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Complex nonlocal optical potential for neutron scattering from Pb
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A nonlocal energy-dependent imaginary optical potential is calculated for neutron scatter-
ing from 208Pb in the intermediate structure model with weak particle-vibration coupling. The
energy range studied is 0-12 MeV and the partial waves considered are l= 0-4. The corres-
ponding contribution to the real potential has also been obtained and is relatively small; this
potential is presented for s waves. The imaginary potential is used to calculate the absorp-
tion cross section in this energy range for each partial wave. Both compound-nucleus and in-
elastic contributions to the potential and the absorption cross section are included. Below 5
MeV compound-nucleus contributions are dominant. Above this energy inelastic excitations
based on single-particle resonances and compound-nucleus states based on giant resonances
contribute, with the former being more significant. A comparison of the calculated absorp-
tion to experiment for s, P, d, and f waves is made below the inelastic threshold of 2.6 MeV.
The agreement, except for P waves, is quite good in terms of the number of resonances and
other significant details of the cross section. The calculated absorption cross sections up to
12 MeV are compared to the results from a phenomenological local surface-peaked imaginary
potential. The nonlocal potential is also surface peaked and the details of its radial behavior
for an arbitrary energy are given in a contour plot.

NUCLEAR REACTIONS ~@Iamb(n, n), E = 0-12 MeV; calculated nonlocal imag-
inary optical potential and absorption. Comparison with experiment and with

a local imaginary potential. Particle-vibration doorways.

I. INTRODUCTION

The optical model reduces the nuclear many-
body scattering problem to the simpler one of
single-particle scattering in a complex well. It
is an attempt to explain the existence of observed
broad resonances in nucleon-nucleus scattering.
These resonances are in addition to those of the
sharp narrow compound-nuclear type. In recent
years the optical model has become an important
tool for both theoretical and experimental nuclear
physicists. However, despite its fundamental
importance, the major efforts (with a few excep-
tions} have been toward a phenomenological fitting
of the scattering data, e.g. , Refs. 1-5..

It is clear that a generally applicable and ac-
ceptable theoretical formulation of the optical
model is necessary in order to answer many of
the interesting physical questions which research
suggests. In this paper we obtain a significant
portion of the neutron optical potential —primarily
the imaginary part, which is quite interesting be-
cause it involves the dynamics of the system.

Our work is based on a detailed analysis of the

nucleon-nucleus system. In particular, we ex-
plicitly take into account specific modes of nuclear
excitation during the scattering process. These
modes are usually considered in detail only in
describing the resonant part of the cross section,
but we show that their description is very im-
portant in determining the so-called average po-
tential available to the incident nucleon. We gen-
erate a nonlocal energy-dependent potential using
the intermediate structure (or doorway} model
with particle-vibration coupling. The use of vi-
brational modes is consistent with the assumption
that at low energies the imaginary part of the
optical potential is peaked near the nuclear surface.

Other nuclear structure calculations of the imag-
inary optical potential have been done by Slanina, '
Bruneau and Vlnh-Man~ Payne, Cugnon~ 0 Dwyerp
Kawai, and Brown, "Rao, Reeves, and Satehle, "
Satchler, "and Azziz and Mendez- Placido. "
References 6 and 7 use the 6-matrix approach,
Ref. 8 employs the Brueckner K-matrix technique,
and Refs. 6-8 use particle-hole excitations. Ref.
9 employs the shell model theory of nuclear re-
actions. '~ Our work is closest in spirit to that of
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Refs. 10-13. The present calculation differs from
these papers in that we include both bound and
continuum particles in constructing our inter-
mediate states, and obtain neutron cross sections
which are compared to experiment over an energy
range. We also study the radial dependence of the
potential. In a preliminary paper" we treated only
s-wave neutron scattering. We now consider that
problem in much more detail and extend our cal-
culations to higher partial waves. Since the
particle-vibration model has enjoyed much suc-
cess in the Pb region and because of the simple
shell features of '~Pb, the case of elastic neutron
scattering from ' 'Pb is taken as an example.

The theory is described in Sec. II; Sec. III gives
the results, and Sec. IV provides a discussion and
conclusions.

h„z(r, r'}=&r,jl)HJ, J, ~

r', lj &

~ &r, lj IH~qle&&elHq~lr', lj&
E —E +—'iI

a

—= X,(r, r ') + aV(r, r '}, (3)

II. THEORY

The radial part of the Schrodinger equation for
a particle in a state of angular momentum lj and
energy E may be written as

E)t)»s(r) = h(r, r ')(t)„e(r ')r "dr ',
0

where h(r, r') is a nonlocal Hamiltonian. This
Hamiltonian could also be energy- and angular-
momentum- dependent. In Feshbach reaction
theory" the Hamiltonian for the elastic scattering
of a nucleon is

h»e(r, r') =&r, I j )((HPJ+HJq(E' —HQQ) 'HqJj]~r', Ij),
(2)

where P and Q are the usual continuum-space and
compound-space projection operators, respective-
ly, H is the many-body Hamiltonian for the A+ 1
particle system, and H»=PHP, etc. The channel
vector [r, l j& is written in the notation of Auer-
bach et al."and describes the scattering state of
a particle in the continuum with angular momentum
lj and energy E at the radial coordinate r'. The
radial wave function is not included in ~r, l j).
The state (r, I j~ is defined similarly. The Hamil-
tonian h„e(r, r') in Eq. (2) is useful for fine struc-
ture studies in that it contains many resonances
due to the influence of the Q space modes. To ob-
tain the Hamiltonian h)7e(r, r') appropriate for
intermediate structure we replace E by E+—2iI,
where I is an energy-averaging interval. If we
assume that H~ is diagonal in the compound nu-
cleus states (q&, Eq. (2) becomes

V~s = (Xo —T) + Re(6V), (4)

where T is the kinetic energy of the scattered
particle. We associate the imaginary part of AV
with the phenomenological imaginary potential em-
ployed in the literature. ' ' However, while most
such potentials have a smooth energy dependence,
Eq. (3) clearly indicates that that should not be the
case. In this paper we calculate both the real and
imaginary parts of ~V.

