Lifetime of the ${}^{18}O4_1^+$ state at 3.555-MeV excitation

J. P. Coffin, A. Gallmann, F. Haas, P. Wagner, and J. W. Olness*

Centre de Recherches Nucléaires et Université Louis Pasteur, Laboratoire de Physique Nucléaire et d'Instrumentation Nucléaire, 67037-Strasbourg-Cedex, France

(Received 18 September 1973)

The recoil distance method was used to measure the lifetime of the $J^{\pi} = 4^+$ second excited state of ¹⁸O at 3.555-MeV excitation, which was formed via the ¹⁶O(t, p)¹⁸O^{*} reaction at $E_t = 3.1$ MeV. The mean life is found to be $\tau = 46.2 \pm 3$ psec, which corresponds to an E2 strength for the 3.55 (4^+) \rightarrow 1.98 (2^+) transition of $|M(E2)|^2 = 0.64 \pm 0.05$ Weisskopf units. This result is in good agreement with the predictions of recent theoretical calculations in the weak-coupling model, which identifies the lowest-lying 2^+ and 4^+ states as predominantly 2p-0h states based on ¹⁶O. The predictions of this model for mirror states ¹⁸O-¹⁸Ne are discussed. Additional data were obtained coincidentally for states of ¹⁸F formed via the competing ¹⁶O(t, n)¹⁸F^{*} reaction. The results, which are in good agreement with previous values, are: 0.937-MeV state, $\tau = 65.4 \pm 5.3$ psec and for the 1.081-MeV state, $\tau = 26.1 \pm 2.3$ psec.

I. INTRODUCTION

Extensive theoretical calculations for A=16-19nuclei, based on a formulation of particle-hole states in the weak-coupling model, have recently been reported by Engeland and Ellis.¹ Their results, which are in good agreement with comparable earlier calculations by Benson and Flowers² and Zuker, Buck, and McGrory,³ have been quite successful in explaining not only the observed level structure, but also the experimentally determined spectroscopic factors and γ -ray decay modes of these nuclei. A comprehensive comparison of theory and experiment has been given in their article,¹ which includes the data available then (in 1971) on the mass-18 triad ¹⁸O-¹⁸F-¹⁸Ne.

More recently additional information on ¹⁸O has been reported⁴ from measurements of lifetimes in the ${}^{19}F(t, \alpha\gamma){}^{18}O$ reaction via the Doppler-shiftattenuation method (DSAM). As a consequence of these studies⁴ it was determined that 14 of the 15 levels below 7.2-MeV excitation in ¹⁸O have mean lives $\tau \leq 3.5$ psec. The exception noted is for the second excited state at 3.555 MeV $(J^{\pi} = 4^{+})$ which decays by a 100% branch to the first excited state at 1.982 MeV $(J^{\pi} = 2^+)$. The lifetime in this case was too long for a DSAM measurement, and only a lower limit $\tau > 4$ psec was obtained, compared to the weak-coupling prediction¹ which is $\tau = 23$ psec. On the other hand the lifetime of the analog 4⁺ state in the mirror nucleus ¹⁸Ne has been reported⁵ as 4.4 ± 0.6 psec.

In view of the previous experimental restriction $\tau > 4$ psec we have selected the recoil-distance method (RDM) to measure this lifetime, using the ¹⁶O(t, p)¹⁸O* reaction (Q = 3.707 MeV⁶) to form the

initial ¹⁸O state. The reaction is appropriate here since the effective Q for the 3.55-MeV state is only 0.16 MeV, and thus the kinematics insure that the excited ¹⁸O recoil ions are moving in a forward cone of maximum angle $\theta_R < 30^\circ$. Moreover the competing ¹⁶O(t, n)¹⁸F* reaction (Q_0 = 1.270 MeV) provides several useful calibrations for the RDM measurement, since ¹⁸F is known⁶ to have several low-lying states with lifetimes in the psec range.

