re-
normalization. Note such a radical approximation
[e.g. , E must now be antisymmetric, unlike Mig-
dal's phenomologically based (ph) interaction] is
the only way to enfoxce symmetry between the two
"one-three" vertices (i.e., those which connect
the self-energy to the propagator line). All of the
complicated contributions to d'~ of Eq. (16) have
been incorporated into the I block of Eq. (69) and
then approximated away. In addition Eq. (69) re-
quires a factor of & which is normally thrown away
with no justification, other than its absence in a
theory where bosons and fermions are coupled. "

The approximation

M = F(I.'"G)F (VO)

has been employed in several calculations. ' '2'
Their theory differs from ours in three respects:
First, the "one-three" vertices are the same as
the (ph) interaction. Secondly, backwards corre-
lations are not included. Finally, higher-order
diagrams, for example EPV corrections, are
not included.

Brown, Evans, Rnd Thouless4 have performed a
coupled calculation of the N+ 1 nuclei for N ='6Q,

Ca. In that work, self-energy intermediates are
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not d'ressed, self-consistency with the even nu-
cleus is neglected, and higher-order diagrams
are not calculated. However, this is the only pre-
vious calculation to our knowledge, which correct-
ly includes the backwards correlations.

Our matrix diagonalization problem (including
backwards diagrams) is similar in spirit to the
spectral decomposition theories of Goswami, Nal-
cioglu, and Sherwood" and also those of Dreiss
et al.~ and Malov, "when pairing correlations are
neglected. In each of these studies, the even and
odd nuclei are calculated self-consistently, al-
though in the even nucleus the amplitudes and pho-
non energy are solved for by spectral decomposi-
tion. Several of the third-order contributions to
h,«between quasiparticle-phonon configurations
are included, although all of the second-order
terms are neglected. Also intermediates in the
self-energy are not dressed. The main difference
when compared to the SCQPC, presented in this
paper, is in the calculation of the backwards am-
plitudes. In our work, the backwards amplitude
for ~'Pb, for example, is gh~ S), a ~'Pb configu-
ration, with diagonal energy = Eh Ez-= -(A-—fh)

Ez. In Re-fs. 23-25 the amplitude is gq) S). Thus,
the N+ 1 nuclei are not coupled, but rather the
N+ 1 nucleus is coupled with a redundant set of
1V+1 basis states. This redundancy arises be-
cause gP 0) and g„) S) have an overlap which is
proportional to the RPA amplitude, Xph. This dif-
ference manifests itself algebraically in the dia-
gonal matrix element for this configuration: -Eq
+Ez This pecu. liarity of the spectral decomposi-
tion theories has three undesirable consequences.
One is that it is difficult to separate "physical"
odd-mass states; secondly, since (-E„+E~)can
become positive in energy and even comparable
to Ep, the "pushing up effect" wiii be exaggerated.
This explains the unrealistically large effect found
in Ref. 26, which seems to be reduced when proper
orthogonalization procedures are developed. ~ Fi-
nally, it is difficult to interpret these backwards
amplitudes, in contrast to those of Green's func-
tion theories. Nalcioglu" has speculated that they
correct for higher-order EPV processes, e.g. ,
Fig. 3(a), although this is not self-evident.

The weak coupling equations derived by Arita
and Horie~ from the shell model are similar to
those given here but also include configurations
formed by coupling a pairing vibration to a hole.
The second- and third-order interactions given by
Figs. 12(a) and 12(c) are approximately calculated,
and the overlap between configurations, neglected
here, is taken into account. However, backwards
correlations and self-consistency of the interme-
diate particle are not included. In the work of Bes
and Broglia, ' only the 2p-1h states are described.

The basis set consists of particles coupled to pho-
nons and also pairing vibrations coupled to holes.
The coupled particles are not explicitly dressed,
although the experimental single-particle energies
may be taken as such. Coupling to seniority-one
degrees of freedom is included by generalizing the
effective interaction. The Hamiltonian which acts
between the basis states is second order in the
@PC coupling interaction, e.g. , Fig. 12(a}. In a
recent paper by Schuck, Villars, and Ring" the
generalized equations for the 2p-1h problem (RPA-
like shell model for Na 1 nuclei} are derived using
the memory function approach. The (pp) and (ph)
RPA normalization formulas are inserted in the
problem to obtain a scheme which embraces both
"pairing vibration+hole" and "(ph) vibration+ par-
ticle" configurations. The effective interaction is
second order. The coupling to seniority-one basis
states is neglected.
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APPENDIX

—L,R12 12 ~ ES
(Al)

The inhomogeneous Bethe-Salpeter equation for
the same function is

Ay6] 2 + AyIy3 (A2)

and the homogeneous Bethe-Salpeter equation is

X~
(E ) zs s' (A3)

In this section, we outline the procedure for nor-
malizing the homogeneous Bethe-Salpeter equa-
tions, which arise both for even- and odd-mass
nuclei. The normalization derives essentially
from the inhomogeneous term; that is, the corre-
lated part of the equation cannot be multiplied by
an arbitrarily large constant without taking account
of the uncorrelated part.

The Eqs. (Al) to (A3) provide the starting point.
The variables have been collected into two single
indices which represent all the quantum numbers
relevant to the "before" and "after" configurations
of one or more particles. The "unnatural" energy
variables have been integrated out, and the inter-
actions are assumed to be independent of energy.
Near a pole, the Green's (or response) function
may be written
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Substituting, (A1) into (A2), one obtains the in-
homogeneous equation which is valid in the vicini-
ty of a pole,

R X3X2L,a+ —= A~6, a+ A,I„Lsa+A,I„
QP -Es Es

(A4)

Since the A, term also contains an energy depen-
dence, we expand in the vicinity of the poles of L,

terms to obtain

R dAl X1L» —A15»+A, I13 32+ „—„X2.
uh) A.1

Multiplying by X,/A, (summation over repeated in-
dices is implied), and noting that

~ A I L" = —3 L" = ~ L"
1 13 32 A 32 A 12

1 3 1

we obtain finally

A, (&o) =A, (Es)+(&u -Es) dA,
de g

Equation (A4) becomes

(A5)

Hence

A1 did A1
1

BL»+ =A,6»+A,I»L32
QJ Es

1= g [X,[' de
1

(A6)

X3 X2 dA1+A, (Es)I,a + ~ I,~ s Xa.
co -Es ce(d ~ gS

Equation (A3) permits the cancellation of the pole

In the simplest cases, e.g. , Tamm-Dancoff approx-
imation, A, = &u —E, and the derivative is unity.
In RPA, the derivative is +1 depending on whether
the configuration is "frontwards" or "backwards. "
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