We now assume the weak-coupling particle-
vibration model of Mottelson" so that

1/2
((»=((»», -Ã(r)Q( ' ((»,=»+(-()"», »)('»»

xp X

where K(r} is a form factor, X and p, are quantum
numbers which represent, respectively, the angu-
lar momentum and its z projection for a phonon;
b and bt are one-phonon annihilation and creation
operators, respectively, Y),„ is a spherical har-
monic, and (h(v„/2C„)'" is a phonon vibration
amplitude in the target nucleus that may be ob-
tained from the experimental literature. The
quantity K(r} is given by

d V(r}'d
where V(r) is the real central potential. In this
paper we take V(r) = V))), The interaction Eq. (5)
limits the sum over q in C, V [Eq. (3)] to doorway
states, i.e., states one step more complicated
than single particle; specifically these are par-
ticle-vibration levels.

The matrix elements which appear in AV involve
only integration over angle in that, as mentioned
earlier, the channel vectors &r, lj ~

do not include
the radial wave function of the scattered nucleon.

where Hqq jq& =E, ~q&. In defining K, and AV the
labels lj E have been temporarily suppressed.
The first term 3C, is that part of the optical Hamil-
tonian that represents the scattering of the nucleon
by the average field of the target in its ground
state and is assumed to be real. This part may
vary slowly with energy and its calculation in-
volves the details of Brueckner-Hartree-Fock
theory. We do not attempt such a calculation here.
The second term AV has a more dramatic energy
dependence, involves excitations of the A+1 com-
pound-nucleus system, and is complex. A phe-
nomenological local potential of the Woods-Saxon-
type V„s is usually taken to represent the nonlocal
real potential and we assume that
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Specifically, for an even-even 0' target

(r, lj III s I q& —= (r, lj I
ff o I [X(a1'j') l j&

1/2
—

&2&+ 1)-is2
2C

x &lj(l I'„)(1j'& its„, .s (r)K(r), (7)

where (l(, s (r) is the radial wave function of the

result is

coupled single particle with quantum numbers
al'j'. This particle may be bound (a =n =principal
quantum number) or unbound (u =E'= particle
energy). These two types of particles, when

coupled to vibrations, represent two distinct
classes of doorways. The sum in hV splits into
a finite sum over doorways containing a coupled
bound particle and into an integral over doorways
containing a coupled continuum particle. Inserting
the matrix element, Eq. (7), into 4 V, Eq. (3), the

a V,ss(r, r') =(2j+1) 'K(r)K(r') g
( „(rl0„,(r')„, '(', , (r(s, r(r'Ip(z'l~@,

I
(8)

where E, becomes E„+E„,i&. for the finite sum and
E„+E'for the integral. The symbols E~ and

E„,.z. represent respectively the vibration energy
and the energy of the coupled bound single particle.
The density of continuum states is given by p(E')
The energy E„ is relative to the target ground
state while all other energies are relative to
threshold (i.e. target in ground state and odd nu-
cleon at infinity). The energy E„,is. is therefore
always negative while all other energies are posi-
tive. The continuum wave function behaves asymp-
totically as

ass ... (r) = e' i'
s( kr) 'sin(k'r-2isl'+5, s ),

where k' =(2mE')'~/5 is the wave number and

8, .s. is the phase shift. Equation (8) illustrates
that the energy behavior of both the sum and inte-
gral depends on whether E is less than or greater
than a given E„. If E & E„, then the finite sum has
resonances whenever E —E„=E„,.~.. The integral
in this case is expected to be small since E-E„
—E' never vanishes. If E ~ Ei„ then the quantity
E—E~ —E„,.y& is always positive and the finite
sum is therefore expected to be small. However,
the quantity E- E„-E' could vanish in this case
so that the integral may give a large contribution.

We now consider the evaluation of the integral
in Eq. (8). It is expected to be a smooth function

of energy even before averaging, unless the
coupled single-particle continuum wave function
ps...s has a resonance. It is possible to treat
such a single-particle resonance term as a bound
state by using a harmonic-oscillator wave function.
The appropriate term could then be extracted from
the integral and placed in the finite sum of Eq. (8).
In the absence of such single-particle resonances
the size of I in the integral is not important.
Therefore I may be treated as a vanishingly small
quantity and the principal value theorem can be
employed to evaluate the integral. " It is con-
venient to define

(10)

The integral then becomes
"

ilsss'i 's'(r) sl'ss'i 's'(r') p(E ')
Int =6'

0

,(r)y, ~i,s, (r )p(g~)8(g, ),

where d' represents the principal value of the inte-
gral and 8($~) is a unit step function defined by

(12)

If one uses a real potential, e.g. , V~» to gener-
ate the continuum wave functions of the coupled
nucleon, then its~a, (r)sP „,.e(r's) is real, and the

real and imaginary parts of aV [Eq. (8)] become

Re[tV, se(r, r')j=(2j+I) 'K(r)K(r') g " g (&lj)( Y„[)lj''&)
X llyl

(hi —E„i, )qs„i.s (r)(li„,.s (r')
(h i —E„i.s.)' + aI' 0

(l(si'i's'& )(lii('i' s'( ')P( ')
EI

(Isa)
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and

(13b)

cr,b, ~x 4* r W'x+ r dr, (14)

where 4'(r) is the wave function of the nucleon. By
analogy the absorption cross section of a particle
with quantum numbers lj E in the nonlocal imag-

In Eqs. (13) the E dependence of W is implicit in
the dependence on 8„as defined in Eq. (10). We
interpret the finite sum in Eqs. (13) as the contri-
bution from comPound-nucleus formation, whereas
the second terms relate to j~gigstic target excita-
tions. These interpretations are appropriate in
that while the target is excited in both cases, the
odd nucleon is bound in the former case and un-
bound in the latter. The finite sum in Re (hV),
Eq. (13a), is expected to be small because of pos-
sible fluctuations in sign of the numerator. In
addition, each term in this sum is identically zero
at those energies that produce a resonance in the
imaginary potential. We will consider Re (AV)
later in the paper, and will now concentrate on the
imaginary potential W. It is clear from Eq. (13b)
that the finite-sum part of 8' vanishes if I becomes
zero. This indicates that the compound-nucleus
contribution to 8' is merely the result of the
averaging procedure, whereas the inelastic con-
tributions are independent of I. Clearly the po-
tentials in Eqs. (13) are complicated objects in
that they are not only nonlocal but also depend on

energy and angular momentum. In addition to the
explicit dependence on Ij, these quantum numbers
also determine the allowed doorways via angular-
momentum and parity selection rules. Since the
form factor K(r), Eq. (6), is quite sharply peaked
at roughly the nuclear surface 8, we expect K(r)
rather than the single-particle wave functions to
determine the dominant shape characteristics of
the radial dependence of AV. Therefore, b, V(r, r')
should be peaked in the region where r = r' =R.

