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Evidence of configuration mixing of higher-K bands in deformed even nuclei is surveyed.
A general formulation for configuration mixing due to a two-body neutron-proton force is
developed. A fit to the energy splittings of Gallagher-Moszkowski pairs in odd-odd nuclei is
made to obtain an effective Gaussian central force except for the undetermined Wigner com-
ponent. With this force, off-diagonal band-mixing matrix elements are calculated for various
configurations in !"6Hf, !™Hf, and !"4Yb. By solving BCS equations, the relevant occupation
amplitudes are calculated. The effective n-p Wigner force component is fixed to give best
over-all agreement to experimental band-mixing information. The resulting force is com-
pared with the Jones, Onishi, Hess, and Sheline central force for deformed nuclei.

NUCLEAR STRUCTURE 1% 176,178,180 174yh; calculated configuration mix-
ing higher K bands, fit energy splittings, Gallagher-Moszkowski pairs, n-p
force deduced.

I. INTRODUCTION

Among certain classes of two-quasiparticle
states of deformed nuclei configuration mixing
has been extensively treated, while for other
classes there has been almost no attention to this
problem.

On the one hand, the excited bands of K" =07,
1*, 2*, 07, 17, 27, and 3~ in even-even nuclei
have been extensively treated microscopically.
These treatments are usually carried out with
some simple separable interactions (quadrupole-
quadrupole, octupole-octupole, spin-quadrupole,
or surface 0§ interaction). Some bands in the sys-
tems treated may become ‘“collective” and consist
of a linear combination of many two-quasiparticle
basis states.

On the other hand, there has been little theo-
retical attention to the question of configuration
mixing of higher-K bands than those mentioned
above, and the general question of the effective

|©

nucleon-nucleon force appropriate in this context
is quite open.

II. EXPERIMENTAL EVIDENCE

In the past several years interesting measure-
ments have been made concerning band mixing of
two-quasiparticle states in even-even nuclei. The
even-even nuclei in the region around '"®Hf are
interesting because of their prolific isomerism,
associated with the availability of only large-Q
Nilsson orbitals near the Fermi energy: For
protons the orbitals involved are £'[404], £7[514],
and £'[402], and for neutrons they are £[512],
#[514], and §'[624]. Thus, relatively low-lying
K"=6%, 87, and 7~ states can be formed either as
two-quasiproton or two-quasineutron states.

Khoo et al.! have carried out impressive mea-
surements of excited bands in "®Hf. Their analy-
sis shows that the K" =6* bands at 1333.1 and
1761.5 keV are highly mixed between two-quasi-
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proton and two-quasineutron configurations with

a 2p-2n mixing ratio of 38: 62. Ejiri, Hagemann,
and Hammer? have independently made similar
measurements and come to a similar conclusion.
Ejiri, Hagemann, and Hammer analyzed the 1549-
keV K™ =6* band in '™Hf as being at least 90% two-
quasiproton, whereas we determine, from the
comparison of the E2 hindrance factors of '™Yb
with those of '"°Hf, that the K" =6" isomeric state
in YD is nearly pure two quasineutron.

Ejiri, Hagemann, and Hammer and Khoo et al.
differ somewhat in their analysis of mixing of the
K" =8~ bands in '"®Hf, due in part to the additional
complication of Coriolis mixing. Because of the
Coriolis complication, we shall exclude this case
from our quantitative analyses to follow. That is,
one needs to consider mixing of more than two
bands, and we wish here to confine ourselves to
cases of two band mixing.

In '"®Hf the two K" =8~ states have been known
from B-decay properties to be highly mixed.
Studies by Helmer and Reich® and by Ward, Chu,
and Cumming® indicate that the 1147-keV state
(mainly two-quasineutron) and the 1480-keV state
(mainly two-quasiproton) have mixing ratios of
33:67 and 35: 65, respectively. The "®Lu™ 3-
decay rates measured by Tamura® give mixing of
36:64 in good agreement.

