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A variational scheme of the Schwinger type, used successfully in a previous paper for cal-
culating two-body t matrix elements of all kinds (on shell, half shell, and off'shell), is here
applied to the three-body collision problem. Numerical results are given for the case of the
Amado model of the N-d system. These results show excellent convergence properties,
even for the case of fully off-shell amplitudes in the region where the analytic structure is
most troublesome. It is shown theoretically that the three-body variational method, if re-
stricted to the case of physical on-shell amplitudes, is formally equivalent to the several
variational principles given by Pieper, Schlessinger, and Wright, though the methods may
differ considerably in practice. The formal equivalence is used to show that Pieper's recent
perturbative calculations of N-d polarization, in which the zero-order problem was ap-
proached variationally, have a property not previously noted, name1y that even the perturbed
solution is fully variational. )Core generally, a useful degree of cooperation is shown to oc-
cur between the present variational method and the perturbation method, making it quite
easy to preserve the variational property in a perturbative calculation.

NUCLEAR REACTIONS 2H(n, n), E =0-40 MeV; calculated off-shell amplitudes.
Variational method, separable-potential model.

I. INTRODUCTION

In this paper we extend to the three-body colli-
sion problem a particular variational scheme,
used previously' with considerable success in the
two-body problem, for calculating two-body t
matrix elements of all kinds: on shell, half
shell, and off shell.

The essence of the variational scheme, in the
two-body context of paper I, is this: Let f (z) be
the two-body f matrix at the (complex) energy z,
so that t satisfies the Lippmann-Schwinger equa-
tion

t= V+ Vgot

= V+tgoV,

(2.1)

g( )z=( -zh, ) ',

[t]= V+ Vg, t"+ t "g,V -f "(g, g, Vg,)f R

is a variational expression for t, if t" and t R are
independent (nonvariational) approximations to f .
[In other words, 'it is asserted that the right-hand

(1.4)

and where A, is the two-particle c.m. kinetic ener-
gy, and V the potential. Then it follows from the
Lippmann-Schwinger equation that the expression

f'=Pl&, )&x, (, (1.5)
4=1

N
t" =g Ix )(f I,

where (f, ) and (f, ( are the chosen basis functions,
and (X, (and (X,) are unknown functions, to be se-
lected by the variational principle. Then it is
easily seen that if the right-hand side of (1.4) is to
be stationary under arbitrary variations of the
(x, ), we must choose

&X, l= pn„(f, Ig.V, (2.V)

(2.6)

side of (1.4} differs from t by an expression' that
is second order in the errors in I" and f R.]

The procedure followed in I for using this varia-
tional principle was to express f" and t" (with one
momentum held fixed in each case, at the initial
or final momentum, respectively, of the t matrix
element actually being calculated) as a linear
combination of a convenient set of basis functions.
Then the coefficients in the expansion were select-
ed by the variational principle, and the final varia-
tional result was obtained by substituting again
into (1.4).

An algebraically equivalent procedure is to write
t R and t" in the form
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and hence

= Q If)&n)('&fj'I gov (1.8)

where

(A ')) (=&fg l(go govgo)lfg&.

In a similar way we also obtain

vgolfg&n'gg '&fg I ~ (1.10)

Then by substituting (1.8) and (1.10) in (1.4) we
finally obtain the variational result

[f]=v+p vg. lf~&A, & &f& lg, v.

This is the expression used for the two-body vari-
ational calculations in I.

A feature of this scheme is that one obtains
incidentally the two-nonvariational results (1.8)
and (1.10), in addition to the variational result
(1.11). We note in passing that the variational and
nonvariational results are related by

[f]=v+vg, f'
= V+ t "goV,

if t R and i" are given by (1.8) and (1.10). Other
formal properties of the variational scheme are
discussed in I.

This variational scheme is of the type usually
associated with Schwinger, but it is nevertheless
not what is commonly called the Schwinger vari-
ational method. The precise relation between
these and other variational schemes is discussed
in I. It should be mentioned, however, that the
method of I seems to be numerically much more
successful than the usual Schwinger method. '
This can perhaps be understood by noting that in
the ordinary Schwinger method the trial functions
are scattering wave functions, ' which are rather
singular functions in momentum space, whereas
the trial functions in the method of I are t matri-
ces, which are very smooth functions in momen-
tum space for short-range potentials, and which
are therefore easily approximated with a small
number of basis functions. Another important
difference is that the method of I has a much wider
field of application because it can be used to cal-
culate off-shell, half-shell, and on-shell ampli-
tudes, whereas the conventional Schwinger method
is designed only for the physical on-shell ampli-
tudes.

The variational scheme described above is by no
means restricted to the two-body problem, since
it depends only on the algebraic structure of the

Lippmann-Schwinger equation (1.1). In particular,
it can be applied almost immediately to the three-
body problem with separable two-body potentials,
since in this case the scattering equations reduce,
as is well known, to coupled integral equations of
the Lippmann-Schwinger form (with, of course, a
different potential and propagator) in a single vec-
tor variable.

