Multipole mixing ratios of transitions in ⁹⁹Tc[†]

P. L. Gardulski and M. L. Wiedenbeck

Department of Physics, The University of Michigan, Ann Arbor, Michigan 48104 (Received 4 September 1973)

A Ge(Li)-Ge(Li) directional-correlation system has been utilized to measure the (740-40-141), (740-181), and the previously unreported (740-40) and (40-141) correlations. The multipole mixing ratios obtained were δ (740) = 3.58 ± 0.20, δ (40) = -0.008 ± 0.008, δ (141) = -0.118 ± 0.006, and δ (181) = 0.002 ± 0.007. The first three mixing ratios are E2/M1 and the last one is M3/E2. In addition the spin assignment of $\frac{3}{2}$ for the 921-keV level has been confirmed.

 $\begin{bmatrix} \text{RADIOACTIVITY} & {}^{99}\text{Mo} [\text{from} & {}^{98}\text{Mo}(n,\gamma)]; \text{ measured } \gamma - \gamma & (\Theta). & {}^{99}\text{Tc deduced } J, \gamma \\ \text{mixing. Ge(Li) detectors.} \end{bmatrix}$

INTRODUCTION

The level structure of ⁹⁹Tc from the β decay of 67-h ⁹⁹Mo has been extensively investigated.¹⁻³ The multipolarities of the 740-, 40-, 141-, and 181-keV transitions have been determined by internal-conversion^{2, 4-7} and directional-correla $tion^{8-13}$ methods. There are discrepancies in these results. In all of the previous directional-correlation measurements NaI(Tl) detectors were used, except for the work of Gfirtner, Naumann, and Schneider.¹³ However, the authors of Ref. 13 made no statement about the possible existence of perturbations of the correlations across the 3.6ns 181-keV state. The resolution required to carefully determine the interfering correlations and to discriminate adjacent γ rays resulted in the use of Ge(Li) detectors in the present work.

In order to determine the mixing ratios of the γ rays depopulating the positive-parity states in ⁹⁹Tc and the spin of the 921-keV level, two previously unreported correlations, the (740-40) and (40-141), as well as the (740-40-141) and (740-181) correlations were measured. In addition an attempt was made to determine at approximately what source concentrations the attenuation of the correlation coefficients becomes negligible.

EXPERIMENTAL PROCEDURE

The radioactive ⁹⁹Mo sources were produced by irradiating high-purity MoO_3 powder or 0.13-mm Mo wire in the University of Michigan Ford nuclear reactor. The irradiated 0.13-mm Mo wire was mounted so that 10 mm of bare source could be seen by the detectors. The irradiated MoO_3 powder sources were dissolved in different amounts of NH_4OH .

The Ge(Li)-Ge(Li) correlation system, used to perform the measurements, employed coaxial ORTEC detectors with active volumes of 32.4 and 29.0 cm³, and a Nuclear Data computer controlled analyzer. The data were acquired automatically at 15° intervals in a double quadrant sequence.

As can be seen from Fig. 1 interfering correlations were present in all of the correlations. Corrections were made for these interfering correlations following the procedure outlined by Frauenfelder and Steffen.¹⁴

A least-squares fit of the data, corrected for chances, decay, and interfering cascades, was made to the function

$$W(\theta) = A'_{00} + A'_{22} P_2(\cos \theta) + A'_{44} P_4(\cos \theta),$$

following the method of Rose.¹⁵ From this function the normalized and corrected correlation coefficients $A_{kk} = A'_{kk}/(A'_{00}Q_{kk}G_{kk})$ and their associated uncertainties¹⁶ were obtained. The geometrical correction factors, Q_{kk} , for the detectors were obtained by previously described methods.^{17, 18} The perturbation factors G_{22} were determined experimentally.

RESULTS AND DISCUSSION

The 3.6-ns lifetime of the 181.1-keV level indicates the existence of extranuclear perturbations on correlations across the 181.1-keV state. The degree of attenuation of such correlations has been shown to depend on the chemical composition of the source.^{19, 20}

Molybdenum metal has cubic crystaline structure, hence, one can assume that for this source the directional correlations are unperturbed. The crystalline structure of dry MoO_3 powder is rhombic; therefore, the correlations across the 3.6-ns state are perturbed. The degree of attenuation of the correlations across the 3.6-ns state for the NH_4OH and MoO_3 solution will depend on the viscosity of the solution.

9

FIG. 1. The level scheme of 99 Tc proposed by Cook, Schellenberg, and Johns (Ref. 3). We have shown that the spin of the 921-keV level is $\frac{3}{2}$.

For this experiment the (740-181) and (740-40-141) correlation results obtained from the metal source were compared with the corresponding results from three different MoO₃ sources. One of these sources was dry MoO₃ powder. The other two sources, L_1 and L_2 , were solutions of MoO₃ and NH₄OH (29.1% NH₃) with the

TABLE I. Direction-correlation coefficients used to determine G_{22} .

