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Calculations similar to those previously used for a spherical nucleus were performed at
various deformations ranging in some cases from 6 =-0.5 to 6=1.0. The states for each spin
projection (K) were ordered according to energy to avoid crossing of states with same spin
projection and parity. The corresponding energies of the ordered sets for each deformation
were considered as the energy vs deformation for particular states. Energies at intermedi-
ate deformations were obtained using a cubic interpolation. Energy minima and their asso-
ciated deformations were determined for each state. States often have more than one energy
minimum indicating the presence of shape isomers as illustrated in the cases of '**Ho and

240py . In the former, a prolate and an oblate minimum exist which persist at higher energies.

In the latter, a second prolate minimum is observed where the fission isomer is expected.
Differences in energy gaps are discernible in the various minima. A plot of the deformations
corresponding to the energy minima of the lowest energy states for each spin projection (the
yrast levels) vs the spin projection reveals that the model nucleus becomes more oblate as
the spin projection increases. The change in oblateness contains discontinuities. A plot of
these yrast deformations vs the yrast energies for various nuclides indicates an apparent in-
dependence of the kind or size of the nuclide. The “best” G’s (pairing parameters) for some
nuclides were determined by fitting the level densities to the experimental values at the neu-
tron binding energies. The results for deformed nuclei are compared with the earlier results
obtained for spherical nuclei.

NUCLEAR STRUCTURE 40Ca, 114cd, 1%Ho, *'Pu; calculated levels vs spin
projection and deformation, yrast levels, deduced pairing parameters.
Nilsson levels, BCS pairing.
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I. INTRODUCTION

By elaboration of methods that had been pre-
viously described,' % it had been demonstrated
that spin-dependent nuclear level densities could
be readily calculated using numerical combinatorial
techniques.®? It was also demonstrated® that the
level densities that had been obtained using
algebraic approximations and which had been used
in analyses of nuclear reactions suffered short-
comings both in the treatment of the shell effects
and in the treatment of the spin distributions.
Modifications of the algebraic formulations could
be found® to accommodate the spin dependence,
but the treatment of the other shortcomings ap-
peared to be more difficult.

In the calculations mentioned above, the nucleus
was always assumed to be spherical. The error in-
troduced by this assumption was not clear. Per-
haps even more important, the properties of the
levels of deformed nuclei at substantial deforma-
tions, e.g. fission barriers, shape isomers, could
not be determined. The numerical calculations
were therefore extended to include the parameter
of deformation.

The general properties of nuclear deformation
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at the ground states of the nuclides, or in reverse,
the ground-state energies at various nuclear de-
formations of the nuclides, had been extensively
explored.® The low-lying excited states were
briefly examined by Mottelson and Nilsson,'® and
Kanestrom!!'!'? described a method for determining
the level density vs deformation at a given excita-
tion energy. More recently, Moretto'® has applied
the statistical mechanical methods to the deter-
mination of level densities at all excitations vs
deformation.

II. METHOD OF CALCULATION

The basic method of calculation is essentially
the same as described previously.® For each of
a selected number of deformations, the configura-
tion of ‘the nucleons in the nucleus is permuted
through all possible arrangements that have an
energy below the maximum desired or below the
maximum dictated by the number of single-particle
levels included in the calculations. The energy
of each configuration and the distribution of spin
projections associated with each configuration are
calculated.

The introduction of deformation as a parameter
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introduces necessary modifications which are
described in the following subsections.

A. Single-particle energies

The single-particle energies used in the calcula-
tions were obtained by using the Hamiltonian of
Gustafson et al.,'* the formalism for k and u of
Seeger,'® and a modification of a program written
by Chi.’® It should be noted that these single-
particle energies treat AN=2 mixing by an ap-
proximation included in the Hamiltonian. AN =2
mixing is considered to have an important effect
on the properties at high deformations.!” More
elaborate treatment of AN=2 mixing has been
described.!”*!® However, according to the treat-
ment described in this paper, the only important
characteristics of the levels are the spin projec-
tions, the parities, and the energies; the orbital
quantum numbers other than the spin projection
are unimportant. Consequently, only the effect
of AN=2 mixing on the single-particle energy
is of importance for this work.