We will use the imaginary potential W(r, r') to
calculate the absorption (compound elastic) cross
section. For a local potential W(r} the quantity
-2W(r)/k gives the absorption rate at position r.
The absorption cross section in this case satisfies

inary potential W»s(~, r') is

ffS X„,&& f &r Xf «&

where g,f~ is the radial wave function of the scat-
tered nucleon and v is its velocity. The integral
over angles is not done here because it was al-
ready performed in constructing W»s(r, r'), Eq.
(13b). This is most clear from the discussion of
the channel vector «, Ij I which precedes Eq. (3).
In fact, it is just the wave function X,»(r) which
is absent from «, Ij I. The asymptotic behavior
of X»s is similar to that of /t/s. ../ (r), Eq. (9). The
dependence on the wave number k = (2mE)'"/g is
thus included in the wave functions of Eq. (15).

In principle the wave functions X in Eq. (15)
should be the solutions of the Schrodinger equation
for the total optical Hamiltonian, Eq. (3}. How-

ever, since AV is expected to be much smaller
than Kp we make a Born approximation and obtain
the scattering wave functions from a Woods-Saxon
potential.

In general the scattered nucleon wave function
consists of many partial waves rather than just
one Ij as in Eq. (15). The partial wave expansion
of the scattering wave function enables one to
write the absorption cross section as

(16)

where o',b/s is defined in Eq. (15).

III. RESULTS

%'e now specialize to the case of elastic neutron
scattering from ' 'Pb in the energy range 0 to 12
Mev. (At higher energies reactions other than
compound elastic scattering may become im-
portant). We consider only the partial waves s»,
pl/2t p3/mt d8/2 ~ d5/RP f5/2& fT/IP ZV/2I and g»~ since
higher partial waves are expected to contribute
insignificantly in this energy range. Specifically,
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we calculate the imaginary potential W, ~~, Eq.
(13b), the cross section o,'(s, Eq. (15), for every
partial wave, and the cross section os„[Eq. (16)].
These cross sections are compared to known ex-
perimental results in the energy range of about
0—2.6 MeV. The potential Re(aV) has also been
calculated and the results are given for s„, scat-
tering.

The available bound coupled single neutrons are
2g, /2, ..., 3d», . In addition, all allowed states are
considered for the continuum coupled single par-
ticle. Table I lists the energies E„,., of the bound

states as obtained from Blomqvist and Wahlborn. "
In addition, three single-particle resonances (SPR)
are found for the coupled neutron, viz. , bye/2 ky7/2,

and j»/„and their energies are also listed. When
treated as bound states (for example in our case by
using harmonic-oscillator wave functions) these
states may be associated with 2kyy/2 1ky7/2 and

1j»„. The wave functions of the bound states
2g»„..., 3d», are obtained from a Woods-Saxon
well with a spin-orbit term. The parameters were
taken from Ref. 20 and are V0=44 MeV, R =1.27A' '
fm, a=0.67 fm, and V =7.75 MeV. To obtain the

continuum wave functions (for both the coupled
neutron and the scattered neutron) we used the
same real potential well but allowed a slight ener-
gy dependence of the depth, viz. , V, = (44 —0.3E)
MeV.

We used the experimentally known vibrations in
' 'Pb, including the giant dipole and the recently
discovered giant quadrupole. " The vibrations are
described in Table II. Column 1 gives the spin
and parity of the vibration. The subscripts in
this column distinguish states of the same spin
and parity. Column 2 lists the energy E~, column
3 contains the electric transition strength G„ in
Weisskopf units (W.u. ), and the last column lists

the quantity (h&u~/2C~)'/2 for each state as obtained
by

c
I/2 (4vG )1/2

2C~ Z(X+ 3)

The energies and G„values of the low-lying states
are taken from Divadeenam and Beres" as ob-
tained from experiment. The last two states in
the table are the giant quadrupole and dipole reso-
nances. The strength of the giant quadrupole state
is calculated from the T =0 energy-weighted sum
rule, "and the strength of the giant dipole state is
obtained from the J= T = 1 energy-weighted sum
rule '4

Table III presents the possible doorway states
for each partial wave lj. Listed are only those
states where the coupled particle is in a bound
state or is a single-particle resonance. While the
other states with a continuum-coupled particle are
not listed they were, however, used in the calcula-
tions. Column 1 gives a numerical reference label
to each state, column 2 lists the lj of the scatter-
ing state, columns 3 and 4 give, respectively, the
quantum numbers of the vibration and the coupled
single particle. Column 5 lists the resultant door-
way energy E, =E~+E„, ~, and the last column
gives 10' times the dimensionless quantity Sg) f.
=(2 j+ 1) '(@&a&q/2C&))(l j )) Yz J(l 'j')) . It is clear
from Eq. (8) that Se, i/ is a measure of the strength
of the doorway. We concentrate our attention now

on the imaginary optical potential. In calculating
the potential and cross section up to 12 MeV, the
averaging interval I was taken as 0.75 MeV for
all doorways except those based on the giant dipole
and quadrupole resonances. Because the giant
resonances are rather broad a larger value of
I =2 MeV was used. While I has no specific label

TABLE I. Single-particle constituents of the door-
ways. The bound-state energies are taken from Blom-
qvist and Wahlborn (Ref. 20). The last three states are
single-particle resonances. See text for details.