Figure 1 summarizes the excitation energies, lifetimes, and major decay modes of those states of ¹⁸O and ¹⁸F which are of interest here. It is worthwhile to note that the higher-lying states of ¹⁸O which might be formed directly in the (t, p)reaction and cascade through the 3.55-MeV level all have lifetimes appreciably shorter than the limit $\tau > 4$ psec, and thus feeding of the 3.55-MeV state via cascade radiations will not seriously perturb the RDM measurement.

A description of the experimental method and results is given in Sec. II, and a brief discussion is appended in Sec. III, which includes a comparison of the mirror transitions in ${}^{18}O-{}^{18}Ne$.

II. EXPERIMENT

A. Procedure

The reactions ${}^{16}O(t, p){}^{18}O^*$ and ${}^{16}O(t, n){}^{18}F^*$ were initiated by 3.1-MeV triton bombardment of a target of natural silica made up of a 90- μ g/cm² layer of SiO₂ evaporated onto a 0.8-mg/cm² nickel foil. The particular apparatus used for the RDM measurement has been described in detail previously.^{7,8}

 γ rays were detected at 0° relative to the beam direction by a 100-cm³ Ge(Li) detector located

9

38

8.6 cm from the target. The intrinsic resolution of the detector system was 3.3 keV for 1.332-MeV γ rays. Energy calibration was based on the many ¹⁸O and ¹⁸F lines in the experimental spectra, together with additional lines resulting from (t, p), (t, n), and (t, α) reactions on the ^{58, 60}Ni target backing.

Measurements were made for several distances corresponding to $D < 200 \ \mu\text{m}$, where D is the measured distance between the target foil and the stopper. An additional "background" measurement was made at $D = 1000 \ \mu\text{m}$. The typical running time for these measurements was ~3 h at a beam current of 30 nA.

Figure 2 shows a portion of the data recorded for $D = 90 \ \mu$ m, illustrating the line shapes measured for the ¹⁸O 3.555 (4⁺) \rightarrow 1.982 (2⁺) transition, and also the 0.937 \rightarrow 0 and 1.081 \rightarrow 0 transitions in ¹⁸F. The solid curve in each case illustrates a least-squares fit to the data, which was carried out to determine the intensities of the *fast* and *stopped* components, I_s and I_0 , which correspond, respectively, to the Doppler-shifted transitions from nuclei which decay in flight (I_s) and the unshifted transitions from nuclei which decay at rest (I_0), i.e., after reaching the stopper.

The individual line shapes were represented by the sum of two Gaussian peaks, of different widths, superimposed on a smooth background given by the dashed lines. The shaded area shows the intensity of the unshifted peak measured for D = 1000 μ m, at which distance the lifetime of these states would require that $I_0 \cong 0$. There are three possible sources for this residue: (a) All of the nickel foils

FIG. 1. Lifetimes and γ branching for low-lying states of ¹⁸O and ¹⁸F. The lifetimes are those given in Ref. 4 (for ¹⁸O) and Ref. 6 (for ¹⁸F).

tested had an oxide contamination, most likely in the form of a surface layer of nickel oxide. The net result is that ¹⁸F and ¹⁸O ions produced in the oxide layer on the beam side of the Ni foil are stopped rapidly, giving rise to a component of I_0 which is obviously independent of plunger distance D. (b) Large-angle scattering of the less energetic excited nuclei can result in a small fraction of nuclei (from the SiO₂ target) whose velocity component along the beam axis is ~0. (c) The state in question may be partially fed by γ cascade from higher-lying states of much longer lifetime.

In the case of the ¹⁸O 3.555 + 1.982 and ¹⁸F 1.081 + 0 transitions there are no higher-lying states of significantly long lifetime, and thus the observed

FIG. 2. Portions of a Ge(Li) spectrum at $\theta_{\gamma} = 0^0$ illustrating line shapes measured for deexcitation of those states in ¹⁸F and ¹⁸O formed via the (t, n) and (t, p) reactions on ¹⁶O. These data were taken at a target-stopper distance $(D-D_0) = 55 \ \mu\text{m}$. The solid curves in each case are the results of a computer fit to determine the intensities of the shifted and stopped components, whose centroids are labeled I_s and I_0 , respectively. Also seen in these data is the ground-state decay of a state in ⁵⁹Co populated via the (t, α) reaction on the nickel backing of the SiO₂ target. The dispersion is 0.984 keV/ channel.