This three-body separable-potential case differs
frnm the two-body case considered in I in only one
important respect, namely that the three-body
amplitudes have various singularities4 for real
values of the off-shell momentum, instead of being
smooth functions of momentum. In Sec. V we pre-
sent numerical results for a particular three-body
separable-potential case, namely the Amado mod-
el" of the nucleon-deuteron system. We show
that the singularities cause no difficulties that are
not easily overcome, and that excellent conver-
gence behavior can occur in all cases, even in the
case of fully off-shell amplitudes in unfavorable
regions of momentum space. A preliminary ac-
count of these calculations has been given in Ref.
'7.

In the present paper we also discuss in a more
general way the three-body application of the
variational method, beginning from the general
three-body equations of Alt, Grassberger, and
Sandhas' (AGS). This approach is developed in
Sec. II. For the particular case of the on-shell
physical amplitudes, the three-body variational
principle so obtained turns out to be formally
equivalent to the set of variational principles given
by Pieper, Schlessinger, and Wright' (PSW).

The relation between the present variational
method and the PSW methods is discussed in Sec.
IV. In spite of the formal equivalence, there are
substantial differences between the methods, both
in principle and in practice. One difference is in
the quantities that are used as trial functions in
the two cases: In the PSW method they are wave
functions, whereas in the present method they are
three-body amplitudes, which in general are fully
off shell. This leads to a more important differ-
ence: In the present work we are able to use the
variational principle for calculating three-body
amplitudes of all kinds, including the fully off-
shell amplitudes, whereas the PSW methods are
only designed for calculating the on-shell physical
amplitudes. The fully off-shell amplitudes are
needed for studying any system containing more
than three particles, and therefore the ability to
handle fully off-shell amplitudes is considered a
major advantage of the present approach.

In three-body calculations with complicated two-
body interactions, one might reasonably want to
treat some parts of the two-body force by a per-
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H. THREE-BODY VARIATIONAI. PRINCIPLE

As basic three-body scattering equations, we
use the AGS equations'

U,.=(1—S,.)G,-'+ P T„G,~...
yes

(2.1)

turbation method, '~~ and use the variational meth-
od only for the zero-order problem. In this situa-
tion, one would naturally prefer the variational
property to hold for the perturbed amplitudes, not
just for the amplitudes from the zero-order prob-
lem. It is therefore interesting to consider the
interaction between the variational and perturba-
tion methods. This is done in Sec. III. This ques-
tion proves to be easy to discuss in the present
formulation, and it turns out that there is no dif-
ficulty at all in obtaining a final perturbed result
that is fully variational.

One previous calculation that combines variation-
al and perturbation methods has been made by
Pieper'"" in a rather successful calculation of
polarization observables in elastic N-d scattering.
In Pieper's calculations the zero-order problem
(corresponding to separable S-wave N-N inter-
actions) was solved" using the PSW variational
principle. However, the variational principle was
only used for selecting the coefficients in a linear
expansion of the zero-order wave function, and no
claim was made that the final perturbed result was
variational; indeed, a variational final result
would hardly be expected, since the zero-order
wave functions that are fed into the perturbation
calculation are certainly got variational.

In spite of this, we are able to show with the
present formulation that Pieper's final results"
a~e in fact fully variational, even though not de-
signed to be so. This property foQows from the
connection with the PPV method established in
Sec. IV, and is discussed at the end of that sec-
tion. It undoubtedly contributes in an important
way to the numerical stability of Pieper's results
The fact that the variational property is clear
within the present formulation demonstrates, in
our view, the conceptual advantages of the present
approach.

To summarize the structure of this paper, in
Sec. II the variational method is developed for the
three-body problem. Then in Sec. III the joint use
of the perturbation and variational methods is
explored. The relation between the present formu-
lation and the PSW variational principles is dis-
cussed in Sec. IV, and so too are Pieper's pertur-
bation calculations. "" Finally, in Sec. V we dis-
cuss in detail the application of the variational
method to the particular case of the Amado model,
and present numerical results for three-body
amplitudes in a variety of situations.

where e, P, y take the values 1, 2, 3, and where

G, =(s-a,) ',
Ty = Vy+ VyGoTy.

(2.2)

(2.3)

Here V& is the interaction between the pair y, with
@=1denoting the pair (2, 3), etc. The operator
Ho is the three-particle kinetic energy in the c.m.
system, and s is the complex energy parameter,
which for the physical three-body problem is given
by s =E+i~, E being the c.m. energy.

Formally, all that needs to be done before we
can use the variational principle (1.4) is to write
the equations in the form of the Lippmann-
Schwinger equation (1.1). That is easily achieved
through the definition of 3 x3 matrices F, V„and
T, with matrix elements

YBa = GoUsnGo y

(0,)~„=(1—58„)G„
T80( 5 84E Ts ~

(2.4)

(2.5)

(2 6)

Then Eq. (2.1) is equivalent to the matrix equation
of Lippmann-Schwinger form

F=C, +G,TY.