Kérner, Wagner, and Dunlap® measured the
magnetic moment of the 1142-keV K" =8~ state
in '®°Hf as (8.6 +1.0)uy, signifying nearly pure
two-quasiproton configuration.

Another case of such configuration mixing occurs
in '*Yb. The *Tm (5.2-min) ground state has
been assigned a Nilsson configuration of $*[411],,
%‘[514],, (which is consistent with general system-
atics). The ™Tm ground-state 8 ray decays to
two states of '"*Yb at 1886 (~80%) and 2383 keV
(~20%) with log ft values of 4.90 and 4.65, respec-
tively. The logft values of less than 5.0 would
require a B transition involving the £7[514],
~ $7[514], orbitals. The strong y transition be-
tween the two states in "*Yb, the observed logft
values, and the general energy systematics of
two-quasiparticle states would suggest that the
state at 1886 keV (mainly two neutron) and the
state at 2383 keV (mainly two proton) are highly
mixed. These two states can be assigned to the
+[521],, 2*[624],, and +'[411],, $[514], orbit-
als, respectively, with K" =5". From the logft
values one would deduce a 35: 65 mixing ratio for
these bands.

Bernthal, Rasmussen, and Hollander” measured
electron capture logft values to '"°Hf of 7.21 and
6.85 to the K" =1"* states at 1672.3 and 1862.8
keV, respectively. With the reasonable '"®*Ta
ground-state assignment by Valentin and Santoni®

of K"=1" (§*[404],, §[512],), it is easy to see
that the B decay can proceed via a first-forbidden
unhindered transition to the two-quasineutron
component of the final K" =1* state but not to the
two-quasiproton part. This conclusion is the
same even if configuration mixing of

(3'[402],, (514],)

is allowed in the initial state. Thus, the ratio of
ft values tells us that the lower 1* state is 67.3%
two quasiproton and 32.7% two quasineutron,
while the upper 1* state is the reverse. We note
that the mixing of the 17 states is also implied

by the strong 190.4-keV y-ray transition between
these levels. There might be some reservations
about treating these two K" =1" states in isolation
from all other K" =1" basis states. Gabrakov et
al.® and Hamamoto and Birbrair!® have made ran-
dom-phase-approximation calculations of 1* states
taking into account the spurious state problem as-
sociated with the rotational degree of freedom.
We feel that our isolated treatment here may be
approximately justified, since the j, matrix ele-
ments between our £ and # states are very small
(hence, little coupling with the spurion) and since
other 1* basis states should be considerably high-
er lying in "®Hf.

Stripping or pickup reactions into the mixed
bands treated here would be of great interest. We
note that Zaitz and Sheline!! have studied the levels
of '"Hf populated in the (d, ¢) reaction. Their anal-
ysis assumes no band mixing. In their level
scheme (Fig. 2) they do not show the levels of
Khoo’s upper K" =6* band, which, if pure two
quasiproton, should not be populated by the (d, t)
reaction. (The first two levels of this upper K"
=6" band are at E¢+ =1761.5 keV and E,.+ =1926.7
keV.) However, to the extent that this is mixed
with the K" =6 band at 1333 keV (which is mainly
two quasineutron), then the levels of the upper
K" =6 band should be populated relative to the
lower K" =6" in proportion to their mixing ratios.
In their Fig. 1, showing the experimental spec-
trum, there are two unassigned peaks (peaks
numbers 11 and 16) with the appropriate energies
and intensities to be the members of the upper
K" =6" band, consistent with the mixing ratio of
Khoo et al.! The K" =1" bands are evidently popu-
lated too weakly to be seen in the spectrum of
Fig. 1, and their theoretical estimates give weak
population of the 1* bands. Thus, from their work
we can gain no evidence to supplement the pg-decay
information on the 1* band mixing.