TABLE II. Vibrations in 2 Pb. The spin and parity,
energy, and strength are given in the first three col-
umns, respectively. The numerical subscripts in col-
umn 1 distinguish between vibrations of the same spin
and parity. The last column is obtained from Eq. (17).
See text for details.

nl'j'

2gs/2
1$ii/2
3dg/2
1ji5/2
4 si/
2 g7/2
3d3/2

2hii/2 (SPR)
1k i7/2 (SPR)
1jf3/2 (SPR)

s y

(Mev)

-3.683
-2.955
-1.820
-1.722
-1.224
-0.669
-0.604
+3.000
+ 6.499
+6.708

3
5i
52

2i
4+
6+
8+
2+

2

1

Ex
(MeV)

2.614
3.198
3.709
4.070
4.305
4.405
4.600

11.5
13.5

(W.u. )

39.5
14.0
1.85
8.00

15.00
5.5
4.00

96.0
13.7

0.045
0.020
0.007
0.024
0.024
0.011
0.008
0.085
0.040
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TABLE III. The possible particle-vibration doorway states. The first column contains a numerical identification
label for each doorway. The second column specifies the partial wave lj of the scattered nucleon. The vibration and

particle constituent of each doorway are given, respectively, in columns 3 and 4. The numerical subscripts in column
3 distinguish between vibrations of the same spin and parity. The letters SPR in column 4 denote a single-particle
resonance. The doorway energies E& ——E&+ E„&i&. are given in column 5. The last column gives 10 times the dimen-
sionless strength 8~&~,

&
. See text for details.

No. nl'j' (MeV) No. nL j (MeV)

10

20

30

S i/2

p i/2

P 3/2

4 2gs/2

ii/2

2i 3dg/2

2i 3d3/2

4' 2g7/2

1.450

2.250

3.446

3.636

5, 2A. «/2 (SPR)

22 3dg/2

22 3d3/2

8+ 14 i7/2 (SPR)

6.709

9.680

10.896

11.100

2 gs/2

52 2gs/2

5i

14i/2

3 3dg/2

3 2 g7/2

1jis/2

2 5 ii/2 (SPR)

6 1jis/2 (SPR)

1 4si/2

1 3d3/2

3 2 gs/2

2 gs/2

52 2gs/

5i lzii

52 1i i i/2

3 3d5/2

3 2 g7/2

3 3d3/2

2g7/2

1jis/2

1jis/2

2g7/2

4+ 2@ii/2 (SPR)

6+ 2@ii/2 (SPR)

-0.485

0.026

0.243

0.754

0.794

1.945

2.878

7.405

11.113

12.276

12.896

-1.069

-0.485

0.026

0.243

0.754

0.794

1.945

2.010

2.529

2.683

2.878

3.040

7.305

7.405

5i 2 Aii/2 (SPR) 6.198 195

490

196

109

50

53

58

59

60

1jie/2 {SPR)

3 ds/2

48i/2

3ds/2

2gs/2

3d5/2

2+i

2+i

2 i

4 8 i/2

2g7/2

343/2

5i

5i

2+
2

52

2+
2

2+
2

6 1 iii/2

8

2+i

4+

2+i

2 i

2+

4 8 i/2

2 g7/

3d3/2

2hii/2 (SPR)

2 k i i/2 (SPR)

3dg/2

1ji3/2 (SPR)

48i/2

1ji3/2 (SPR)

2g7/2

3Cf3/2

11.113

11.680

12.276

12.896

0.622

0.722

1.350

1.450

2.250

2.485

2.846

3.401

3.466

3.636

6.198

6.709

9.680

9.906

10.276

10.417

10.831

10.896

0.387

0.622

0.722

1.350

1.450

1.476

1.645

1.987

2.250

2.485

2.846

3.401

3.466

25

41

20

245

140
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No. lj
71 cfs/2

80

S5 fs/2

86

88

90

93

96

100

102

103

104

105

107

108

5i

52

4+

6+

8+

4+

6+

8+

nl'j'

2hff/2 (SPR)

2k„/2 (SPR)

2A/2

1ji3/2 (SPR)

48 i/2

1jf f3/2 (SPR)

287/2

3dg/2

lk i7/2 (SPR)

2 A/2

2g9/2

2 g9/2

3ds/2

3ds/2

3Cf3/2

2 g7/2

1~ is/2

287/2

2Aff/2 (SI R)

2hff/2 (SPR)

2 k ff /2 (8PR)

1ji3/2 (SPR)

1jf3/2 (SPR)

Ijfe/2 (SPR)

3ds/2

(MeV)

3.701

3.736

5.614

6.709

7.817

9.680

9.906

10.276

10.417

10.S31

10.896

10.905

-1.069

-0.485

-0.341

0.026

0.243

0.754

0.794

1.378

1.390

1.889

1.945

2.010

2.529

2.683

2.878

3.040

7.305

7.405

7.600

11.013

11.113

11.308

11.680

12.831

12.896

109

50

10

31

218

Xo.

110 f7/2

120

121

130

140

142 g7/2

148

5i

3

52

2+

2+i

4+

6+

2'i

nl'j'

1i if/2

1if i/2

4 Si/2

3d3/2

ljfs/2

ljfs/2

2 g7/2

3 cps/2

2hff/2 (SPR)

2 k f f /2 (SPR)

2 kf f/2 (SPR)

2hfi/2 (SPR)

lk i7/2 (SPR)

10f 7/2 (SPR)

1jf3/2 (SPR)

1jf3/2 (SPR)

1ji3/2 (SPR)

2 A f f/2 (SPR)

2 A/2

2A/2

2A/2

1iii/2

(MeV)

-1.069

-0.485

-0.341

0.026

0.243

0.754

0.794

1.378

1.390

1.889

1.945

2.010

2.M9

2.583

2.594

2.683

2.878

3.040

3.105

7.070

7.405

7.600

9.817

10.209

11.013

11.113

11.308

11.680

12.831

14.500

0.387

0.622

0.722

0.917

1.115

1.350

1.450

10 x$8 $j

29

163

156

20

108

130

212

17

108
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TABLE III (Continued)

No, lj A,
" {MeV) 108+Sx~, t 'j No. lj I," (MeV) X, l'j'6 tj

149 g7/2 5f 1

150

156

157

160

8' 1i«n

52 1j
2f 3ds/2

4 3dg/2

6' 3d„,
4+ 4g f/2

2gv/2

2f 3dsn

4' 2gv/2

4+' 3dsn

2gvn

1.476

1.645

1.987

2.250

2.485

2.585

3.081

3.401

3.466

3.636

3.701

3.736

163

166

2g9/2

»ff/2

1jf3n (SPR)

22 3d&/2

7.817

8.545

9.322

9.680

5f 1jfsn (SPR) 9.906

169 1j„n (SPR)

6 1k f7/2 {SPR)