Similarly, the transposed equation

Y= Go+ YTGo

(2.V)

(2 8)

is equivalent to the transposed form' of Eq. (2.1).
Then by immediate analogy with Eq. (1.4) we can

write down a variational expression for Y,

tel = Go+ Gr~1'"+ Y"TG, —1'(T Z'G, Z)yR -(2.9)

where Y" and Y" axe independent approximations
to Y. This is the fundamental statement of our
three-body variational principle.

In practice one is usually interested in particular
transition amplitudes rather than complete oper-
ators Ys or Us . For example, if one is con-
cerned with a rearrangement from the bound state
p„of the pair a to the bound state P'& of the pair
P, then the appropriate transition amplitude is the
matrix element

&O'Bk'Sl Usal 4~kix& =&0'sk's
I GO 1'saGO I 4~k~) i

(2.10)

where k and k'8 are the c.m. momenta of the free
particle in the initial and fina1 state, respectively.
An explicit variational expression for this matrix
element follows immediately from Eq. (2.9), on
sandwiching the P, e component of that equation
between &P'8k'a l G0 ' and Go

'
l P„k ). This dis-

cussion also includes the case of elastic or in-
elastic collisi. ons in the direct channel a by setting
P equal to a.

So fax we have excluded breakup processes from
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our considerations. The easiest way to obtain a
suitable variational principle for breakup is to
make use of the relation

U0~ TSGD UB~
8

equation of Lippmann-Schwinger form,

X=Z+ Z7'X.

The corresponding variational principle

[X]= Z + Z TX"+ X"TZ —X"( 7' TZ—T)X"

(2.18)

(2.19)

= g Ts YsaGO
8

(2.11)

which expresses the transition operator for break-
up in terms of the operators for elastic and re-
arrangement processes. " An explicit variational
expression for breakup can be obtained, if desired,
by substituting the variational expression for Yz
[Eq. (2.9)] into the right-hand side of (2.11).

For the remainder of this section we restrict
ourselves to finite-rank two-body potentials, de-
ferring any discussion of the local potential case
until Sec. IV, when we can make use of the dis-
cussion in PSW. For the finite-rank case the vari-
ational method turns out to be particularly straight-
forward, and the analogy with the two-body case
particularly direct.

In the finite-rank case the operator Ty of Eq.
(2.3) can be written in the form

Ty yn' Ty „yn (2.12)

where My is given in terms of the individual
masses m~, m» my by

M '=m '+(m +m ) '

o, P, y being a permutation of 1, 2, 3.

If we now define

X,„..„=&pn' I Ysa I an)

=(P~ IG,V,„G,lan&,

Z,„,.„=(I —5s.) (Pn'I GO I an&,

(2.14)

(2.15)

(2.16)

then from the AGS equations (2.1) we obtain im-
mediately the coupled equations

X~g' ~N=Z8&', atf+ 8'', ym' ym'N yw, a&3
7 lit SR

(2.1V)

which we write in the obvious way az a matrix

where the "form factors" Iyn) and (yn I are vectors
in the momentum space of the pair y, and where
7.y„i„ is a diagonal operator in the momentum
space of the third particle relative to the pair.
The latter has matrix elements of the form

(P'q I r), „.„ IP), & =5(p'„Py)F),„.„(s-p), '/2M„—),
(2.13)

follows immediately from the two-body analogy,
or directly from Eq. (2.9).

We suppose for simplicity that there is at most
one bound state p between each pair a, and that
the form factors I

an') and (an I in the expansion
(2.12) for T„are chosen so that the n'= n= 0 term
corresponds to the bound state, with

lao&=v„ly„&, &aol=(y. lv. . (2.2o)

It then follows from the Schrodinger equation that

lao) lka) =Go(E+i6) 'Igaka& (2.21)

in the limit c-0', if k is the on-shell c.m. mo-
mentum of particle n. It follows in turn from Eq.
(2.10) that the physical amplitudes for elastic
scattering and rearrangement collisions are just
the on-shell matrix elements (k s IXs, „,(E+iz}lkg.

The amplitudes for breakup on the other hand
are given according to Eqs. (2.11), (2.12), (2.13),
and (2.15) by

where

x(ps IXs„,lk„&, (2.22}

q, =(m, +m, ) '(m, p, -m, p,), etc.

Thus the breakup amplitudes are expressed in
terms of half-shell matrix elements of the matrix
X. Obviously, the variational expression (2.19) is
just as useful for these half-shell matrix elements
as it is for the on-shell elastic amplitudes, so that
there is no need to write out the variational ex-
pression for breakup explicitly.

More generally, the three-body amplitudes that
are required in the N-body problem involve the
fully off-shell matrix elements ($'s I Xs„„„I p ),
and these too are included in the variational ex-
pression (2.19). In Sec. V we shall use (2.19}to
calculate matrix elements of all types (on shell,
half shell, and off shell, for a simple separable-
potential model of N-d scattering.