III. GENERAL THEORY AND RESULTS

Can we obtain from theory at least a qualitative
explanation of the phenomena so far observed?
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Very generally, when considering two states which
interact with one another (but do not interact with
any other state), the Schrddinger equation can be
written in the form:

(B ) (e @) (&)
a?+p2=1. (1)

We introduce X as the mixing ratio between the
two states, letting X =3/a?. Also, let us write
m= Yy |H 15 |9 = @y |H oy 9. IEm =0 (i.e., no mix-
ing) then X =0 or . When solving Eq. (1), one
easily finds:

AXNVYX
- @)

m

where Ax =X, = A, is the difference of the eigen-
values of the 2 X2 matrix, i.e., is the energy dif-
ference of like-spin members of the two bands of
the configurations considered. In Fig. 1 we have
graphed the relationship of Eq. (2). The different
mixing ratios form a family of straight lines re-
lating the proportionality of the energy separation
of the bands with the absolute value of the mixing
matrix element |m |. The lines have been labeled
with mixing ratios less than unity, but those ra-
tios X greater than unity correspond to the line of
their reciprocals 1/X.

When the mixing ratio is near unity (0.5 X < 2)
the mixing matrix element |m | is very insensitive
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FIG. 1. Relation between AA, m, and x. See text for
definitions. The experimental points correspond to: a,
K"=8" states in Hf; b, K"=6" states in "Hf; ¢, K"
=5" states in '™Yb; and d, K"=1"* states in "Hf.
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to X and dependent on AA.
We shall now consider a specific nuclear Hamil-
tonian for further analysis of this problem

H =Hy, +HS) +H) + VTP . (3)

The first term is the single-particle Nilsson
Hamiltonian. We calculated eigenvalues by the
sophisticated 1969 version of the Nilsson model.?
The Hamiltonian includes hexadecapole as well as
quadrupole deformation, and diagonalization is
across 11 oscillator shells, without truncation to
a single shell. (We shall not be quite consistent

in that the Nilsson eigenfunctions used in the cal-
culation of the matrix elements of the residual
interaction are single-shell truncated eigenfunc-
tions without hexadecapole deformation, as in the
1955 Nilsson calculations.!®) The second and third
terms of the Hamiltonian are the proton and neu-
tron pairing interactions, taken in the simple con-
stant pairing approximation

H:::i.)r = —G,Z alatara;. (4)
i

The fourth term, the residual neutron-proton
interaction, must be taken of a more sophisti-
cated form to treat the phenomena considered here.
The effective neutron-proton potential is taken to
be of finite-range Gaussian central form

Vp = exp(—rz/roz)(VTE P+ Voo P
+Veg P +Vso Pso) s (®)

where P, P, Pg, and Py are projection op-
erators for the spin triplet (T) or singlet (S) and
even (E) or odd (O) relative orbital angular mo-
mentum.

V&= can be written as:

Vig= 2 (np| Ve n'p)alalaya, . (6)
npn'p’
Here a and a' are the nucleon annihilation and
creation operators. Indices » and n’ represent
all the quantum numbers which are necessary to
specify the Nilsson orbitals occupied by the two
neutrons.

We construct BCS solutions to the first three
terms of the Hamiltonian [Eq. (3)] by iteratively
solving the BCS equations for the ground state of
proton and neutron systems.

Consider now what the residual neutron-proton
interaction gives for the off-diagonal matrix ele-
ment m, which can be expressed as

m :<¢n lnz,V:le.s-p l¢p 1p2>- (7)
| ¥ 1"2> is the ket for the two-quasineutron excited

nuclear state.
If the two-quasiparticle states we are consider-
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ing both have parallel angular momentum pro-
jections, that is @, L, and @, . +Q,,2, then
|¥n yn,? is given by

AR EIARARIFICE R (8)

where
[(um = TI (i +vyafad) IT (u; +v;a]a})]0) .
i#*ngng Fi
9)

The index ¢ goes over neutron orbitals, the index
j over proton orbitals. |0) represents the vacu-
um. A bar over a subscript denotes the time-
reversed orbital.