3dsn
8+ ].k fv/2 (SPR)

g9/2 2f 2 An
175 4 2 ge/2

176 6 2gen

~f5/2

8 2 ge/2

10.417

10.831

10.905

10.896

11.100

0.387

0.622

0.722

0.892

3 2S f f/2 (SPR) 5.614

Sf 2hff/2 (SPR) 6.198

5P 2kf f/2 (SPR) 6.709

10

61

1298

466

179

181

182

185

186

187

188

190

196

198

199

200

202

203

204

205

207

208

2f 11ffn

»»n
5f 1jfgn

1jfsn
2+f 3d5/2

4+ 3d5/2

6+ 3d5/2

4' 4sf/,

2gvn

4' 2gvn

4+ 3ds/2

6 2 gv/2

6+ 3d3/2

287/2

1.115

1.350

1.450

1.476

1.645

1.987

2.250

2.485

2.585

3.081

3.401

3.636

3.701

3.736

3.801

3.931

3 2kffn (SPR) 5 614

5f 2hff/2 (SPR) 6.198

2 kf f/2 (SPR)

22 2 ge/g

22 1$ ff/2

6.709

7.817

8.545

1jfg/2 (SPR) 9.322

22+ 3d, /2 9.680

5f 1jfs/2 (SPR) 9.906

1jfsn (SPR) 10.417

4 1k f 7/2 {SPR) 10,805

2gvn 10.831

6 1k fyn (SPR) 10,905

8 lk f7/2 (SPR) 11.100

1 2Aff/2 (SPR) 16.500

58

17

224

40

40

816

149

20

[e.g., in Eqs. (13)], we would reasonably expect it
to vary depending on the doorways and energy
range of interest. In considering the comparison
of calculated cross sections to experiment in the
range 0-2.6 Mev, smaller values of I mere used
to study the intermediate structure in more detail.

As mentioned in Sec. 11, AV»s(r, r') and conse-
quently W»s(r, r') [Eg. (13b)j are peaked near
z = y' = R, where 8 is the nuclear surface radius.
In order to display the energy dependence in a
simple may me therefore next study the energy

behavior of W, ~s(R, B). To simplify the notation
and allom us to plot a positive quantity me define

where the labels lj E have been suppressed. In
each subsequent plot of 8'0 vs energy the ap-
propriate L) value mill be clearly specified. The
results for Ij =s,„are given in Fig. 1(a). The
solid line gives the total contribution of both the
compound-nucleus formation and inelastic excita-
tions. The dashed line represents the inelastic
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0.25
neutrons on 208pb

0.20 .

0.15 .

E

0.10 .
8,9)

contribution only. The numbers in parentheses
refer to the pertinent doorway state label given
in column 1 of Table OI. Only the strongest con-
tributing doorways are so denoted for each reso-
nance. The sharp peak at 6.2 MeV, labeled (6),
is due to the doorway composed of the 2h»» SPR
and the 5, vibration. The dashed-dotted line is the
result of treating this SPR as a bound state, using
a harmonic-oscillator wave function and I = 0.75
MeV.

For comparison we present the absorption vs
energy in Fig. 1(b). By absorption we mean the
quantity 4v( j+ -,')cps which appears in Eq. (16).

The quantity o fb/a is defined in Eq. (15). The solid,
dashed, and dashed-dotted lines are defined as in
Fig. 1(a). Figures 2 through 9 give the corre
sponding results for the partial waves p», p3/2,

d3/Q d5/a f5 Q/f F/a g7/2 and g», . In order to
emphasize the details of the SPR's we did not
treat these resonances as bound states. Therefore
the dashed-dotted lines do not appear in these
figures. Figure 10(a) presents simultaneously the
potentials 8', for every partial wave under con-
sideration. Figure 10(b) gives the absorption cross
section cab, [Eq. (16)]vs energy. This cross sec-
tion is the sum of the absorptions for the partial
waves sy/2 g9/2 The dashed line represents
the inelastic scattering only.

We now compare the calculated absorption from
our nonlocal energy-dependent potential with that
obtained from a phenomenological local energy-
independent potential. The shape of the latter is
proportional to the derivative of the previously
described Woods-Saxon potential, and its strength
was arbitrarily chosen as 5 MeV. Figures 11-19
give the results for the individual partial waves

005- (1)

0.0
1.0

(b)

0.25—

0.20 .

0.15 .
E

0.10 .

neutrons on 208Pb
lq

(&6)

Q.b-

C0
04

O 0.2

0.05-

00 I

1.0

(19,20,21)

0.8-

2 4 6 8

E(M eV)
10 12

0.6-

FIG. 1. Part (a) gives the imaginary potential peak
8& [Eq. (18)j vs E for the scattering of s&/2 neutrons.
Part tb) describes the corresponding absorption
4v(j+2}e,P, [cf. Eqa. (16) aud (16)]. The value I=O.76
MeV was used for all doorways except those associated
with the giant resonances, where I= 2 MeV was used.
The dashed line gives the contribution of inelastic excita-
tions while the solid line gives the sum of inelastic ex-
citations and compound-nucleus formation. The numbers
on top of the peaks refer to the label of the pertinent
doorways in Table III. The dashed-dotted line is a re-
sult of treating the 2k&&/2 SPR as a bound state with
I= 0.75 MeV.

c
~
0 04.
CL

0
Vl

0.2-

0.
0

I

6

E(M eV)
8 10 12

FIG. 2. Imaginary potential Sp and absorption for P&/2
neutrons. See Fig. 1 caption for details.
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s,~„... ,g, l,. The solid line in each figure is the
same as in the corresponding lower portions of
Figs. 1-9. The dashed curves in Figs. 11-19
represent the phenomenological absorption re-
ferred to above. Figure 20 gives the sum of the
cross sections of Figs. 11-19.

We now present the results of a comparison of
our calculated cross sections vrith experiment for
energies below about 2.6 MeV, the inelastic
threshold. In order to better analyze the fine
structure in this smaQ energy range we use small-
er values of the averaging interval I than pre-
viously. These values are indicated in the ap-
propriate figures. Figures 21-24 give, respec-
tively, the comparison for s, p, d, and f partial
waves. There are very little data for higher par-
tial waves. The figures show in part (a) the quan-
tity o,"' in barns. This is the observed total cross
section, i.e., it inc1udes both potential elastic and
compound {or resonance) elastic scattering, and
was obtained using an 8-matrix code for each
partial wave with parameters determined from

experiment. ""In part (b) of these figures the
experimental compound (resonance) elastic scat-
tering cross section o,'" is given separately. In
both these parts the word experimental is written
in quotes to indicate that each partial vrave cross
section has been separately extracted from experi-
ment. The calculated cross section for / j= a, &2 is
given in Fig. 21(c). In Figs. 22-24 the calculated
results are presented in parts (c) and (d) for the
two separate possible j values associated with
each l. The numbers in parentheses above the
calculated resonances refer to the pertinent door-
way state label given in column 1 of Table III.
Only the strongest contributing doorways are so
denoted for each resonance.