HI. COMBINED PERTURBATION AND

VARIATIONAL METHODS

We briefly describe here the three-body pertur-
bation method of Sloan" "and Kowalski and
Pieper, "and then point out that there is a useful

(P1P2P3 IUoa I &aka&=g &qs Itin'&&s 'a(E + i&-Ps /2MB)
gn'n
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T(0) + Tt (3.1)

where v'" connects only the terms to be treated
exactly and v' is supposed to be a small pertur-
bation. Then the zero-order problem correspon-
ding to Eq. (2.18) is

degree of cooperation between the variational and
perturbation methods if the zero-order problem
in the perturbation method is solved variationally.
Since the perturbation method is expected to be
most useful in the context of finite-rank poten-
tials we restrict ourselves to this case, and use
the formalism of Ref. 12. However, the argument
is easily generalized to arbitrary potentials. "

The separable terms in the expansion (2.12) are
supposed to be split into two sets, one to be treat-
ed exactly, the other perturbatively. Correspon-
dingly, the matrix r of Eq. (2.12) is split into two
parts 7"' and v',

instead been solved by the variational method of
the previous sections. If each X'0' on the right-
hand side of Eq. (3.5) is.obtained' variationally,
then it is obvious that the entire right-hand side
will be variational in the same sense —i.e., the
errors will be second order in the errors in the
trial operators X'"" and X ' . What is perhaps
not immediately obvious is that the right-hand side
of (3.5) can be variational even if nonvariational
approximations to X'" are used in calculating the
perturbation.

Specifically, let us approximate the first term
of Eq. (3.5) by [X'"] (the variational solution of
the zero-order problem} but approximate the X")
on the left and right, respectively, of the second
term by the nonvariational quantities X"'" and
X"'". Since the nonvariational and variational re-
sults from the zero-order problem are related by
analogs of Eqs. (1.12) and (1.13), specifically

or

x"& = z+z~'"&'&, (3.2) [X(0)] Z+Z&(0)X (0)R

=z+x T z
(3.6)

(3.7)x"' =z+x'"7'"z
the right-hand side of (3.5) can then be written

and the exact solution of (2.18) satisfies the equa-
tion [X"']+[X"')~'[X'0)]+ ~ ~, (3 8)

X= X'" +X"'T'X. (3.3)

The perturbation method uses the leading terms in
the iterative solution of this equation,

X=X'"+X'"TX + ~ ~ ~ . (3.4)

Let us now consider how the first-order pertur-
bation term in Eq. (3.4} is to be calculated in
practice for the particular case of elastic scatter-
ing. Obviously the perturbation term is essen-
tially a sum of integrals with the integrands in-
volving certain half-shell matrix elements of X'".
If the zero-order equations have been solved con-
ventionally, i.e., by an explicit numerical solution
of the coupled integral equations (3.2), then some
half-shell matrix elements (p JX'0)))„,~k ) are
already available, but these are not the ones that
are needed in the perturbation calculation since
the values of n that occur are those corresponding
to v' ' rather than v'. However, the desired ma-
trix elements of X'" can be obtained easily by
using the integral equation for X'" once more.
Thus in practice one uses not (3.4) but rather

X=X~ & +(Z+X' T' Z)v'(Z+Zr'"X'"}+ ' ' ',
(3.5)

since this involves only the matrix elements of
X"' that are already available from the solution
of the zero-order problem.

Suppose now that the zero-order problem has

which is just the variational form of (3.4). [Equa-
tions (3.6) and (3.7), which in effect assert that an
iteration of the solution makes the nonvariational
results variational, are only valid if the variational
principle is used in the way described in Sec. I.
In particular, the trial functions must be a linear
combination of some basis set with all coefficients
being selected by the variational principle itself. ]

In summary, if the variational method is used
for the zero-order problem a variational final re-
sult can be achieved eire~ by using the variational
values of X'o) directly in Eq. (3.4), o) by using the
nonvariational approximations in Eq. (3.5), in the
manner described in the preceding paragraph. In
the following section the latter result is used to
establish that Pieper's perturbative calculations, '4

which use the PSW variational method for the zero-
order problem, are in fact finally variational,
even though the zero-order wave functions that
are used in the perturbation calculation are not-
a fortunate circumstance that seems not to have
been previously recognized.

IV. PSW VARIATIONAL METHODS

In this section we show how the variational
principles of Sec. II are related to the separate
variational principles for elastic scattering, re-
arrangement, and breakup, given by PSW.' We
shall show that the variational principles are es-
sentially equivalent, provided that we restrict
ourselves to the on-shell versions of the varia-
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tional principles in Sec. II. However, the vari-
ational principles of Sec. II have a wider range of
application, since they apply equally to off-shell
three-body amplitudes. And even in the on-shell
case the way in which the variational principles
are used in the two cases is not always the same.