9

effect is a combination of (a) and (b). In both cases, the residue peak at $D = 1000 \ \mu m$ is 6% of the total intensity, and provides a measure of these two effects. For the ¹⁸F 0.937 - 0 transition, the residue at $D = 1000 \ \mu m$ is ~23% of the total intensity: The difference (23-6) = 17% corresponds to the feeding of the 0.937-MeV state from the longer-lived 1.122-MeV state. Since the latter lifetime is $\tau = 218 \times 10^3$ psec, its contribution will not vary over the 1000 μm of the measurement. After subtraction of the residues the ratios $R = I_0/(I_0 + I_s)$ were constructed, and are plotted in Fig. 3.

FIG. 3. The experimental ratios $R=I_0/(I_0+I_s)$ plotted as a function of target-stopper distance $D-D_0$, with $D_0=35$ μ m. The solid curves are the results of a computer fit to determine the lifetime of the initial states in ¹⁸F and ¹⁸O.

B. Analysis and results

The general procedure of analysis, including a discussion of the various geometrical corrections which must be applied to R, is discussed in detail in Refs. 7, 8, and 9. Corrections due essentially to the different solid angles for detection of I_0 and I_s are small, because of the large target-detector distance, and low recoil velocities (v/c < 0.6%). Of major importance however is the distribution of recoil velocities. In the present case the width of this distribution is comparable to the mean velocity itself. Since we find that the velocity distribution is well represented by a Gaussian distribution we chose to analyze the data in terms of an analytic representation

$$R = \int f(v - v') e^{-(D - D_0)/v' \tau} dv'.$$

Here v is the mean recoil velocity (z component) and D_0 is the measured value for true zero distance. The integration is to be carried out over the range of actual velocities $0.05 \le v' \ (\mu m/psec) \le 3.40$ corresponding to the Gaussian distribution function f(v - v').

A preliminary fit to all three sets of data (Fig. 3) with D_0 taken as a parameter of the fit established a unique solution $D_0 = 35 \ \mu$ m. This value was then adopted and fixed for the final fit, shown in Fig. 3. The results for τ and also the mean values of the velocity distribution v, are summarized in Table I. Also shown for comparison are the results obtained by setting $v' \equiv v$; i.e., assuming a velocity distribution of zero width.

As a final check on the procedures of analysis, the velocity distribution was calculated for an assumed isotropic distribution in the (t, p) and (t, n) reactions. In calculating the effective z component of velocity, account was taken of the ion energy loss in the SiO₂ target layer and the effect of the finite solid angle of the γ -ray detector. The resultant velocity distribution, when folded with a Gaussian representing the detector resolution function of width, reproduces the observed width to within ~10%. The mean velocities are ~9% high compared to the experimental values for v listed

TABLE I. Lifetime results for ¹⁸O and ¹⁸F.

Transition	ν ansition (μm/psec)		τ _m (psec) Present (Without) ^a (With) ^a		
¹⁸ F 0.937 \rightarrow 0 ¹⁸ F 1.081 \rightarrow 0 ¹⁸ O 3.555 \rightarrow 1.982	1.600 ± 0.097 1.495 ± 0.110 1.700 ± 0.057	60.0 ± 4.0 28.0 ± 2.7 43.6 ± 2.5	65.4 ± 5.3 26.1 ± 2.3 46.2 ± 3.0	68 ± 7 30 ± 3	

^a Results are given as obtained with and without the velocity distribution correction discussed in the text.

^b Results summarized in Ref. 6.

FIG. 4. Excitation energies, branching rations, and multipole mixing ratios for mirror states of A = 18. The data are taken from Ref. 4 (¹⁸O) and Refs. 5 and 6 (¹⁸Ne). In particular, the branching ratios and multipole mixing ratios for the ¹⁸Ne 3.616-MeV state are those summarized in Ref. 5.

in Table I. This can be tentatively accounted for in terms of the expected slight forward peaking of the (t, p) and (t, n) reactions, coupled with the fact that some fraction of the feeding of the states in question arises from cascades from higher-lying states for which Q is negative. It is felt significant that the agreement in individual cases is within the uncertainties in v (and also τ) as given in Table I, which result we take as partial justification for the method of analysis given.