In order to show a typical radial dependence of
our calculated imaginary potential, me give in
Fig. 25 a map of contour lines of -W, ~s(r, r') [Eq.
(13b)] for Ij= a, l, and E =0.5 MeV. The value of
I is 0.75 MeV. The actual nuclear radius 8 is
indicated in the figure as a reference point. The
dashed line is a symmetry axis and the values of

0.20.

p neutrons on20 Pb (a)

0.20.

d, neutrons on208Pb

(ss)

0.15 .
E

0.05-
(28-33)

(34,3S

(m39)

0.15 .
E

0.10 .

005- 47-49

0.0
1.0

0.0
1.0

(b)

0.8-

0.6-

C0 04.
CL
40

J3
O.2-

0.6-

f0
0.4-

CL

0

O.2-

—L T a

6 8

E(N~eV)
10 6 8 10 12

E(MeV)

FIG. 3. Ixnaginaxy potential ~0 and absorption for Psy2
neutrons. See Fig. 1 caption for details.

FIG. 4. Imaginary potential &0 and absorption for ct3~2
neutrons. See Fig. 1 caption for details.
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-8' are written near each contour.
The shape of the contour lines in Fig. 25 sug-

gests that one may try to approximate W, »(r, r'}
by a Gaussian peaked at the nuclear surface 8 and
of the following form

W~ys(r& r ) = Wg»(RyR)

x exp(-[(r -R)/P]'-[(r'-R)/P]' j,
(19)

where P is a range parameter. We found that Eq.
(19) gives a good description of the potential in the
range 0-12 MeV with P = 1 fm independent of
energy. However, ln our calculations we used the
actual calculated potential and not Eq. (19).

Figure 36 gives a typical plot of the calculated
energy dependence of the real part of the optical
potential, Re[tV, &z(r, r')], Eq. (13a). As we did
for the imaginary potential [see statements im-
mediately preceding Eq. (19)]we show in this
figure the quantity Re[tV»(R, R}]for lj = s», .
Only the finite sum contribution to this quantity

[Eq. (13a)] has been included in the calculation.
Calculations have been done for the other partial
waves with similar results, but are not presented
here.

IV, DISCUSSION AND CONCLUSIONS

There are several important conclusions that
become apparent from the results presented in the
preceding section. These are now discussed.

(1) Both the compound-nucleus formation, i.e.,
the finite sum in Eq. (13b) and the inelastic target
excitations, the second term in Eq. (13b), con-
tribute significantly to the imaginary potential
(cf. Figs. 1-9). Below about 5 MeV the structure
is due entirely to the compound-nucleus type of
intermediate states. While there are many such
states, especia11y important are those based on
the 3 vibration. The we11 known 4+6 2g», door-
way, while not of predominant importance, is
present for all even partial waves.

Above 5 MeV the major contributions to the po-
tential come from both the inelastic excitations

0.20 .

0.15

E

0.10 .

d neutrons on20 'Pb
5@

(74)! I

I I

!
I

77

0.20.

0.1$ .
E

0.10 .

f5 neutrons on PQ

(&04-&06) !!

00
'1.0

1

~(76} (7+(Sl)(~i
Ws~~~mm nW~

(b)

0.0$-

0.0
1.0

lol-103) I
~ ~

mern~

0.8-

0.6- 0.6-

c0
04 .

CL

0.2-

C0
0.4-

CL

O
Vl

0.2-

0.
0

L. ——w ~rE

6 8 10 12
F(hh eV}

I

6 8 10
E[M eV}

FIG. 5. Imaginary potential Wo and absorption for d g&
neutrons. See Fig. 1 caption for details.

FIG. 6. Imaginary potential Wo and absorption for fsy2
neutrons. See Fig. 1 caption for details.
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and compound-nucleus formation. The significant
inelastic doorways are those containing SPR's.
When the 3 vibration can couple with an SPR it
produces an especially strong inelastic contribu-
tion to the imaginary potential. In the case of
compound-nucleus formation the important door-
ways are those based on the giant vibrations, with
the giant quadrupole being much more significant
than the giant dipole. States formed by a giant
resonance coupled to an SPR are outside the ener-
gy range studied here.

(2) For the various partial waves studied it hap-
pens that doorways based on the 2h»» SPR occur
at about 6-7 MeV above threshold, and those based
on Ij»» and Ik»» appear about 4 MeV higher.
These states are indicated by the sharp dashed
peaks in Figs. 1-9. With this information it is
easy to understand the general features of the po-
tentials in Fig. 10(a). There are three fairly
distinct regions. Up to about 5 MeV the potentials
are due to low-lying compound-nucleus states.
From about 5 to 7 MeV the structure is due to
doorway states containing the 2h»» SPR, while

at higher energies the potentials -result from door-
ways containing either the other SPR's or giant
vibrations. The same structure prevails in the
total absorption cross section in Fig. 10(b). The
cross sections will be discussed later in this sec-
tion.

(3) The contribution of any one doorway to the
potential depends on the angular momentum and
parity of the partial wave of interest as well as
on the properties of the doorway. An indication
of these combined effects is the quantity S~", z
in Table III. In the case of SPR's the contribution
to the potential can still be large even though
S~ 1 p

is small, because of the size of the inter-
mediate single-particle radial wave function. This
is true only if we do not average the SPR.

