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Application of the Kohn variational principle to three-particle inelastic scattering
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We consider the problem of three spinless particles interacting by means of a central po-
tential. The initial state is a free particle labeled number 1 incident on a bound state of par-
ticles 2 and 3 and with enough energy to create a three-free-particle final state. We calcu-
late the 8-wave elastic scattering amplitude both above and below the inelastic threshold us-
ing an extension of the Kohn variational principle suggested by Nuttall. For the asymptotic
form, we use the simplest function available. The form used has been shown to be incorrect
in certain regions of coordinate space. The trial. function we use has up to 32 linear parame-
ters and a range of values for a nonlinear parameter. Below breakup convergence is ob-
served towards a unitary result, but in the inelastic region little evidence of convergence is
present.

1. DESCRIPTION OF THE PROBLEM

We consider the problem of three spinless parti-
cles inter acting by means of a central potential.
We are interested in the scattering problem in
which particle number 1 is incident on a bound
state of particles 2 and 3, but with enough energy
to create a three-free-particle final state. The
coordinate system used to describe the problem
is the same as in the work of Nuttall. ' We use the
vectors (X„Y,) where for example (we have set
ps =-,')

and g' is a trial wave function having the asymp-
totic form

= Q + Tmpp + Tsps . (6)

In Eq. (6) P is the S-wave part of the incident wave

y = (2e) '(PX,) ' sin(PX, )y (I',), (I)

g~(I', ) is a bound-state wave function for particles
2 and 3, and p, is the usual outgoing spherical
wave for elastic scattering

tl, = -(-,')'~(4eX, )-'e "x~(1-e- ~)y,(r,) . (6)
X, = L, [r, —p(r, +r,)],
Y, = v,' (r, —r,).

We .shall also have need of the six-vector fi, de-
fined by

P, =(x„Y,). (2)

With 0=1, the Hamiltonian for the three-particle
system assumes the form

H —-V- —V + V,2+ V~3+ V23. (3
Xy Yy

For this problem Nuttall' has shown that the
elastic scattering amplitude can be calculated by
means of the Kohn principle even in the breakup
region provided one takes into account the cor-
rect asymptotic wave function. The var iational
principle has the form

Finally T, is a T matrix element describing the
inelastic process 1+23 - 1+2+ 3. At the present
time there is some controversy about the func-
tion p, . If the three particles are well separated,
it has the form

p-5/peirp g ~@)

However, Nuttall' has shown that this function is
not correct if two of the particles are close to-
gether. Now our criterion for determining the

symptotic region i.s p - where gP =X~'+ r~'~ arid.

therefore the asymptotic region includes places
with two particles close together. This point has
been investigated by Nuttall, ' and in more detail
by Nuttall and Webb. ' For the present work, we

use the forrd (9) and seek to determine whether

or not convergence can be obtained. We assume

Tz = T2 +
J

dT /I/'L/I/+ (4)
~gffs/23-3/2(4v) -lp 5/me PEP (I e P)3

In this equation T, is a T matrix element de-
scribing the elastic scattering process 1+23 -1
+23, I. is the operator

L = -(2eP(3)*/*(E -a),

The factors of 1 —e x& in Eq. (6) and 1-e P in
(10) are inserted because of the singularities at
X& = 0 and p = Oy respectively.

Now for 8 waves, the elastic scattering ampli-
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tude T, is a complex constant and may be treated
as a single linear parameter in the trial function

However, the inelastic scattering amplitude
T, depends on two angles describing the direction
in which the three particles go off (we work in the
center-of-mass system} and must be represented
by expanding it in terms of a complete set. Thus
for the trial wave function we take

The expansion functions g„are assumed to have
the form

lows very many terms in the second sum of Eq.
(il). Because of this difficulty, we constructed
a computer program for the purpose of forming
the integrands of the matrix elements. This pro-
gram will form the quantity 4'(E-H)4" where 4'
and 4' are any of the functions described pre-
viously and store the result in algebraic form.

