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Calculations similar to those previously used for a spherical nucleus were performed at

various deformations ranging in some cases from & =-0.5 to 6=1.0, The states for each spin

projection (K) were ordered according to energy to avoid crossing of states with same spin

projection and parity. The corresponding energies of the ordered sets for each deformation

were considered as the energy vs deformation for particular states. Energies at intermedi-

ate deformations were obtained using a eubie interpolation. Energy minima and their asso-
ciated deformations were determined for each state. States often have more than one energy

minimum indicating the presence of shape isomers as illustrated in the cases of Ho and

Pu. In the former, a prol. ate and an oblate minimum exist which persist at higher energies.

In the latter, a seeondprolate minimum is observed where the fission isomer is expected.

Differences in energy gaps are discernible in the various minima. A plot of the deformations

corresponding to the energy minima of the lowest energy states for each spin projection (the

yrast levels) vs the spin projection reveals that the model nucleus becomes more oblate as

the spin projection increases. The change in oblateness contains discontinuities. A plot of

these yrast deformations vs the yrast energies for various nuclides indicates an apparent in-

dependence of the kind or size of the nucl. ide. The "best" G's (pairing parameters) for some

nuclides were determined by fitting the level densities to the experimental. values at the neu-

tron binding energies. The results for deformed nuclei are compared with the earlier results

obtained for spherical nuclei.

NUCLEAR STRUCTURE OCa, l~ Cd, @Ho, ~ Pu; calculated levels vs spin

projection and deformation, yrast l.evels, deduced pairing parameters.
Nilsson levels, BCS pairing.

I. INTRODUCTION

By elaboration of methods that had been pre-
viously described, ' ' it had been demonstrated
that spin-dependent nuclear level densities could
be readily calculated using numerical combinatorial
techniques. " It mas also demonstrated6 that the
level densities that had been obtained using
algebraic approximations and which had been used
in analyses of nuclear reactions suffered short-
comings both in the treatment of the shell effects
and in the treatment of the spin distributions.
Modifications of the algebraic formulations could
be found' to accommodate the spin dependence,
but the treatment of the other shortcomings ap-
peared to be more difficult.

In the calculations mentioned above, the nucleus
was always assumed to be spherical. The error in-
troduced by this assumption mas not clear. Per-
haps even more important, the properties of the
levels of deformed nuclei at substantial defoxma-
tions, e.g. fission barriers, shape isomers, could
not be determined. The numerical calculations
mere therefore extended to include the parameter
of deformation.

The general properties of nuclear deformation

at the ground states of the nuclides, or in reverse,
the ground-state energies at various nuclear de-
formations of the nuclides, had been extensively
explored. ' The low-lying excited states mere
briefly examined by Mottelson and Nilsson, 'o and
Kanestrom"'" described a method for determining
the level density vs deformation at a given excita-
tion energy. More recently, Moretto" has applied
the statistical mechanical methods to the deter-
mination of level densities at all excitations vs
deformation.

H. METHOD OF CALCULATION

The basic method of calculation is essentially
the same as described previously. For each of
a selected number of deformations, the configura-
tion of'the nucleons in the nucleus is permuted
through all possible arrangements that have an
energy belom the maximum desired or below the
maximum dictated by the number of single-particle
levels included in the calculations. The energy
of each configuration and the distribution of spin
projections associated with each configuration are
calculated.

The introduction of deformation as a parameter
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introduces necessary modifications which are
described in the following subsections.

A. Single-particle energies

The single-particle energies used in the calcula-
tions were obtained by using the Hamiltonian of
Gustafson etal. ,

'~ the formalism for ~ and p, of
Seeger, "and a modification of a program written
by Chi." It should be noted that these single-
particle energies treat AN=2 mixing by an ap-
proximation included in the Hamiltonian. b, N = 2
mixing is considered to have an important effect
on the properties at high deformations. " More
elaborate treatment of AN=2 mixing has been
described. "'" However, according to the treat™
ment described in this paper, the only important
characteristics of the levels are the spin projec-
tions, the parities, and the energies; the orbital
quantum numbers other than the spin projection
are unimportant. Consequently, only the effect
of 4%=2 mixing on the single-particle energy
is of importance for this work.