(4) Because of angular momentum selection rules
the number of doorways increases with the lj
value of the partial wave (cf. Table III). However,
as the structure of the potential depends not only
on the number of available doorways but also on
their strengths, the larger number of doorways
is not always reQected in the structure of the po-
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f neutrons on Pblj (a}
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9 neutrons on Pb
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FIG. 7. Imaginary potential ~0 and absorption for f&y2

neutrons. gee Fig. 1 caption for details.
FIG. 8. Imaginary potential +'0 and absorption for g, y2

neutrons. See Fig. 1 caption for details.
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tential or the cross section.
(5) While the structure of the imaginary potential

should be manifested in the absorption cross sec-
tion [cf. Eq. (15)), there is no linear relationship
between the two quantities. Obviously if the po-
tential is rather large then the cross section is
also expected to be large, e.g., at the energy of
an SPR. However, the radial wave functions of
the scattered nucleon are also quite important
for the determination of the resultant cross sec-
tion. Specifically, the amplitude of the wave func-
tion for a certain lj in the vicinity of the nuclear
surface is energy-dependent. The closer the
energy to that of a potential scattering resonance
or to a bound state of the same l j, the larger the
amplitude and hence the larger the absorption
cross section. For example, the s-wave cross
section (Fig. 1) is large at very low energies
while the p-wave cross section (Figs. 2-3) is
small for all energies. This is true even though
the p-wave potential is larger than that for s waves
at low energies. A reasonable explanation is that
the 4s„, bound state is only 1.2 MeV below thresh-

0.25

0.25

0.20 .

t

all partial waves
(a)

old while the 3p», state is much more tightly
bound. The absorption cross sections for d waves
(Figs. 4-5) are large at low energies. This could
be explained by the small binding (about 1 MeV)
of the 3d», and 3d», wave functions.

The 2f,~ state is bound by 8 MeV and the 3f»,
scattering resonance is expected at about 2h+ = 14
MeV above this. Thus the absorption should be
large at about 6 MeV above threshold. However,
the potential is quite small at this energy, thereby
diminishing the cross section (Fig. 6). At some-
what higher energy the absorption does in fact
show the expected behavior. The 2f», state is
bound by about 11 MeV so that the f,l scattering
wave function should be big at about 3 MeV. The
absorption cross section (Fig. 7) reflects this ef-
fect. One would expect the g-wave cross sections
(Figs. 8-9) to be large at low energies because
the 2g», and 2g», states are loosely bound. How-
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g neUtrons on 208Pb
9i
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0
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FIG. 9. Imaginary potential Wo and absorption for g9/2
neutrons. See Fig. 1 caption for details.

FIG. 10. Part (a) gives separately the imaginary po-
tential. peaks Wo for s&/2, p&/2, p3/2, d3/2, d5/2, f5(/2, f7/2,

g7/2, and ge/2 neutrons [cf. Figs . 1-9] . Part (b) gives
the sum of the absorptions for these partial waves. The
dashed line is the contribution of the inelastic excita-
tions.



COMPLEX NONLOCAL OPTICAL POTENTIAL FOR NEUTRON. . . 2429
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s, neutrons on Pb

0.8-

1.0
'& p neutrons on Pb

0.8-
\
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FIG. 11. Comparison for s&y2 neutrons of the calcu-
lated absorption from the nonJ. oca1. energy-dependent po-
tential with that obtained from a phenomenol. ogical local
energy-independent potential, cf. Eq. (14) . The strength
of the local potential is 5 MeV. The solid line is the
same as in part (b) of Figs. 1-9. The dashed curve
represents the absorption due to the local potential.

FIG. 13. Comparison for p3g2 neutrons of the absorp-
tion calculated from our nonlocal potential and a phe-
nomenological local potential. See Fig. 11 caption and
text for details.

ever, because of the angular momentum barrier
(kR & I) the g-wave functions are drastically re-
duced near the nuclear surface and consequently
the cross section is expected to be quite small.
In fact, for the energy range of interest one need
not consider higher partial waves.

(6) Another way that the scattering wave func-
tions can affect the absorption cross section is
through the radial dependence of the wave func-
tions. We have noted [Eq. (19)] that the imaginary
optical potential has essentially the same radial

dependence for all energies, i.e., surface peaked
with a range P of about 1 fm. If the wavelength
A, of the scattered wave functions is much bigger
than P, then the cross section will vary only
slightly with energy, and will be either large or
small depending on the overlap of the scattering
wave functions with the potential. If A. = P then
this overlap, and hence the cross section, could
have a significant energy dependence. For A. «P
there are so many oscillations of the wave func-
tions within the potential that the overlap is ex-

1.0 208
p neutrons on Pb

1q

0.8-

1.0
neutrons on Pb

W2

0.8-

0.6- 0.6-
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~~
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FIG. 12. Comparison for p&g2 neutrons of the absorp-
tion calculated from our nonlocal potential and a phe-
nomenological local potential. See Fig. 11 caption and
text for details.

FIG. 14. Comparison for ffsy2 neutrons of the absorp-
tion calculated from our nonlocal potential and a phe-
nomenological local potential. See Fig. 11 caption and
text for details.
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1.0
d~ neutrons on'2
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1.0 208f neutrons on Pb
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FIG. 15. Comparison for d 5' neutrons of the absorp-
tion calculated from our nonlocal potential and a phe-
nomenological local potential. See Fig. 11 caption and
text for details.

FIG. 17. Comparison for fvg2 neutrons of the absorp-
tion calculated from our nonlocal potential and a phe-
nomenological local potential. See Fig. 11 caption and
text for details.

pected to be constant, and hence the cross section
should have no significant energy dependence. The
energy dependences described above are in ad-
dition to that referred to in item (5).

For the energy range 0-12 MeV the wavelength
A. is greater than 8 fm and therefore A, »P and the
first-described situation prevails. Thus, while
this situation could provide a slight energy de-
pendence, it seems that the amplitude of the wave
functions as discussed in item (5) is the more
important effect.

(7) The general effect of the scattering wave
function on the absorption cross section is easily
seen from the dashed lines in Figs. 11-20. These
lines give the cross section for an arbitrarily
chosen phenomenckogical local energy-independent
potential as described in Sec. III. Because of the
properties of the wave function the cross section
in most cases is not just a simple monotonically
decreasing function of energy, but rather reflects
the potential scattering resonance behavior of the
wave function. This is in line with the general
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FIG. 16. Comparison for -

f&g2 neutrons of the absorp-
tion calculated from our nonlocal potential and a phe-
nomenological local potential. See Fig. 11 caption and
text for details.