According to Sec. II, the variational principle
for the physical elastic scattering or rearrange-
ment amplitudes is obtained in the present work

by substituting the variational expression (2.9}for
Y& into Eq. (2.10}. To establish the connection
with PSW for the elastic scattering case, we set
P =0. =1, and relate our trial functions to those of
PSW by the equations

Y„",G. '148,&
= III'+0'&, (4.1)

&A,k,' l~. 'Y, = &f'+O' I, (4.2)

where the quantities on the right are the Faddeev"
components of the wave function, defined explicitly
by PSW, and where y, 6, ~ is a permutation of 1,
2, 3. Then on writing out the summations in Eq.
(2.9) explicitly we immediately obtain the PSW

variational principle [their Eq. (4.6)]. Similarly,
for the rearrangement case we set P =2, a = 1,
and use

&y.k'.
I GO

' Y."„=&x'+x' I, (4.3)

together with Eq. (4.1}, and once again obtain the

corresponding PSW variational principle [their
Eq. (4.11)].

The present variational principle for the physical
breakup amplitude is obtained, according to the
discussion in Sec. II, by substituting the varia-
tional expression for Ys [Eq. (2.9)] into the on-
shell version of Eq. (2.11), i.e., into

8

(4.4)

where g, is an on-shell eigenstate of the free-
particle Hamiltonian. The resulting var iational
principle becomes equivalent to the PSW varia-
tional principle for breakup [their Eq. (4.16)] if
our trial functions (with n = 1) are related to theirs
by Eq. (4.1), together with

(4.5)

where the PSW trial functions on the right are the
Faddeev components of the wave function appro-
priate to the final state. [The relations

&y. I T, = &c
"

I v, ,

and

which follow from the definition of &4"
I in PSW,

are needed for completing the proof of the equiv-
alence for the breakup case.]

It is implied in the arguments above that each
of the relations (4.1), (4.2), (4.3), and (4.5) be-
comes an identity if the trial functions are re-
placed by the corresponding exact functions. This
is easily verified, by showing that the left-hand
side of each equation satisfies the same equation
as the right-hand side. The latter follow im-
mediately from the Faddeev equations" for the
various wave function components, which are
given by PSW.

The particular case of local two-body potentials
received considerable attention in PSW, and nu-

merical results were given there for elastic scat-
tering in a simple local-potential model. It is a
straightforward task to translate the observations
and methods of PSW for the local-potential case
into the present notation with the aid of Eqs. (4.1)
and (4.2), but we shall not do so here as we have
nothing to add to their discussion of the on-shell
local-potential case.

In the case of finite-rank potentials, however,
there is an interesting practical difference be-
tween the PSW method and that developed in Sec.
II, even in the on-shell situation. The difference
is that whereas in the present work we use as
trial functions the matrices X" and X" [see Eq.
(2.19)], the corresponding PSW trial functions
[which can be identified through Eqs. (4.1), (4.2),
and (4.3), and the appropriate definitions in PSW]
are essentially X"T and ~XR. The latter are more
singular because of the bound-state pole in 7., but
since the basis functions used in PSW explicitly
include this pole singularity the existence of this
singularity is not necessarily a reason for pre-
ferring the present method. However, a more
serious problem. with the PSW choice of trial func-
tions occurs with the N-N interaction, in that the
antibound state in the 'S channel corresponds to a
pole in v. which is located on the second sheet of
the two-body energy plane, but lying very close to
the branch point. This nearby singularity turned
out to have a very large effect on the numerical
calculations of Ref. 13, and it was found necessary
there to include an approximate representation of
this singularity in the basis set. No such problem
arises in the present method.

But the main difference between the present
variational method and that of PSW lies in the dif-
ferent scope of the methods: The present approach
applies to amplitudes of all kinds, including half-
shell and off-shell amplitudes, whereas the PSW

approach is designed only for the physical on-shell
amplitudes.

The advantage of the wider point of view is clear-
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ly seen in the following discussion, in which we
reconsider the method used by Pieper" in his
recent interesting calculations of N-d polarization
observables. Those calculations used the pertur-
bation method described in Sec. III, with the zero-
order problem including only S-wave N-N inter-
actions, and the noncentral parts of the N-N inter-
action being included as perturbations. The point
of present interest is that the zero-order problem
was solved" by the PSW variational method, i.e.,
by taking the zero-order wave function to be a
linear combination of a suitable set of basic func-
tions and then using the variational principle for
the elastic amplitude to select the coefficients in
the expansion. These zero-order wave functions,
which are themselves got variational, were then
used" to calculate the perturbation term with the
aid of a formula equivalent to Eq. (3.5). But,
from the discussion in this section and the last
we recognize that this procedure is equivalent to
using the nonvariational approximations X'"~ andX"' on the left and right of the perturbation term
of Eq. (3.5). And, as we have already observed in
Sec. III, that in fact makes the final result fully
variational.