Cascade (E in keV)	A_{22}	A_{44}	Source form
(740-181)	0.126 ± 0.004	-0.005 ± 0.006	Metal
	0.123 ± 0.003	-0.010 ± 0.004	Liquid L_1^a
	0.100 ± 0.004	-0.006 ± 0.006	Liquid L_2^{b}
	0.061 ± 0.003	-0.004 ± 0.005	MoO ₃ powder
(740-40-141)	-0.184 ± 0.004	0.001 ± 0.005	Metal
	-0.183 ± 0.005	0.007 ± 0.007	Liquid L_1^a
	-0.150 ± 0.008	-0.002 ± 0.011	Liquid L_{2}^{b}
	-0.083 ± 0.009	0.007 ± 0.012	MoO ₃ powder

^a Liquid L_1 had the ratio $(NH_4OH)/(MoO_3) \approx 6$.

^b Liquid L_2 had the ratio $(NH_4OH)/(MoO_3) \approx 2.5$.

volume ratio (NH₄OH)/MoO₃) approximately ecual to 6 and 2.5, respectively. The correlation coefficients for the above four sources are presented in Table I. The weighted average attentuation factor was determined to be $G_{22} = 0.48 \pm 0.03$ for the MoO₃ powder source and $G_{22} = 0.80 \pm 0.03$ for the L_2 source. The excellent agreement of the correlation coefficients obtained with the metal (cubic) and dilute liquid source (L_1) indicates that the effects of the extranuclear perturbation are negligible for a sufficiently dilute solution of MoO_3 in NH₄OH. Therefore, one can assume G_{22} $=G_{44}=1$ for such a source. Consequently, one can combine the data obtained from the metal and L_1 source in the least-squares fit to determine the correlation coefficients given in Table II.

The iteration method described by Chow and Wiedenbeck²¹ can now be applied to these correlation results to obtain the mixing ratios from the correlation coefficients alone. No information is required concerning the spin of the 921-keV state. The calculations can be made in terms of $A_2(740)$.

Analysis of the (740-40), (740-40-141), and (40-141) correlations by this iteration method

Cascade (E in keV)	Spin sequence	A ₂₂	A_{44}	Reference
740-40	$\frac{3}{2}^+ - \frac{5}{2}^+ - \frac{7}{2}^+$	-0.089 ± 0.010	-0.002 ± 0.014	Present work
40-141	$\frac{5^+}{2} - \frac{7^+}{2} - \frac{9^+}{2}$	0.113 ± 0.006	0.004 ± 0.008	Present work
740-40-141	<u>3</u> *- <u>5</u> *- <u>7</u> *- <u>9</u> *	-0.164 ± 0.013	0.003 ± 0.007	10
	2	-0.184 ± 0.003	0.002 ± 0.004	Present
				work
740-181	3+- 5+- 3+	0.126		8
	6 6 6	0.067 ± 0.004	0.020 ± 0.005	9
		0.118 ± 0.011	-0.003 ± 0.008	10
		-0.070		11
		0.125 ± 0.005	-0.010 ± 0.008	12
		0.0930 ± 0.0028	-0.0095 ± 0.0042	13
		0.124 ± 0.002	-0.008 ± 0.003	Present

TABLE II. Directional-correlation coefficients for the cascades in ⁹⁹Tc.

yields the following results:

 $A_{2}(740) = -0.642 \pm 0.019$,

 $\delta(40) = -0.008 \pm 0.008,$

ind

 $\delta(141) = -0.118 \pm 0.006$

One can now determine from the (740-181) correlation and the $A_2(740)$ given above that $\delta(181) = 0.002 \pm 0.007$. This $\delta(181)$ value and the A_{44} coefficient of the (740-181) correlation require an $A_4(740) = 0.571 \pm 0.218$. The only spin assignment for the 921-keV level consistent with the above $A_2(740)$ and $A_4(740)$ results is $\frac{3}{2}$. The analysis of $A_2(740) = -0.642 \pm 0.019$ for a $\frac{3}{2}(D, Q)\frac{5}{2}$ transition gives $t(740) = 3.58 \pm 0.20$.