FIG. 18. Comparison for g, /2 neutrons of the absorp-
tion calculated from our nonlocal potential and a phe-
nomenological local potential. See Fig. 11 caption and
text for details.
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FIG. 19. Comparison for g&y2 neutrons of the absorp-
tion cal.culated from our nonlocal potential and a phe-
nomenological local potential. See Fig. 11 caption and
text for details.

the calculated absorption cross sections agree
very well with experiment. The comparison for
s waves is quite good and has previously been re-
ported by us." In this case there are three door-
ways that contribute to the calculated cross sec-
tion in Fig. 21(c), and the observed cross sections
in Figs. 21(a) and 21(b) appear to have resonances
corresponding to these doorways. The extra ex-
perimental resonance cannot be explained in our
model.

For the higher partial waves in Figs. 22-24 it
is the sum of the calculated cross sections, given
in parts (c) and (d), that should be compared with

experiment. However, for a given 1 value door-
ways of the same particle-vibration makeup and
different j value are degenerate in our model.
This degeneracy is expected to be removed by the
residual interaction. Thus all the resonances
appearing in parts (c) and (d) in each of Figs.
22-24 should be counted separately for comparison
to exper iment.

discussion in item (5). The actual positions of the
resonances are sensitive to the depth of the real
potential well used to generate the wave functions.

(8) While the phenomenological potential pro-
duces in some cases the general envelope of our
calculated absorption, it cannot be expected to
produce the detailed structure of the cross sec-
tion. Such effects can only come from a more
elaborate model, e.g. , that of intermediate struc-
ture as employed in this paper.

(9) Figures 21-24 demonstrate that in general
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FIG. 20. Comparison of the total absorption calculated
from our nonlocal potential (solid line) and a phenome-
nologieal local potential {dashed line}. Partial waves
l= 0-4 are included. This is the sum of the cross sections
of Pigs. 11-19.

FIG. 21. Comparison of calculated and experimental
cross sections for s waves. {a) Total s-wave experi-
mental. cross section (i.e., including both potential and
resonance elastic scattering) as generated from an R-
matrix code using parameters that fit the data of Farrell
gg al. (Bef. 25), Divadeenam et ai. (Bef. 26), and Fowler
(Bef. 27}. The word experimental is in quotes to indi-
cate that only the s-wave portion of the mcperimental
cross section is shown. (b} R-matrix-generated reso-
nance elastic cross section. The same parameters as in
(a) are used. (c) Calculated absorption cross section.
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In the case of p waves seven resonances are pre-
dicted in the absorption cross section, three for
p„, [Fig. 22(d)] and four for p,I, [Fig. 22(c)]. Ex-
perimentally, many more resonances are ob-
served [Figs. 22(a) and 22(b)]. We found that the
spreading of the doorways into more complicated
states (e.g. 2 vibration-1 particle) cannot account
for the extra levels seen in this energy range
(0-2.2 MeV). However, the abundance of levels
may be understood as follows. It is possible to
construct many 2p-lh doorways of negative parity
in the energy range of interest. This is because
all of the low-lying available single-neutron states
(except for lj»z, ) are of positive parity while all
ihe neutron-hole states (3p,~„2f,~„3p„,etc. ,
except for li »&,) are of negative parity. Such
noncollective doorways were not considered as
part of our model; and thus we predict fewer levels
than are observed experimentally for p waves.
By contrast, it is very difficult to obtain a 2p-1h
doorway of positive parity in this same energy
range. The number of s-wave resonances in our
model thus agrees well with experiment.

For d waves ll resonances (of which 6 are quite

strong) are predicted [Figs. 23(c) and 23(d)] while
7 resonances appear in the experimental ab-
sorption [Figs. 23(a) and 23(b)]. The resonances
in the calculated cross section are clustered into
two distinct energy groups, one group near about
0.6 MeV and one cluster near about 1.5 MeV. This
clustering is in excellent agreement with experi-
ment. The number of strong resonances in each
cluster also agrees well with the observed num-
ber.

Finally, in the case of f waves there is also a
good agreement with observation. In particular
there are no experimental resonances up to about
1.4 MeV [Figs. 24(a} and 24(b}]. Up to this energy
we predict [Figs. 24(c) and 24(d)] only iwo very
weak degenerate resonances at 0.8 MeV. At
about 1.4 MeV we predict three resonances, two
of which are degenerate with the same particle-
vibration constituents but different spin. These
can be associated with the observed resonance at
about 1.4 MeV. Above this energy theory predicts
a distinct cluster of six levels (some of which are
degenerate and four of which are strong) near
about 2 MeV which can be associated with an ob-
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FIG. 22. Comparison of calculated and experimental
cross sections for p waves. Parts (a) and (b) are as
described in Fig. 21. Parts (c) and (d) give, respective-
ly, the calculated pg2 and p&jr2 absorption cross sections.
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FIG. 23. Comparison of calculated and experimental
cross sections for d waves. Parts (a) and @) are as
described in Fig. 21. Parts (c) and (d) give, respective-
ly, the calculated dsy2 and dg2 absorption cross sections.
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ly, the calculated f~y2 and f,y2 absorption cross sec-
tions.

served group of three resonances near about 1.8
MeV.

One might expect as in the case of p waves that
there would be many more observed f wave -reso-
nances. However, because of the high angular
momentum there is only a small overlap of the
f-wave function with the nucleus at such low ener-
gies, and this diminishes the cross section. A

similar argument was given in item (5) to explain
the small g-wave absorption.

(10) Agreement with experiment would be im-
proved by adjusting our single-particle energies
and averaging width I. The single-particle ener-
gies control the position of the calculated reso-
nances, while I is important for the detailed shape
of the potential and the cross section. A smaller
value of I leads to sharper and more easily re-
solved resonances.

(11) The calculated nonlocal contribution to the
real potential for s waves (Fig. 26) has an al-
ternating sign and, as expected, is relatively
small. In fact, the calculated real potential is
even smaller than the calculated imaginary po-
tential (Fig. 1). The alternating sign implies that
the contribution of our nonlocal real potential to
the calculation of cross sections will be rather
small.

(12) It is difficult to make a direct comparison
between our calculated nonlocal imaginary po-
tential and the usual phenomenological local po-
tentials that appear in the literature. In order to
make such a comparison our potential must be
converted into an equivalent local potential. Such
a procedure is presented in another publication. "

FIG. 25. Contour lines of -+',f~fr, w') [Eq. (13b)] for
lj =s&y2 and E= 0.5 MeV. The value of I is 0.75 MeV.
The nuclear radius R is indicated. The dashed line is a
symmetry axis. See text for details.
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