For the case of parallel angular momentum pro-
jection, the only terms of the residual interaction
operator which may connect the two two-quasi-
particle states are:

~(1,B, | Vop |71} (@] a,)(a] a5,)"
= {n,P, | Vap | 7,00 (artlan—z )(alzaFI )T
_<n2§2 l Vnp l ﬁlPl) (a:zan_l (a; 1aFZ)T

=By | Vop |7 (ag ,07)a] 05)" - (10)

The matrix element of V7;? may be factored, this

because we are not taking into account higher-
order correlations in the ground state. Let us
do this for one of the terms of Eq. (10).

(Un o | [0sB3 | Vo |7a0)) (@] @ )ay a5) 118, 5,
=By | Vap |7a0) (U 1n, |0 a5, |6

x(p|(ag. a5, [¥p0,) » (11)

where |¢), the BCS ground state of the system,
is given by

| )= H (2 +v‘a:ra%) I,I (u; +v; a;'a,l)IO). (12)

Consider the neutron factor in Eq. (11). Using
Eq. (9), we can write:

. t ol t
[ @) = (thy Uy , + 14y Uy g8y iy + Vg (U O 1an11

+Un Un 00 a7 aF al )| 6 (nyn;)) (13)
and we get, using Eqs. (8) and (13), that
Wn lnzla:,aizld)) ==Up Uy, (14)
Similarly one gets
(n yng | @n 07 | O =0y 14, (15)

Using Eqs. (14) and (15) and similar equations

for the proton part, and using the fact that
(np| Vi | 0D =(7'P’ | V,p | 7P ), one gets for the
case of parallel angular momentum projections
Qp, +Q,, and Q, +Q,,

Im I = ' (un 1vn zub 1”?2 +U, 1un sz 1“? g)<"1ﬁz I Vn} l-ﬁ'zpl>
=ty O U Up y + U (Un Uy Vp 2)<"151 [ Vap |7iab2) |
(16)

Similar expressions have been given by Rowe'* and
Soloviev.

In the case of antiparallel angular momentum
projection Q,, -Q,, and §,, - Q,,, the two-quasi-
neutron ket and the terms of residual interaction
that connect the two states are given by

[ s =a,:'la"12 [¢(nym,)) 1m

=05 | Vap |11 (a:la,, 2)("; s 2)T
~(mBy | Vop | mB,) (@] @, Nt a5 )"
(s | Vo |7) (@l 0z @] g, )"
= (7P, | Vap |%B,) (0l az Naf a5 )7 (18)

Performing the algebra one obtains for m, in this
case

|m| = (s, 0, 2% (Upp +Un (Un Up 1“#2)<n1pz | Vap [ map)
+(u, 1Uny Ut Up, +Un Uy Uy Uy, XDy [ Vap |75,) |.
(19)

For the “mixed” cases, that is for cases where
one of the two-quasiparticle states has parallel
angular momentum projections and the other anti-
parallel angular momentum projections, one can
derive similar equations.

In the derivations of Eqs. (16) and (19) we have
assumed no blocking effects, that is, the BCS
amplitudes »; and v; are the same for the ground
and two-quasiparticle states. If blocking is taken
into account, the BCS equations are solved sep-
arately for u’, v’ with the orbitals n,, n, (p,, p,)
removed from the system and with one pair less
of nucleons. Core overlap reduction factors of the
form (in the neutron case)

R,= I (wuf+v;0}) (20)
i#ngngy
modify Eqs. (16) and (19). We have not concerned
ourselves with blocking corrections at this stage.
They may be partly compensated if one further
refines to number-projected methods such as
FBCS.'®

In the pairing factors only the combination uv
occurs. Thus, the matrix elements can only be
large when the two orbitals are on opposite sides
of the Fermi energy. This condition is approxi-
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mately fulfilled for the 72-proton configuration of
Hf, since the Fermi energy should be nearly at
the degenerate ¥ and § orbitals with the *
orbital lying slightly higher [cf., Figs. 2(c) and
2(d) of Nilsson et al.’?].