The above mixing ratios were used to determine the multipolarities of their respective transitions. The 40.6-keV transition is primarily M1 $\{M1 + [(6^{+26}_{-6}) \times 10^{-3}]\% E2\}$. This is in agreement with the previous internal-conversion data,^{6, 7} with the exception of the $(1.4 \pm 0.2)\% E2$ content reported in Ref. 4. The conversion results^{2, 4, 5, 7} for the 140.5-keV transition are all slightly greater than the results of the present investigation. The previous $\gamma - \gamma(\theta)$ results (1.3 to 5.0% E2) reported in Ref. 10 are in good agreement with the $(1.4\pm0.2)\%$ E2 admixture obtained for the 140.5keV transition in the present work. The M3 admixture of $[(4^{+77}_{-4}) \times 10^{-4}]$ % for the 181.1-keV transition indicates that this transition is pure E2 and confirms the previous conversion-coefficient results.^{2, 7} The α_k results^{2, 7} for the 740-keV transition only require it to be M1 or E2. In Refs. 10 and 12 the large uncertainty in the A_{44} coefficients allows two solutions for $\delta(740)$ to be obtained from the A_{22} coefficient. The authors of Refs. 10 and 12 chose to use the δ which gave the minimum E2 admixture. However, when one determines the other δ solution from the A_{22} coefficients of Refs. 10 and 12 one finds that the 740keV transition has a $(93.6^{+1.9}_{-2.3})\%$ E2 and a $(92.2 \pm 1.1)\%$ E2 admixture for Refs. 10 and 12, respectively. These results are not in agreement with the (97.2 ± 0.3) % E2 content reported in Ref. 13 but are in excellent agreement with the $(92.7\pm0.8)\%$ E2 admixture obtained in the present investigation. With the exception of the $\frac{3}{2} - \frac{5}{2}$, 740-keV transition the multipolarities of these transitions are in agreement with the theoretical results one would expect to obtain from the quasiparticle-coupling approach.

We wish to thank P. J. Wiedenbeck for his asistance in data acquisition and reduction.

¹This work was supported in part by the National Science Foundation. ¹Nucl. Data B5 (1964).

Phys. A139, 277 (1969).

- ⁴J. McDonald, A. Backlin, and S. G. Malmskog, Nucl. Phys. A162, 365 (1971).
- ²C. W. E. Van Eijk, B. Van Nooijen, F. Schute, S. M. Brahmavar, J. H. Hamilton, and J. J. Pinajian, Nucl. Phys. <u>A121</u>, 440 (1968).
- ³W. B. Cook, L. Schellenberg, and M. W. Johns, Nucl.

⁵V. A. Ageev, V. I. Gavrilyuk, V. T. Kupryashkin, G. D. Latyshev, I. N. Lyutyi, Yu. V. Makovetskii, and A. I. Feoktistov, Isv. Akad. Nauk. SSSR. Ser. Fiz. <u>33</u>, 1279 (1969) [transl. Bull. Acad. Sci. USSR Phys. Ser. <u>33</u>,

1183 (1969)].

- ⁶N. Ranakumar, R. W. Fink and P. Venugopala Rao, Nucl. Phys. A127, 683 (1969).
- ⁷E. Bashandy and N. Ibrahiem, Z. Phys. <u>219</u>, 337 (1969).
- ⁸U. Cappeller and R. Klingelhöfer, Z. Phys. <u>139</u>, 402 (1954).
- ⁹S. Raboy and V. E. Krohn, Phys. Rev. <u>111</u>, 579 (1958).
- ¹⁰E. Bodenstedt, E. Matthias, and H. J. Körner, Z. Phys. 153, 423 (1959).
- ¹¹I. S. Estulin, G. M. Cherov, and Z. N. Pastukhova, Zh. Eksp. Teor. Fiz. <u>35</u>, 71 (1958) [transl.: Sov. Phys.-JETP <u>8</u>, 51 (1959)].
- ¹²P. da R. Andrade, A. Maciel, C. S. Müller, J. Wirth and F. C. Zawislak, Nucl. Phys. <u>66</u>, 545 (1965).
- ¹³H. Gfirtner, H.-R. Naumann, and H. Schneider, Z.

Phys. 235, 431 (1970).

- ¹⁴H. Frauenfelder and R. M. Steffen, in Alpha-Beta- and Gamma-ray Spectroscopy, edited by K. Siegbahn (North-Holland, Amsterdam, 1968), Vol. 2, p. 1190.
- ¹⁵M. E. Rose, Phys. Rev. <u>91</u>, 610 (1953).
- ¹⁶C. W. Reich, J. A. Merrill, and E. D. Klema, Nucl. Instrum. Methods <u>23</u>, 36 (1963).
- ¹⁷D. C. Camp and A. L. Van Lehn, Nucl. Instrum. Methods <u>76</u>, 192 (1969); and private communication.
- ¹⁸G. Aubin, J. Barrette, G. Lamoureux, and S. Monaro, Nucl. Instrum. Methods 76, 85 (1969).
- ¹⁹R. M. Steffen, Advan. Phys. <u>4</u>, 293 (1955).
- ²⁰A. Abragam and R. V. Pound, Phys. Rev. <u>92</u>, 943 (1953).
- ²¹G. Y. Chow and M. L. Wiedenbeck, Nucl. Instrum. Methods <u>109</u>, 597 (1973); and private communication.