As it turns out, if one transforms the integrands
into functions of three coordinates (p, n, P) similar
to those used by Zickendraht, the integration over
p can be performed analytically and one is left
with functions of two angles to integrate numeri-
cally over finite limits. The transformation equa-
tions are

$(~~+ ~~) y tt + a y C
n =8 1 2 3

where g is a nonlinear parameter, a, 5, and c are
integers either zero or positive. The expansion
functions 8 have the form

8 ~q2eq2bq2c

In using the variational principle (4), one must
evaluate integrals of the form jd7g(E-H)g' where
H is the S-wave part of the full Hamiltonian

1 Q 2 Q 1 Q 2 Q
X' o.X ' o.X 1'' ai' ' o.Y

X 7, srn8 a8 a8

em'2XxadXx~x dFx sin8d 8

(8 is the angle between X, and Y,).
The integrals are three dimensional and for the
most part must be evaluated numerically. How-
ever the matrix elements involving only the inter-
nal functions can be obtained by means of recur-
sion relations developed by Rarita and Present. '

All previous variational calculations using the
Kohn principle have assumed a fixed form fox the
asymptotic wave function. Here we see that the
number of terms in the asymptotic part is being
allowed to vary in much the same way as the num-
ber of terms in the internal functions. If one
takes an appreciable number of terms in the trial
function 4 ', the number of matrix elements re-
quired will become quite large. This rapid in-
crease is largely due to the fact that the terms
coming from the sum over m are not square
integrable as are the ones coming from the sum
over n. The amount of labor involved in setting
up the matrix elements is prodigious if one al-

X~ = (p/W)(1+ sin& slllp)

Y; = (p/W)(I - sinn sinP)'"

cos8= sinu cosP/(I —sin2o. sin'P}'~'

40 m/2 2%'

d~= w~ pldp j sinn da dP

All the p integrations assume the form

I(t, a, n)= dpp'e s' eN'(I-e ~)",
0

where t is a positive or negative integer or half
integer and n is an integer either zero or positive.
We can write down a formula for this integral for
any values of t and n. The integration over p was
performed on the machine along with forming the
integrands. Thus the program forms the quantity
f,"p'dp g(E -H)P' and stores the result in algebraic
form. For more details see work of Webb. '

For the potentials we have made the choice

V„(&,) =voe ""&,

, V(ta', ) = 2Voe & "s-, r, = ~Y,
V„(r,) =--,' V, e

where

Vo = 192.606 meV,

p =1.506 fm '.

The potential V» is a nuclear potential whicb de-
scribes the neutron-proton system fairly well at
low energy. For example, it binds the deuteron
at the right energy and fits the n-p scattering
length. ' The depths of the other two potentials
were decreased in order to avoid the additional
complexity introduced by the other bound state

For the potential V» an approximate fit to the
deuteron function QD(I;) can be constructed after
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the manner of Humberston. .' We obtain

y 2~ 2-3/2 (23)

2. RESULTS AND DISCUSSION

The calculation was carried ouout at a fixed energy
of 5 meV (on our scale breakup occurs at E =0,

of values for the nonlinear param-and for a range o v
05fm to m i5 feter g. g was varied from . i

0.5 fm '. We worked with a maximum osteps of 0.5 m
ee-bod terms.20 internal functions and 10 three- o y e

F this combination of interna an1 and external func-or i
arametertions wi'th 10 values for the nonlinear p

5963 distinct matrix elements invinvolved
- .,~ h..d...in the c cu ial lation consisting of several u

inte als.d individual three-dimensional in egrthousan in ivi
On the IBM 360/65 about eight hours of c pom uter

d to do the calculation at onetime was require o
it wasener gy. isOf th time practically all of i was

Theused in evalua ingtin the integrals numerically.
resu s olt f the calculation are displayed in igs.

h' h how the real and imaginary p
a instthe elastic scattering amplitude plotted agains

(1' ) 0 175e-o.s27r~(] e-2 isr, )D& 11

x 1 —0.60e '""i+0.16e~ 28ri) . (22)

rmalized in the follow-The deuteron function is norm
ing fashion

the nonlinear parameter. In thes 'guese fi res, the
M& refers to the number of internalsymbol N, Jtf re ers

tivel . In orderd three-body functions, respective y. nan ree-
' te ret these curves, we look for a g'r a flat regionto in rpre

tends to becomewhich tends to persist and which ten s o
s in the trial func-broader as the number of terms in

tion increases.
e be-Figures an1 d 2 exhibit some rather strange e-

avior. There is most likely an unreso ve po
in the calculated quantity somewherhere in this re-