We therefore conclude that Pieper's N-d polar-
ization calculations'~ are in fact fully variational
(i.e., the errors are second order in the errors
in the zero-order trial wave functions), even though
they are apparently not designed to be so. It is
very likely that this hidden var iational property
plays an important part in the numerical stability
of the calculations, since the finally calculated
polarization observables -apparently converge quite
well" as the number of basis functions is in-
creased, whereas the convergence of the zero-

order wave functions themselves is not particularly
impressive. "

V. NUMERICAL RESULTS FOR THE

AMADO MODEL

g.(q) =N„(q'+P„') ',
and F is given by

F„'(z)= ——+4v q'dq g"g '(q)

(5.2)

(5.3)

The numerical parameters for the two states
('S and 'S} are those of Ref. 5.

In this final section we apply the variational
method to a simple model of the three-nucleon
system, with the two-nucleon interaction taken to
be of spin-dependent, S-wave, separable form.
This model, first studied by Aaron, Amado, and
Yam' and Aaron and Amado, ' has been used rather
successfully in a number of calculations of N-d
scattering and breakup. "'~"

The operator T„[Eq. (2.12)] for this particular
case has momentum-space matrix elements of
the form

&pyq„lT (s)lpyq,'&= QP.g (q }5(p -p'}
n =0,1

x F„(s--', p„')g„(q„'),

(5 1)
where q& is the relative momentum of the pair y,
and where the units are such that m (nucleon mass}
= A = 1. The P&„are spin-isospin projectors onto
the spin triplet (n =0}and spin singlet (n= 1) states
of the pair y. Also, the form factors have the
familiar Yamaguchi form

The integral equations (2.1V) for this case, after antisymmetrization and partial-wave analysis, take the
explicit form

&p(&""tp)=&pIg""Ip'&-—Q Jl
p"'dp" &pIE"" Ip"» -(s-5")&p"IA.""'Ip'&nn'

1r
nr'

where

(5.4)

8m
&p )Z(LIS) )p &

JS I'x(z)g. (-'.p+ p')g. (-'p'+ p)
p +p' +pp'x-s dXy (5.5)

with x 1} ]}'. Here Jz ~ is the spin-isospin overlap
factor; in the isospin —,

' case (which is the appro-
priate isospin for the N-d system} its values are
J 3/2 1 J 3/2 J 3/2 J 3/2 P. J 1/2 J 1/2

00 2y 01 10 11 y 00 11 4y

J0,'"= J,0' =-~. The total orbital angular mo-
mentum L and spin S are conserved separately,
because the assumed nucleon-nucleon force is
central. In the doublet (S=—,') case there are two
coupled equations, in the quartet (S=—,') case only
one.

The physical elastic scattering amplitude, ac-
cording to Sec. II, is the on-shell matrix element
&k (Xg '~k&, where k' =&(E+o.'), and where E is
the total c.m. energy and a' the binding energy of
the deuteron. [The normalization of the elastic
amplitude implied by (5.4) is exp(id~ z) sin5~ z/k,
where 5~ z is the phase shift. ] On the other hand,
we recall that the breakup amplitude [see Eq.
(2.22)] is constructed from the half-shell ampli-
tudes &p )A' ' '(k&, with p ~ (+~E)'" & k, and that the
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X =Z+ ZTX (5.6)

so that we can make immediate use of the varia-
tional principle (2.19). By analogy with the two-
body case in Sec. I, we expand the trial operators
XR and X" in the form

fully off-shell amplitudes &plx'iP) lp') are needed
in the N-body problem. In the numerical calcula-
tions we therefore consider amplitudes of each of
these kinds.

To apply the variational method we write the
integral equations (5.4) as

XR
f ~ff. f. TZ (s.9)

represents a pair of coupled equations labeled by
the two values of n. The appropriate extension is
that the basis functions If, ) and (f, I become
diagonal 2 x 2 matrices with diagonal elements,
say, If, „) and (f, „ I, while the IX(& and (x, I

be-
come general 2 x2 matrices to be selected by the
variational principle. With this understanding we
can retain the notation of (5.7) and (5.8) for both
cases.

Then an argument analogous to that in Sec. I
gives

x'=g lf, &&x, l,

x" = g I x; & &f I,

(s.v)

(5 6)

X — ZT

and then from Eq. (2.19)

(5.10)

where the If, ) and (f, I are basis functions chosen
for convenience, and the (x, l and Ix, & are unknown

functions, to be selected by the variational prin-
ciple, i.e., by requiring that the right-hand side
of Eq. (2.19) be stationary under arbitrary varia-
tions of the (x, I and lx, ).