The single-particle energies vs deformation are
generally obtained assuming constant volume for
the nucleus. This is usually handled by means of
a multiplicative function designated as the “volume
correction.” Alternative forms of the volume
correction have been given.!® It has been observed,
however, that the use of these single-particle
energies leads to large errors in the calculation
of the nuclear ground-state energies at deforma-
tions of interest. The Strutinsky?° prescription
is usually used to remedy this situation. This
method involves normalization of the ground-state
energies vs deformation of the shell-model nuclei
to the ground-state energies vs deformation of the
liquid-drop-model nuclei using smoothed single-
particle level densities. The suitability of the
Strutinsky procedure for calculation of other than
ground-state energies is not clear. A new pro-
cedure was developed?®' that determines the best
formulation of the volume correction by means of
a least-squares fit of the corrected ground-state
energies vs deformation of the shell-model nuclei
to the ground-state energies vs deformation of
liquid-drop-model nuclei. The corrected single-
particle energies can then be determined, and
from those, the energies of the nuclear configura-
tions at any excitation desired.

B. Pairing parameter

The nuclear energies are calculated using the
usual BCS formalism. The pairing parameter
G was assumed to be constant with deformation
although some workers??~2 have assessed G to
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be proportional to deformation. The parameter

G is also assumed to be the same for neutrons
and protons,® although others?®:2¢ have used
different values for the two nucleons. In the
calculations for spherical nuclei,® where j is a
good quantum number, 31 j subshells were used.
For deformed nuclei, the j subshell no longer
exists and consequently cannot be used as a con-
trolling factor. For this reason, 200 orbitals
were used for both the protons and the neutrons;
in the spherical case, 226 and 214 orbitals were
used, respectively. The effect of using fewer
orbitals for the calculations is to require a some-
what larger value of G. For many of the calcula-
tions reported in the present work, however, the
value of G used was 2.5/A%/% which is the average
of all of the G’s determined for spherical nuclei.
The best values of G were also determined inde-
pendently for a number of nuclei.

C. Spin-projection distribution

As noted above, j is a good quantum number for
the spherical nuclei but not for the deformed
nuclei. Consequently, the spin-projection distribu-
tions were calculated from the spin projections
(k, — k) of the orbitals that were occupied by un-
paired nucleons. For example, two unpaired
nucleons couple to produce spin projections of
k, =k, and k, +k,, where k, and &, take on the
values of £ and - % of orbital 1 or 2. The spin
projections of the third unpaired nucleon are
coupled to the spin projections of the first two
in the same way, and so on. To simplify the
computations, the negative spin projections were
not stored since they occur in the identical
abundances as the positive spin projections. The
computations were shortened by calculating
| B, = k,| rather than k, - k,, by recognizing that
if &, =k,, then the resulting spin projection K =0
must occur twice, and that if 2, =0, the resulting
spin projection K =0 occurs only once.

The kk coupling described for this model is
not necessarily applicable to realistic nuclei. In
a more realistic model, mixing due to Coriolis
coupling and other possible interactions may be
important at high energies. However, the total
number of states remains unchanged. Rotational
bands are also ignored.?” At low energies where
K is a good quantum number, the sum of the states
given and the rotational states ignored equals the
true state density. At higher energies where K
is not necessarily a good quantum number, the
situation is more complicated. Thus, for complete
level densities and a determination of the moment
of inertia 4,, knowledge of the rotational bands
is required. This work was restricted to the
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model discussed. The introduction of other degrees
of freedom is reserved for future work.