'on. This sort of behavior is common in calcu-
t' d has been discussed rigor-lations of this sor an

9ously elsewhere.
tThe plot for (N, M) =(20, 10) which represen s

th imum number of trial functions used is not
th graphs. With the axes sealshown on e gr

'th 20 in-shown, the numbers obtained for T, wi
ternal functions an d 10 three-particle terms would
not appear. In o er wI th r words there is evidently no
tendency for convergence.

rmed belowTh alculation was also performec c
threshold at E =-1 meV. For E negativ,e the

art of the wave function having to do
i three free particles is exponential y ampewith three ree
d therefore need not be included. Exclusion ofan ere

these terms cuts down tremendous y e nsl the number of
ciall the onesmatrix elements involved, especi y

1 . The results ofwhich must be done numerical y.
this calculation are show

' 'g .n in Fi s. 3 and 4.
An examination of these tw 'guo fi res shows that
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FIG. 3. Real part of the elastic scattering amplitude
versus the nonlinear parameter at E=-1 meV.

FIG. 4. Imaginary part of the elastic scattering ampli-
tude versus the nonlinear parameter at E =-1 meV.

both the real and imaginary parts of the elastic
scattering amplitude appear to be converging
reasonably well. Again there is some curious be-
havior for small values of z, but a flat region
shows up even for small values of N and M and
appears to become flatter as N and M increase.
One can predict with some certainty the value of
T, at this energy. The result for the complex
number T, below threshold at E =-1 meV is

T, =(0.16, -0.28) fm. (24)

It is worth noting that this result approximately
satisfies the unitarity condition which requires
that the imaginary part of the scattering ampli-
tude be related to the square of the scattering
amplitude. With our normalization T, is related
to the phase shift by the equation

e"sinn = 2Pv' (-')'"T, -. (25)

The fact that our result below threshold is unitary
provides a partial check on the computer program
and there is some overlap between the programs
used for both calculations.

Since we were unable to obtain convergence
above breakup, one of two things is inferred.
Either we did not have enough terms in the trial
function (which is certainly possible), or the sim-
ple asymptotic form will not lead to a converged
result. The first of these possibilities cannot be
eliminated. The problem we selected is somewhat

similar to N-D scattering in the doublet state, and
in a 1964 paper, ' Humberston needed 35 internal
functions to produce good convergence in a below
breakup calculation. However, the second pos-
sibility seems more likely. According to refer-
ences 1 and 2, the form used is incorrect and
therefore we would not expect it to lead to a con-
verged result.

If it is necessary to include all the terms in the
asymptotic wave function that are given in Ref. 2,
it may not be feasible to calculate neutron-deu-
teron scattering in this fashion. It is still pos-
sible to form the matrix elements on the machine
(as a matter of fact, the results presented in Ref.
2 were all checked by a program to form E-H on
the functions encountered there), but the sheer
number of the integrands and the storage required
for them may be too great for present day com-
puters.

Because of these difficulties, it may well be
necessary to seek alternative ways of calculating
three-body problems in the inelastic region. A
recent scheme suggested by Nuttall and Cohen"
has interesting possibilities. If one puts p com-
plex with a positive imaginary part, it is easy to
see that the elastic scattering part of the asymp-
totic wave function as well as the part associated
with three particles tends to be damped out. Thus
it should be possible to calculate the elastic scat-
tering amplitude in either region without using
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either of the functions T,g, or T,g, in the asymp-
totic form. This scheme also renders inconse-
quential the explicit form of g, . If such a pro-
cedure can be made to work, the computational
labors involved in the calculation are virtually
trivial compared to the problem attacked here.
The crucial question is of course, whether or not
the convergence rate will be fast enough to make
the procedure worthwhile.

More recently McDonald and Nuttall have shown
that the method of complex length does work ex-
tremely well and provides a systematic method of
calculating scattering amplitudes for neutron-deu-

teron scattering above the inelastic threshold. "
Also it has been shown that variational principles
for the inelastic part of the scattering amplitude
exist."" Thus it may be possible to calculate
the entire scattering amplitude without facing the
problem of determining explicitly the asymptotic
form.
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