For the quartet case these considerations are
identical with the two-body case discussed in Sec.
I, but for the doublet case a slight extension is
needed to cope with the fact that Eq. (5.6) actually

[x]=z+g ZTIf() d, , i(fbi I Tz, (5.11)

where 6 is defined though its inverse in the direct
product space

(& ')g „,g„=&f;,. 1(i- iz~)„„If,„) (5 12)

(Thus 6 is found in the doublet case by inverting
a 2Nx 2N matrix, and in the quartet case an N x N
matrix. )

Written out explicitly the variational result (5.11) becomes

[&pix„„.Ip')]=&plz„„. Ip'&+ g &plz„.~.lf, ,gd,„,,„,&7, .I~.,z.,„,lp &,
fmf 'm'

(5.13)

where

p"dp(plz. .lp &F.(E+f~--'p"}&p lf, Z,
7T Jp

with the labels L and S suppressed. The explicit form of (5.12} is

(+ O' ', I
= ) ~ ' f 0 ~f(fl', lP) f' (& ~ i~ 'f')(l If, .)--

0

(5.14)

~

~ ~

~

2 oo oo

p"dp' p'dp&f, .„ ip'&F„(E+f~-!p")(p'Iz„„lp)F„(E+fe-4p'}(plf( „&
7T 0 0

(s.ls)

po = ls (E+ i~)1
'". - (5.16)

Before specifying the basis functions, it is use-
ful to consider the analytic structure of the ampli-
tudes one wishes to approximate. Firstly, the
half-shell amplitude (plx„, Ik) is known' to be an
analytic function of p on the whole real axis, ex-
cept for a square-root branch point at

coming from the integral term in Eq. (5.4). (Note
that the Born term (p I Z~ I k) does not contain this
singularity. ) The discontinuity acrosss the cut is
proportional to (p, —p)'" for p near the branch
point. In the numerical results to be presented
later, this branch point turns out to be an ex-
tremely important feature.

The fully off-shell amplitude &plx„„ilp'& also has
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this square-root branch point at p =po, and in ad-
dition has logarithmic singularities' at

p gLpta (E 3pg2)1/2 (5.17)

if P' & P„corresponding to the fact that a11 three
particles can be asymptotically free if p'& p, .
The logarithmic singularities come from the Born
term in Eq. (5.4), and are therefore automatically
included correctly in the variational expression
(5.11). However, to the extent that these logarith-
mic singularities are not correctly included in
the trial functions XR and X", as of course they
cannot be in the finite-rank expressions {5.7) and
(5.8), the variational method has to work harder
than, for example, in the two-body case. The
square-root branch point, on the other hand, is
easily included in X" and X" by including it in the
basis functions, and this was done in the present
calculations.

The specific basis functions used in the numeri-
cal calculations were

i=2, 4, . . . , N,

with no distinction being made between the trial
functions for the triplet (s = 0) and singlet (s= 1)
cases. These trial functions ensured the correct
p dependence of (pIXa„. Ip'& and (p'IX„" „Ip& at

0.6

04 L-0 s=v2
Elab=I4.4I4kV

(
— PPlfj, .&-&f),„IP& =

( s+~)a( a, ,e5a),

a=1, 3, 5, . . . , N-1

small values of p, but not necessarily at large
values of p; the precise behavior at lat'ge values
of p turned out to be of little practical importance.
The numerical values of the parameters were
chosen, after a small amount of experimentation,
to be a' = 0 5 fm ', b = 0.5 fm '

In the direct solution of the integral equation
(5.4), the main difficulties' come from the singu-
larities in the kernel and inhomogeneous term.
Related singularities occur in the integrals in
{5.14) and (5.15}, with the important difference,
however, that here we are dealing with integrals
with explicit integrands, rather than with integral
equations. The integrals were evaluated by the
contour deformation method, '" i.e., by rotating
the integration contours by a suitable angle Q into
the lower half plane. In the case of (5.14}, a more
complicated contour is necessary' when p & p, ; we
used the contour of Ref. 6 in the way described in
Ref. 18,

Now the numerical results: We have established
that the convergence is generally slowest for L=O
(a result to be expected, because of the increasing
importance of the Born term in higher partial
waves), and therefore we show explicit numerical
results only for this case. Furthermore, because
the convergence in the 'S and 4S cases turned out
to be similar, we discuss explicitly only the more
difficult one, the S case. The amplitude in this
case is a 2 x 2 matrix, but we show only the
n=n'=0 component in each case, in order to
restrict the number of figures. The amplitude
plotted in the first four figures is the dimension-
less quantity

(PI7' IP'&=k&plx IP'&
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FIG. 1. Variational and nonvariational results for the

real part of the ts half-shell amplitude (p ITODI k) ~ at a
nucleon lab energy of 14.4 MeV. The label N is the
number of basis functions in Eqs. (5.7) and (5.8). The
crosses are results obtained (Ref. 18) by explicit solu-
tion of the integral equations, using contour rotation
techniques. The arrows indicate the square-root branch
poi t at (4sS)i/2
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FIG. 2. Variational and nonvariational results for the
imaginary part of the tS half-shell amplitude (pITOOIk),
at 14.4 MeV. The meaning of the curves and symbols is
the same as in Fig. 1.
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Figures 1 and 2 show the real and imaginary
parts of the half-shell 'S amplitude, at a nucleon
lab energy of 14.4 MeV. The left-hand side of
each figure shows the variational amplitude [Eq.
(5.11)], and the right-hand side the nonvariational
result from the trial function X" [Eq. (5.9)]. The
crosses are unpublished amplitudes from the
breakup calculations of Ref. 18, obtained by direct
solution of the integral equation (5.4), using the
contour rotation techinque. The momentum p in
these physical breakup amplitudes ranges from
p =0 up to the branch point at p =p„which is indi-
cated by an arrow on the p axis. The single cross
to the right of the branch point is the elastic ampli-
tude at the on-shell momentum p =k.