The single-particle energies vs deformation are
generally obtained assuming constant volume for
the nucleus. This is usually handled by means of
a multiplicative function designated as the "volume
correction. " Alternative forms of the volume
correction have been given. " It has been observed,
however, that the use of these single-particle
energies leads to large errors in the calculation
of the nuclear ground-state energies at deforma-
tions of interest. The Strutinsky' prescription
is usually used to remedy this situation. This
method involves normalization of the ground-state
energies vs deformation of the shell-model nuclei
to the ground-state energies vs deformation of the
liquid-drop-model nuclei using smoothed single-
particle level densities. The suitability of the
Strutinsky procedure for calculation of other than
ground-state energies is not cleax. A new pro-
cedure was developed that determines the best
formulation of the volume correction by means of
a least-squares fit of the corrected ground-state
energies vs deformation of the shell-model nuclei
to the ground-state energies vs deformation of
liquid-drop-model nuclei. The corrected single-
particle energies can then be determined, and
from those, the energies of the nuclear configura-
tions at any excitation desired.

8. Pairing parameter

The nuclear energies are calculated using the
usual BCS formalism. The pairing parameter
G was assumed to be constant with deformation
although some workers" "have assessed G to

be proportional to deformation. The parameter

G is also assumed to be the same for neutrons
and protons, altllough othex's ' have used
different values for the two nucleons. In the
calculations for spherical nuclei, where j is a
good quantum number, 31 j subshells were used.
Fox deformed nuclei, the j subshell no longer
exists and consequently cannot be used as a con-
trolling factor. For this reason, 200 orbitals
wexe used for both the protons and the neutrons;
in the spherical case, 226 and 214 orbitals were
used, respectively. The effect of using fewex
orbitals for the calculations is to require a some-
what larger value of G. For many of the calcula-
tions reported in the present work, however, the
value of G used was 2.5/A' ', which is the average
of 311 of the G's determined for spherical nuclei.
The best values of G were also determined inde-
pendently for a number of nuclei.

C. Spin-projection distribution

As noted above, j is a good quantum number for
the spherical nuclei but not for the deformed
nuclei. Consequently, the spin-projection distribu-
tions were calculated from the spin projections
(k, —k) of the orbitals that were occupied by un-
paired nucleons. For example, two unpaired
nucleons couple to produce spin projections of
k, -k, and 0, +k„where k, and A, take on the
values of 0 and -k of orbital 1 or 2. The spin
projections of the third unpaired nucleon are
coupled to the spin projections of the first two
in the same way, and so on. To simplify the
computations, the negative spin projections were
not stored since they occur in the identical
abundances as the positive spin projections. The
computations were shortened by calculating
)k, —k, ~

rather than k, —k„by recognizing that
if k, =k» then the resulting spin projection E =0
must occur twice, and that if k, =0, the resulting
spin projection K = 0 occurs only once.

The kk coupling described for this model is
not necessarily applicable to realistic nuclei. In
a more realistic model, mixing due to Coriolis
coupling and other possible interactions may be
important at high energies. However, the total
number of states remains unchanged. Rotational
bands are also ignored. " At low energies where
E is a good quantum number, the sum of the states
given and the rotational states ignored equals the
true state density. At higher energies where K
is not necessarily a good quantum number, the
situation is more complicated. Thus, for complete
level densities and a determination of the moment
of inertia d~, knowledge of the rotational bands
is required. This work was restricted to the
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saddle point method of integration. They are,
therefore, expected to reflect more precisely the
basic nuclear model assumed, that is, the shell
model normalized to the ground-state energies of
the liquid-drop model. The results are presented
as states of a given spin projection and parity vs
deformation. The effects of pairing, shell clo-
sures, parity, and angular momentum can be ob-
served directly.

In most of the nuclides discussed below, the
energy minima are described as prolate or oblate
or both. It should be noted here that this descrip-
tion is only for a cut in deformation space along
the quadrupole axis. Minima that are described
here may in reality not be minima when other
degrees of freedom are included. For the same
reason, barriers that are described here may
not be real barriers.

Figures 1 and 2 contain the first 100 states for
each of two selected spin projections and parities
of "Cd. This nuclide lies near a closed neutron
shell and is expected to be spherical. That it ap-
pears to be deformed is one of the shortcomings
of the normalization of shell-model nuclei to
liquid-drop-model nuclei by either the Strutinsky
procedure or the volume-correction procedure.