A. Pairing correction factors

The uv factors for the cases here considered are
shown in Table I. They have been calculated by
solving the BCS equations with the single-particle
energies obtained with the same program used in
Ref. 12, taking into account for each nucleus its
quadrupole and hexadecapole deformation as given
in Fig. 12(a) in the same reference. However,
close to the Fermi energy we used energies ob-
tained by interpolating the empirical single-parti-
cle energies obtained from experiment by Ogle
et al.' in order to get the most realistic wv fac-
tors. We used the experimental gap parameters
A exp given in Figs. 4(a) and 4(b) of Ref. 12 and
then adjusted the pairing strength parameter G
so that A p Was in agreement with the value of A
obtained by solving the BCS equations.

For the specific case of K" =8~ states in Hf,
with #, the §*, n, the £, p, the ¥, and p, the F
orbitals, the first two involve K" =0~ couplings
for the n-p matrix elements, and the second two
terms involve K" =1* couplings.

More specifically, for the K" =8~ states in '"°Hf,
one has from Eq. (5) and Table I

[ g-("°HE) = [0.4T1( § 2, | Vo | §, %, )0-
—0.501( %, %, Vus 13,8, 1. (212)

In the matrix elements only the  quantum num-

TABLE I. Values of » and v amplitudes from BCS
wave function.

Configuration Uy igf  1%ge  18HE  180Hf
* 411) U 049 0.292 0.292 0.292 0.292
2 » V  0.871 0.956 0.956 0.956 0.956
T* (404) U 0.928 0.747 0.747 0.747 0.747
2 » V. 0.372 0.665 0.665 0.665 0.665
9= U 0.938 0.819 0.819 0.819 0.819
1 (514), V  0.347 0.574 0.574 0.574 0.574
o+ U 0.972 0.911 0.911 0.911 0.911
1 (402), V. 0.233 0.412 0.412 0.412 0.412
- U 0.308 0.614 0.449 0.346 0.261
7 (52D, VvV 0.951 0.789 0.893 0.938 0.965
5= U 0.483 0.685 0.507 0.397 0.285
3 (612), vV 0.876 0.728 0.862 0.918 0.958
1" (514) U 0.88 0.904 0.812 0.590 0.466
2 n V  0.465 0.427 0.584 0.807 0.885
£ (624) U 0.904 0.944 0.898 0.778 0.619
2 n VvV 0.427 0.331 0.440 0.628 0.785

|

bers are shown. For a complete labeling of the
states see Table I. All the contributing matrix
elements are of large momentum change (or ex-
change-interaction) type, like those of the odd-
even shift terms in odd-odd nuclei. Similarly,
one has

[m s (THE) | =]0.515( 2, %, | Vap |30 %5 0-

- 0.395¢( %n—g'p [ Vas l_%,, %)1-‘; (21b)

[ms-(7b) | = 0.254(+ %, | Var |3, %, o

~0.725( 3, | Vap 13, 5,000 |- (210)

For the K" =1* state in !"®Hf one has to use Eq.
(19), since in this case we have antiparallel angu-
lar momentum projections. We get the following:

m 1+ (T°HE) | = |0.395(F, &, | V,p |
+0.515(3, %, [V, |

5 17

3, 7,06
71

T Tplo-

(21d)

For those cases where only one of the levels is
known (in other words, AX is not known), we have
insufficient data to solve for the matrix element
m. However, if the mixing is small, then we may
make a theoretical estimate for AX and still get a
good value for m. This follows because, as
pointed out before, m is not very sensitive to AX
if mixing is small (see Fig. 1).