D. Energies versus deformation

The approach followed by Mottelson™ was to
calculate the energies of specific configurations of
nucleons at various deformations and interpolating
for energies at intermediate deformations. This
type of calculation leads to a large number of
crossings for levels of the same spin and parity.
Except in the discussion of reaction dynamics,
such crossings, strictly speaking, are forbidden.
For the purpose of a static description of levels,
it is necessary to leave them uncrossed and to
restrict crossing and jumping to the calculations
of reactions.?®

Uncrossed levels can actually be calculated more
simply in some respects since it is no longer
necessary to keep track of the configurations of
the nucleons. For each nucleon, for each deforma-
tion, and for each spin projection and parity, the
states associated with each energy calculated are
put into the order of increasing energies. For
further conservation of computing space and time,
the number of states are binned into discrete
energy bins; 0.01 MeV before coupling the two
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FIG. 1. First 100 states of 114Cd, spin projection 0,
sven parity.
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nucleons, and 0.1 MeV after coupling. This is
similar to the procedure used for the spherical
nuclei.® Finally, the corresponding ordered states
at each deformation (for a given spin projection

and parity) are matched. Energies at intermediate
deformations were obtained using a cubic interpola-
tion. The results are illustrated in Figs. 2-9.

In all of these figures, where available, the first
100 levels are presented. Many coincide.

III. SPIN- AND PARITY-DEPENDENT LEVELS
VS DEFORMATION

Using the statistical mechanical techniques,
Moretto'® has calculated level densities vs de-
formation. In his original work the effects of
angular momentum were not included. In later
work, Moretto?®3° demonstrate how this might
be done. The conventional approach for handling
the spin distribution used randomly oriented spins
of an average value and the Fermi gas model.
Questions on this approach have been raised.®’®
The results presented in this paper, as in the
previous results for spherical nuclei, do not
involve these assumptions nor do they include
the errors introduced by the mathematical ap-
proximations used in the other methods, e.g. the
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FIG. 2. First 100 states of 114Cd, spin projection 10,
even parity.
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saddle point method of integration. They are,
therefore, expected to reflect more precisely the
basic nuclear model assumed, that is, the shell
model normalized to the ground-state energies of
the liquid-drop model. The results are presented
as states of a given spin projection and parity vs
deformation. The effects of pairing, shell clo-
sures, parity, and angular momentum can be ob-
served directly.

In most of the nuclides discussed below, the
energy minima are described as prolate or oblate
or both. It should be noted here that this descrip-
tion is only for a cut in deformation space along
the quadrupole axis. Minima that are described
here may in reality not be minima when other
degrees of freedom are included. For the same
reason, barriers that are described here may
not be real barriers.

Figures 1 and 2 contain the first 100 states for
each of two selected spin projections and parities
of Cd. This nuclide lies near a closed neutron
shell and is expected to be spherical. That it ap-
pears to be deformed is one of the shortcomings
of the normalization of shell-model nuclei to
liquid-drop-model nuclei by either the Strutinsky
procedure or the volume-correction procedure.

4.0

>
> —
=
>
(U]
@
w
Z 2.0 —
w
IGGHo
0.0 —KO —
70
1 I S S I I
—-0.4 0.2 0.0 0.2 0.4

DEFORMATION (8)

TIG. 3. First 100 states of ®Ho, spin projection 0,
even parity.