It is clear from Figs. 1 and 2 that the conver-
gence of the variational results is excellent, since
accurate results are apparently obtained with
only six trial functions. And in fact a further in-
crease in N from 6 to 10 changes the variational
results by only about 1%.

In contrast, the nonvariational results shown in
Figs. 1 and 2 are conve'rging rather slowly (though
the behavior near the branch point is greatly
helped, it may be noted, by the square-root con-
tribution in the basis functions). Even more
extreme is the other nonvariational approximation
[Eq. (5.10)], which is not shown in the figures:
This turns out to show almost no sign of conver-
gence for p & po. This is easily understood from
the fact that the trial function (P IX" IP') for this
case must try to represent the logarithmic singu-
larities at p' = a-,'p*(E ——,'p')'y', as discussed above
Nevertheless, it makes the observed excellent
convergence of the variational result all the more
impressive, since one is finally obtaining an accu-
rate variational result with quite inaccurate non-

variational input.
An interesting feature of the variational method

is that the variational amplitude automatically
contains the important singularities (including the
logarithmic singularities and the square-root
branch point), even when the trial X" and X" that
go into it do not. This might be the reason why
the convergence of the variational method can re-
main good, even when the nonvariational approxi-
mations are seriously affected by singularities.
From now on we ignore the nonvariational approxi-
mations, and concentrate on the variational re-
sults.

The next case we consider (Fig. 3) is a fully off-
shell calculation at the same energy (14.4 MeV),
with p'=0. 3 fm ', and with p ranging from 0 to
1.0 fm '. (For comparison, the on-shell momen-
tum at this energy is k=0.556 fm ', and the
square-root branch point occurs at pa = 0.48V fm '.)
Since this value of p is less than po, the situation
faced by the variational method is particularly
challenging in this case, especially when p & po
also, since then both of the trial functions X" and
X have to try to represent logarithmic singu-
larities. Yet we see from the results in Fig. 3
that even in this case the convergence of the varia-
tional method is excellent. The quantities actually
plotted in Fig. 3 are the real and imaginary parts
(on the left and right, respectively) of the ampli-
tudes minus the corresponding Born terms, so
that we do not have to draw the logarithmic singu-
larities from the Born term. The convergence
behavior for the variationsl amplitude itself (which
of course includes the logarithmic singularity
exactly) is similar to that shown in Fig. 3.

To demonstrate that the method also works at
other energies, we show first in Fig. 4 the half-
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FIG. 3. Variational results. for the real and imaginary
parts of the off-shell 2S amplitude minus the corre-
sponding Born term, at 14.4 MeV, and with P' =0.3 fm ~.

FIG. 4. Variational results for the real and imaginary
parts of the half-shell amplitude (pr Taai k) at 39.5 Mev.



14 T. J. BRADY AND I. H. SLOAN
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FIG. 5. Variational results for the fully off-shell
amplitude at E,~ =-5.0 MeV, with p' =0.3 fm in the
left-hand figure and p' =0.7 fm in the right-hand fig-
ure.

shell amplitude (real and imaginary parts) at a
higher energy, 39.5 MeV. Evidently the conver-
gence behavior is similar to that shown in Figs.
I and 2. Finally, in Fig. 5 we show some fully
off-shell amplitudes at a negative c.m. energy,
-5.0 MeV. (Here the plotted quantity is the real
amplitude (p(X~(p') -=(p (Tcc(p')/k. ) The singu-
larity structure is of course simpler at negative
energies. In particular, there is no square-root
branch point, so that the basis functions containing
square roots in (5.18) were deleted. The observed

convergence is then very rapid, with only four
basis functions being needed to give an accuracy
of 1$.

In summary, our numerical calculations for the
Amado model, some of which have been presented
above, show that the variational method is a
numerically successful way of solving the integral
equations (5.4). It is computationally quite simple,
and it has the virtue of treating on-shell, half-
shell, and off-shell amplitudes in a unified way,
and with comparable success. We note finally
that the method can easily be extended to sepa-
rable potentials of higher rank, and that, as
shown in Sec. III, it can be combined in a rather
natural way with a perturbative treatment of smaQ
parts of the potential.

Note added is proof: Some related results on
three-body variational principles, and in par-
ticular on the off-shell extension of the PSW vari-
ational principle, have been obtained previously
by Grassberger, Alt, and Sandhas. " The authors
are indebted to Dr. P. Grassberger for drawing
attention to this reference.
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