III. SUMMARY AND DISCUSSION

With reference to Table I we note that our results for ¹⁸F lifetimes are in excellent agreement with the previous values.

Our experimental result for the ¹⁸O 4⁺ state can now be combined with previous results⁴⁻⁶ to allow a more complete comparison of the mirror correspondences for ¹⁸O-¹⁸Ne. Figure 4 illustrates the states of interest here; note that in ¹⁸Ne, states of excitation energy $E_x > 3.922$ are unbound against proton emission. Table II summarizes experimentally determined E2/M1 strengths for the decay of these lowest-lying even-parity states. Strengths are given in the conventional Weisskopf units (W.u.). The source of the various lifetime measurements, as well as branching and mixing ratios, is specifically indicated. With respect to future experimental interest, we note that the value given for the mean life of the ¹⁸Ne 3.576 state is taken⁵ as the central value between the experimentally defined limits $2 \le \tau$ (psec) ≤ 6 . The value measured⁵ via the RDM for the 3.376-MeV level, $\tau = 4.4 \pm 0.6$ psec, is not in very good agreement with the value previously reported¹⁰ from DSAM measurements, $\tau = 1.9^{+1.0}_{-0.4}$ psec. The RDM measurement should in principle be more accurate, and has been adopted in Table II. However, further experimental checks on these two lifetimes are clearly desirable.

Nucleus	Transition	J_i^{π}, J_f^{π}	Multipole	$ au_m$ (psec)	$ M ^2$ (in W.u.)	
					Exp ^a	Theory ^b
¹⁸ O	$1.982 \rightarrow 0$	2 ⁺ , 0 ⁺	E2	3.40 ± 0.26 ^c	2.74 ± 0.21	1.8
	3.555 - 1.982	4 ⁺ , 2 ⁺	E2	46.2 ± 3	$\textbf{0.64} \pm \textbf{0.05}$	1.3
	$3.635 \rightarrow 1.982$	0 ⁺ , 2 ⁺	E2	1.40 ± 0.14 ^c	16.5 ± 1.6	3.3
	$3.921 \rightarrow 0$	2^+ , 0^+	E2	0.024 ± 0.010 ^c	1.7 ± 0.8	1.7
	→ 1.982	2^+ , 2^+	(M1		0.15 ± 0.06	0.07
			<i>E</i> 2		$5.3^{+4.6}_{-3.7}$	1.3
¹⁸ Ne	$1.887 \rightarrow 0$	2 ⁺ , 0 ⁺	E2	$0.49^{+0.17}_{-0.09}$ d	24 ± 6	11.5
	$3.376 \rightarrow 1.887$	4 ⁺ , 2 ⁺	$\boldsymbol{E}2$	4.4 ± 0.6^{e}	8.8 ± 1.2	9.4
	3.576-1.887	0+,2+	E2	4 ± 2^{e}	5.2 ± 1.6	1.2
	3.616→0	2^+ , 0^+	E2	$0.063_{-0.020}^{+0.030}$ d	0.9 ± 0.4	0.45
	. 1 007	at at	(M1		0.08 ± 0.03	0.06
	- 1.887	4,4	<i>E</i> 2		1^{+3}_{-1}	7.9

TABLE II. Summary of lifetime measurements and transition strengths for ¹⁸O and ¹⁸Ne.

^a For the decay of the second excited 2^+ states, the mixing ratios and branching ratios are those of Refs. 4 and 5, as given in Fig. 4.

^b See Ref. 1.

^c See Ref. 4.

^d See Ref. 10.

^e See Ref. 5.