Other methods®! may avoid this problem. The en-
ergy difference between the spherical nucleus and
the deformed nucleus is, on the other hand, on
the order of or smaller than the errors in energy
observed in other aspects of this work. If, even
including higher-order moments, the energy bar-
rier is real, the lifetime of the isomers for a
small barrier would be very short, and experi-
mentally the nuclide would appear to be spherical.
The best interpretation of these results, then, is
that the nucleus is spherical, with a broad mini-
mum, and that it does not require much energy
for small deformations. By the time the excitation
energy reaches 3 MeV, the calculations find that
the nuclide is spherical. That the calculated
equilibrium deformation is not constant with ener-
gy agrees with the findings of Soloviev et ql.3!32
As a contrast, the first 100 states of each of
two selected spin projections and parities of '*°Ho,
a well-defined deformed nuclide, are given in
Figs. 3 and 4. There appear to be two stable de-
formations, one oblate and the other prolate, with
a large energy barrier separating them (again,
excepting the possible contribution of higher-order
deformations). This is illustrative of the possible
existence of shape isomers.?® The relative stabi-
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FIG. 4. First 100 states of 1%8Ho, spin projection 0,
odd parity.
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FIG. 5. First 17 states of 24°Pu, spin projection 0,
even parity.
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lity of the two isomers is not readily determined
from these calculations. Some error here prob-
ably arises from the polynomial approximation of
the volume correction. In these calculations it
was not reasonable to calculate up to the energies
at which the shell effects would disappear, that is
where the nucleus would appear to be spherical.
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FIG. 6. Deformations of energy minima of yrast
states of 4'Ca: even parity; ------ odd parity;
® secondary minima, even parity; O secondary minima,
odd parity.
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FIG. 7. Deformations of energy minima of yrast
states of 14Cd: even parity; ——— odd parity;
® secondary minima, even parity; O secondary minima,
odd parity.

For similar nuclei, Moretto®® found that the shell
effects disappear at about 60 MeV, and in reason-
able agreement others33:3* have reported the disap-
pearance of shell effects at about 80-90 MeV.

The first 17 states of K=0, 7=0 for the fission-
able nuclide #*°Pu are illustrated in Fig. 5. Here
the near ground-state prolate and oblate isomers
appear as in the case of °*Ho, and a second pro-
late isomer also appears, the well-known fission
isomer. The fission saddle point also appears in
the upper right-hand corner of the figure. One
point of interest to the investigation of the progress
of fission through the shape isomers and across
the saddle point is the differences encountered in
the low-lying levels. In Figs. 3-5, these differ-
ences (as gaps) can be readily discerned.
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FIG. 8. Deformations of energy minima of yrast
states of 1%¢Ho: primary minima; -+ second-
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IV. YRAST LEVELS

Grover? developed a combinatorial technique to
calculate yrast levels of nuclei, and in the same
paper summed the significance of yrast levels in
nuclear calculations. In the combinatorial calcu-
lations of level densities by Hillman and Grover,®
yrast levels are determined concurrently. A pro-
gram for the purpose of calculation of yrast levels
alone is much simpler than the level-density pro-
gram, and one was written by Hillman and Gilat.3®
This latter program was modified for inclusion of
deformation as a parameter. The inclusion of
pairing in the calculations rendered them exces-
sively long for obtaining the yrast levels at very
high spins. It was demonstrated, however, in the
cases of *°Ca and of ''*Cd, that only small differ-
ences were introduced by the omission of pairing.
Consequently all of the calculations reported here
were carried out without pairing. The results are
summed in Figs. 6-10.

The results for *°Ca (Fig. 6) and for Cd (Fig.
7) are given for both even and odd parity. Very
little difference is evident, especially for *!*Cd.
In both cases the nuclei become more oblate with
increased spin. The curve for *°Ca is very jagged.
However, if the high points are not connected to
the next point which is often a low point, and if
the points of the secondary minima are given the
same consideration as the points of the primary
minima, then the resulting curves suggest that a
succession of minima is developed, principally at
the oblate side of deformation, and with increasing
spin the successive minima move to the prolate
side of deformation. Meanwhile the new minima
are more and more oblate, and the nucleus as a
whole has the appearance of becoming more oblate
with increased spin. The same phenomenon is not
apparent at all in *Cd. In ®Ho (Fig. 8), three
separate minima are found; none change deforma-
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FIG. 9. Deformations of energy minima of yrast
states of 24%Pu: primary minima; -+ second-
ary minima; @ primary minima; O secondary minima;
— — — highest energy calculated.
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tion significantly with increased spin. However,
at first, the most prolate minimum is the primary
minimum, then the original oblate minimum be-
comes primary, and finally, at about K =68 a new
minimum appears which becomes primary at K
=73. Thus in this case, too, the nuclide becomes
more oblate with increasing spin because of the
generation of new primary minima with increased
spin. Thus (again, ignoring the possible effects
of higher-order deformations) there are apparent
discontinuities in the deformation vs spin relation-
ship, at least as far as the yrast levels are con-
cerned. The data are not available at high enough
spins to give the same interpretation to **°Pu (Fig.
9), and unfortunately, the effect on the fission sad-
dle point is also not available. Holm and Greiner®
have reported that the fission barrier decreases
with increased spin. It is interesting to note that
this pattern of discontinuities was observed by
Cohen, Plasil, and Swiatecki®” in their calculations
of the equilibrium deformations of a spinning liquid
drop even though shell effects were not included
in their calculations. The phenomenon reported
in the present work is undoubtedly due to shell
effects.