Other methods" may avoid this problem. The en-
ergy difference between the spherical nucleus and
the deformed nucleus is, on the other hand, on
the order of or smaller than the errors in energy
observed in other aspects of this work. If, even
including higher-order moments, the energy bar-
rier is real, the lifetime of the isomers for a
small barrier would be very short, and experi-
mentally the nuclide would appear to be spherical.
The best interpretation of these results, then, is
that the nucleus is spherical, with a broad mini-
mum, and that it does not require much energy
for small deformations. By the time the excitation
energy reaches 3 MeV, the calculations find that
the nuclide is spherical. That the calculated
equilibrium deformation is not constant with ener-
gy agrees with the findings of Soloviev et al."'"

As a contrast, the first 100 states of each of
two selected spin projections and parities of "'Ho,
a well-defined deformed nuclide, are given in
Figs. 3 and 4. There appear to be two stable de-
formations, one oblate and the other prolate, with
a large energy barrier separating them (again,
excepting the possible contribution of higher-order
deformations). This is illustrative of the possible
existence of shape isomers. " The relative stabi-
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IV. YRAST LEVELS
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Gx over' developed a combinatorial technique to
calculate yrast levels of nuclei, and in the same
paper summed the significance of yrast levels in
nuclear calculations. In the combinatorial calcu-
lations of level densities by Hillman and Grover, '
yrast levels are determined concurrently. A pro-
gram for the purpose of calculation of yrast levels
alone is much simpler than the level-density pro-
gram, and one was written by Hillman and Gilat."
This latter program was modified for inclusion of
deformation as a parameter. The inclusion of
pairing in the calculations rendered them exces-
sively long for obtaining the yrast levels at very
high spins. It was demonstrated, however, in the
cases of "Ca and of '"Cd, that only small differ-
ences were introduced by the omission of pairing.
Consequently all of the calculations reported here
were carried out without pairing. The results are
summed in Figs. 6-10.

The results for ' Ca (Fig. 6) and for '"Cd (Fig.
7) are given for both even and odd parity. Very
little difference is evident, especially for '"Cd.
In both cases the nuclei become more oblate with
increased spin. The curve for 'OCa is very jagged.
However, if the high points are not connected to
the next point which is often a low point, and if
the points of the secondary minima are given the
same consideration as the points of the primary
minima, then the resulting curves suggest that a
succession of minima is developed, principally at
the oblate side of deformation, and with increasing
spin the successive minima move to the prolate
side of deformation. Meanwhile the new minima
are more and more oblate, and the nucleus as a
whole has the appearance of becoming more oblate
with increased spin. The same phenomenon is not
apparent at all in "Cd. In "6Ho (Fig. 8), three
separate minima are found; none change deforma-
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FIG. 10. Deformations of energy minima of yrast
states as a function of energy.

tion significantly with increased spin. However,
at first, the most prolate minimum is the primary
minimum, then the original oblate minimum be-
comes primary, and finally, at about E= 68 a new
minimum appears which becomes primax y at E
= 73. Thus in this case, too, the nuclide becomes
more oblate with increasing spin because of the
generation of new primary minima with increased
spin. Thus (again, ignoring the possible effects
of higher-order deformations) there are apparent
discontinuities in the deformation vs spin relation-
ship, at least as far as the yrast. levels are con-
cerned. The data are not available at high enough
spins to give the same interpretation to "pu (Fig.
9), and unfortunately, the effect on the fission sad-
dle point is also not available. Holm and Greiner'
have reported that the fission barrier decreases
with incxeased spin. It is interesting to note that
this pattern of discontinuities was observed by
Cohen, Plasil, and Swiatecki" in their calculations
of the equilibrium deformations of a spinning liquid
drop even though shell effects were not included
in their calculations. The phenomenon reported
in the present work is undoubtedly due to shell
effects.

For yrast states at high-spin projections only
a few orbitals containing unpaired nucleons are
involved, and the shape of the nucleus approxi-
mates the shape of these orbitals. The high-spin
orbitals are pancake shaped, and for this reason
it can be easily seen why the nucleus becomes
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All programs mentioned in this paper are avail-
able to prospective users. Details concerning the
programs will be described elsewhere.

I am indebted to Dr. J.Robb Grover for suggest-
ing this problem, for his continued encouragement,
and for valuable and stimulating discussions.
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