B. n-p force

We will use two different forces in our calcula-
tions, force I with range 7,=1.5 fm, force II with
range 7,=1.0 fm. Following Jones et al.'® and
Ogle!® we derive the potential strengths (up to a
common additive constant) by doing a least-
squares fit of energy splittings of Gallagher-
Moszkowski pairs. The arbitrary additive con-
stant of the potential strength arises because a
pure Wigner force does not contribute to the split-
tings. Recently Ogle'® has pointed out that there
is still no satisfactory effective force for calcu-
lating the energy splitting of Gallagher-Moszkow-
ski pairs. It may be that the off-diagonal cou-
plings with other bands of the same K (n-p force
coupling) or K +1 (Coriolis coupling) are responsi-
ble for the inability to obtain detailed agreement
in first-order splitting calculations.?®* From the
general consideration of the greater occurrence
of low-Q orbitals in an oscillator shell, it is evi-
dent that the level density of two-quasiparticle
bands is a rapidly decreasing function of K. Thus,
we have sought an effective force by excluding
from the fit all cases involving K =0 or 1 bands,
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TABLE II. Fit of energy splittings of Gallagher-Moszkowski pairs.

AEg, AEg,
Configuration KT 7y=1.5fm 7;=1.0fm AE,
Nucleus Proton Neutron Z,+ E, =0 Z,+ Z, =1 (keV) (keV) (keV) Ref.
MHo  1"(523)t § @oo) 3" 4" 118 124 102 18
3" @o2)s 5 2" -123 -131 -85 18
37 (521)4 2* 5* 165 159 171 18
%*Ho  I7(523)t § (521) 4* 3* -147 -156 -171 18
8rm  T@1e Fs12) 3" 2" —242 -231 -234 18
I (633)1 4 3t -138 -145 -157 18
Wrm  4T@is § 1) 3" 2" -239 -236 -232 18
Mpu  IT@oan 321 5 2~ -59 -58 -90 18
37 G214 3" 4" 93 69 80 18
Wi J @04y 4 s1op 4 3" -130 -138 -118 18
®Ta  I"od)r 4 (510)t 4” 3" -127 -135 -174% 24
" s12) 2" 5" 166 168 154> 24

2 A more recent experimental value [R. G. Helmer, R. C. Greenwood, and C. W. Reich,

Nucl. Phys. A168, 449 (1971)] is —100.

b A more recent experimental value (see Helmer, Greenwood, and Reich) is 140.

which would be most susceptible to the higher-
order corrections. This exclusion meant we did
not attempt to fit the shift terms in K =0 bands.
These shift terms have been shown by Jones et
al.™ to be sensitive to tensor components, another
reason for not demanding that a central force fit
them. Table II shows the result of the fitting pro-
cedure. The optimum force strengths at the dif-
ferent ranges are shown in Table V. From Table
II we see a scatter in fit to experiment of about
+20 keV. The fit depends only weakly on range

of force, and as Jones et al.'® showed, even a 6

TABLE II. V,, matrix elements.

Force I Force II
Matrix element 2 (keV) (keV)
SRNLENER N ~152 -148
(%n;;[v”]g"%’) 319 292
R AINLES
<57,.7§,“’n»'§,,57,> 318 288
(%n '2§, [Vasl 55" 57» 191 140
G3,1Van 4, -2 188
SRRV ANEER -1 108
<_f2>n§7'p|vw|§n.§’) 209 213

2 Only the © quantum numbers are shown; for a com-

plete labeling of the states see Table I.

force is rather satisfactory in fitting pair split-
tings.

Table III gives, for the two optimal forces at
different range, the theoretical values of off-
diagonal single-particle n-p matrix elements
entering into the band-mixing cases for which
we reviewed the experimental evidence in the
first part of this paper. These are the single-
particle matrix elements entering into the Eqgs.
(21) with appropriate weighting factors from the
BCS wave functions. The matrix elements in
Table III were calculated from a program due to
Dr. Gordon Struble. In this program the Nilsson
wave functions are calculated by truncating the
set of basis states to a single oscillator shell in
the isotropic harmonic-oscillator basis. The de-
formation parameters used were: for Table II

TABLE IV. Comparison of theoretical and experimen-
tal mixing matrix elements (keV),

Exp. |my] [mpl
Case ref. (Force I) (Force I} | mexp|

mg-({""Hf) Eq. (21a) 133 158 158
me+ (‘Hf) Eq. (21b) 203 199 208
ms-(1"Yb) Eq. (21c) 270 249 235
m+ (®Hf)  Eq. (21d) 12 25 89
mg-(18Hf) 122 144
mg+ ((4HS) 194 190 <0.3AA
mg+ (YD) 129 126
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TABLE V. Potential strength of forces used in this work and comparison with the one used
in Ref. 18.