The weak-coupling-model predictions of Engeland and Ellis¹ are given for comparison; in this case (mass 18) the 0h-2p and 2h-4p configurations are specifically $(sd)^2$ and $p^{-2}(sd)^4$, respectively. As has been discussed previously^{1, 4, 5} the agreement between theory and experiment is reasonably good. The lowest-lying 2^+ and 4^+ states in ${}^{18}\text{O}-{}^{18}\text{Ne}$ are expected¹ to be essentially pure 0h-2p states, in which case the ratio of mirror E2 transitions $(^{18}O/^{18}Ne)$ should be ~9, as given by the factor $[(1+\beta)/\beta]^2$ with an effective polarization charge $\beta e = 0.5e$. The experimental ratios are 8.8 for the first 2^+ states, and 13.3 for the 4^+ states; for comparison, the model predictions are 6.6 and 7.3, respectively. For the higher-lying 0^+ and 2^+ states the ratios are unity, which as remarked previously,⁵ is in agreement with the 2h-4p nature of these states.

A comparison can be made between the decay modes of the 4⁺ states in the A = 18 triad. The γ decay of the analog 4⁺ state in ¹⁸F (isobaric quantum number $T_{a} = 0$) has been recently investigated

- ^{*}Visitor. Permanent address: Brookhaven National Laboratory, Upton, N.Y. 11973.
- ¹T. Engeland and P. J. Ellis, Nucl. Phys. <u>A181</u>, 368 (1972).
- ²H. G. Benson and B. H. Flowers, Nucl. Phys. <u>A126</u>, 332 (1969).
- ³A. P. Zuker, B. Buck, and J. B. McGrory, Phys. Rev. Lett. <u>21</u>, 39 (1968); A. P. Zuker, *ibid.* <u>23</u>, 983 (1969); J. B. McGrory, Phys. Lett. <u>31B</u>, 339 (1970).
- ⁴J. W. Olness, E. K. Warburton, and J. A. Becker, Phys. Rev. C <u>7</u>, 2239 (1973).
- ⁵R. D. Gill, J. M. G. Caraça, A. J. Cox, and H. J. Rose, Nucl. Phys. <u>A180</u>, 79 (1972).

by Rolfs, Berka, and Azuma,¹¹ who set a limit on the mean lifetime $\tau < 10$ fsec. The observed decay takes place via $\Delta T = 1$ transitions to lowerlying states of ¹⁸F, and an upper limit of <1.2% is placed on the branching ratio of the analog 4⁺ $\rightarrow 2^+$ ($\Delta T = 0$) transition. Since the E2 strength for an isobaric state of given T_3 may be simply expressed in terms of the isoscalar and isovector components $|M(E2)|^2 = |M_s + T_3M_v|^2$, the measured E2 strengths for ¹⁸O and ¹⁸Ne ($T_3 = +1$ and -1, respectively) may be used to obtain the ¹⁸F $T_3 = 0$ strength. The result is

 $|M(E2)|^2 = 3.6 \text{ or } 1.2 \text{ W.u.}$

The isoscalar and isovector amplitudes are clearly of comparable magnitude but of opposite phase. If we combine the larger value for ¹⁸F, $|M(E2)|^2 = 3.6$ W.u., with the lifetime restriction $\tau < 10$ fsec, we obtain the restriction on the $4_1^+ + 2_1^+$ branching ratio $\Gamma_{E2}/\Gamma_{\text{total}} < 0.13\%$, which is yet compatible with the experimental limit of < 1.2%.

- ⁶F. Ajzenberg-Selove, Nucl. Phys. <u>A190</u>, 1 (1972).
- ⁷K. W. Jones, A. Z. Schwarzschild, E. K. Warburton, and D. B. Fossan, Phys. Rev. <u>178</u>, 1773 (1969).
- ⁸A. Gallmann, G. Frick, B. Heusch, F. Haas, and E. K. Warburton, Nucl. Phys. <u>A143</u>, 326 (1970).
- ⁹D. B. Fossan and E. K. Warburton, in *Nuclear Spectro-scopy II*, edited by J. Cerny (Academic, New York, to be published).
- ¹⁰B. C. Robertson, R. A. I. Bell, J. L'Ecuyer, R. D. Gill, and H. J. Rose, Nucl. Phys. <u>A126</u>, 431 (1969).
- ¹¹C. Rolfs, I. Berka, and R. E. Azuma, Nucl. Phys. <u>A199</u>, 306 (1973). Further references for F¹⁸ are cited therein.