For yrast states at high-spin projections only
a few orbitals containing unpaired nucleons are
involved, and the shape of the nucleus approxi-
mates the shape of these orbitals. The high-spin
orbitals are pancake shaped, and for this reason
it can be easily seen why the nucleus becomes
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more oblate in the yrast states with increasing
spin projections. At higher excitations for a fixed-
spin projection, other low-spin orbitals make con-
tributions, and the nucleus tends to be more spher-
ical.

If the results for the first three nuclei are com-
bined and plotted as a function of deformation and
energy (Fig. 10) rather than deformation and spin
projection, then it appears as if they coincide
above approximately 15 MeV. Although they are
included in the plot, sufficient data is not available
for 2%°Pu to include in the interpretation. However,
it appears that as far as the deformations of yrast
levels are concerned, all nuclides behave alike
above a certain energy. Finally, in Fig. 11 are
given selected yrast curves.

V. DETERMINATION OF G

The parameter G has been traditionally deter-
mined as that value which gives the correct energy
gap for the nuclidic mass surface. Hillman and
Grover® determined G by finding the value that
caused the calculated level density to best fit the
experimental value at the neutron binding energy.
The latter method was also used in the present
work. Since fewer orbitals were used in the calcu-
lations for the deformed nuclei than when assuming
the nuclei to be spherical, the values of G are ex-
pected to be higher than those reported in the pre-
vious work. For comparison, the values for
spherical nuclei were recalculated using the fewer
orbitals. These are compared in Fig. 12 with the
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FIG. 11. Selected yrast states.
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results including deformation.

There are several a priori expectations: one,
that there should be no change for spherical nu-
clei. However, since spherical nuclei generally
lie near closed shells, and the determination of
G appears to be erratic near closed shells and
probably breaks down, this expectation is not
readily verifiable. A second is that, for the same
value of G, inclusion of deformation should de-
crease the calculated level density at the neutron
binding energy. A lower value of G would then be
necessary to give the correct calculated level den-
sity. This arises since at the equilibrium defor-
mation, the energy is less than or equal to the
energy for the spherical nuclei. This effect is
expected to be more pronounced near the ground
state since with increasing excitation energies the
nuclei become more spherical. The alternative
effect is that the lower degeneracy of single-parti-
cle states for nonspherical nuclei decreases the
relative effect of increased values of G, and causes
relatively higher level densities. Then a higher
value of G is required to bring the calculated level
density down at the neutron binding energy. This
becomes more important if the nuclei remain de-
formed to some extent at the neutron binding ener-
gies. Undoubtedly both alternatives play competing
roles. The results (Fig. 12) indicate that there is
very little difference between the values of G for
nuclei with or without deformation. A slight trend
appears to favor higher values of G when deforma-
tion is included.
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All programs mentioned in this paper are avail-
able to prospective users. Details concerning the
programs will be described elsewhere.

I am indebted to Dr. J. Robb Grover for suggest-
ing this problem, for his continued encouragement,
and for valuable and stimulating discussions.

*This work performed under the auspices of the United
: States Atomia Energy Commission.
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