Force I Force I Jones et al. (Ref, 18)

Force (79=1.5 fm) (79=1.0 fm) (ry=1.5 fm) (r9=1.0 fm)
component (MeV) (MeV) (MeV) (MeV)
Vg =117 —-262 -105 -181
Vso =72 +35 =37 +48
V1o -62 -169 -120 —-236
Vse —25 -51 —74 —-79

approximately n,=7,=3.9, for Table III approxi-
mately 7, =3.70, 7, =3.75. The Nilsson potential
parameters U,, U,, K, , K, Were obtained from
equations on p. 14 of Ref. 12. The major shell
spacings Zw, and Zw, were obtained from equa-
tions on p. 6 of Ref. 12.

With three of the four force strength parameters
fixed by the Gallagher-Moszkowski pair fitting of
Table II, we allowed only the freedom to adjust
the fourth component (Wigner force) strength to
obtain best agreement with experimental band-
mixing elements from Eqgs. (21) as shown in Table
IV. In the last three cases there are data showing
band mixing is small, but with the energy separa-
tion of the admixed band unknown, only limits can
be set on mixing. The agreement is quite satis-
factory, though somewhat better for the shorter
range force II.

Table V summarizes the strengths of our optimal
Gaussian central forces at the two different, some-
what arbitrary ranges, and compares it to the
force obtained by Jones et al.'® In Table III of
Ref. 17 a slight error was made and the strengths
of the nuclear force should read (for theory C)
Vg=~11.2 MeV, V,=-13.1 MeV, V,=33.1 MeV,
7,=1.4 fm. To make the comparison possible, we
“transform” the force to the ranges of our force I
and II by multiplying the potential strengths by the
cube of the ratio of the ranges; that is, by (1.4/
1.5)3 for force I and (1.4/1.0)® for force II. Since
Vw is not determined by the Gallagher-Moszkowski
splittings, we use our values for it.

We are not able to make a detailed comparison
with the remarkably successful spherical shell-
model n-p force of Anantaraman and Schiffer?! or
of Kim and Rasmussen,?? since our code will not
handle a tensor-force component.

When an effective force of some reliability is
available, one can address the problem of com-
prehensive prediction of the energies and band-
mixing character of the multi-quasiparticle bands
expected in the region. Soloviev has summarized'®
many calculations on three- and four-quasiparticle
states of deformed nuclei; these calculations are

for the most part done in the framework of the
independent quasiparticle picture. There is also
need for more data on such states. Awaiting dis-
covery are surely other four-quasiparticle isomers
like the 16* isomer® of !"®Hf and perhaps five-
quasiparticle isomers like the ¥~ state®® in '""Hf.
Work is also being carried out by Khoo and Bert-
sch? to calculate the matrix elements connecting
quasiparticle states in deformed nuclei.

IV. CONCLUSIONS

An interesting pattern emerges from analysis of
band mixing of two-quasineutron and two-quasi-
proton basis states of deformed even nuclei. The
conditions for strong mixing to occur are (1) that
the zero-order energies of the 2¢gp and 2gx basis
states be reasonably close and (2) that the two
proton (neutron) orbital energies be on opposite
sides of the Fermi surface. The first condition
follows from the requirement of a small energy
denominator in the mixing determinant, and the
second from the appearance of BCS weighting
factors of form u,v,. From analysis of these mix-
ing ratios we can deduce a value for the Wigner
force strength in the effective »n-p residual inter-
action. The Wigner component cannot be deter-
mined from the splitting of Gallagher-Moszkowski
doublets in odd-odd nuclei. The off-diagonal ma-
trix elements extracted here also may manifest
themselves in configuration mixing in odd-odd
nuclei. It will be valuable to have more experi-
mental information to further constrain the ef-
fective force.
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