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Two-step shell-model calculation of Po~
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The low-lying levels ~SPo have been calculated by a two-step shell-model calculation
which uses the vector-coupled states from 06Pb and OPo as a basis. The calculated and

experimental energy levels are in good agreement with each other.

NUCLEAR STRUCTURE 2 8Po; two-step shell model, calculated levels, J,n.

I. INTRODUCTION

Conventional shell-model calculations have been
able to correlate and explain in a systematic man-
ner a great deal of the experimental data in the
lead region. For example, the recent calculations
by Ma and True' have been able to describe the
structure and positions of most of the low-lying
levels in the eight nuclei ' Pb, "Pb, "Po, "'Bi,
"Bi, Tl, ' Tl, and' Hg.

By using the results of the calculations of Ma

and True for the nuclei ' 'Pb and" Po, it is pos-
sible to construct a suitably truncated basis which

can be used to describe the structure of the low-
lying levels of "'Po. The motivation for using a
two-step appxoach and expressions for the two-
hole-two-particle matrix elements will be de-
scribed in Sec. II. Section III will discuss the
'O'Po calculations and compare the results with

the experimentally observed data.

II. THEORY

A. Basis states

From a conventional shell-model viewpoint,
'"Po should be described by two proton particles
outside of and two neutron holes in the doubly mag-
ic nucleus '08Pb. In this paper, the neutron holes
will be restricted to orbitals in the major neutron
shell just below N = 126 and the proton particles
will be restricted to orbitals in the major proton
shell just above Z =82 and these orbitals' are
shown in Fig. 1. The justification for neglecting
other possible single-particle orbitals is the rela-
tively large energy gaps between major shells. On

the other hand, there is usually no a Prion reason
why some orbitals in a major shell should be used
while others are neglected. In fact, calculations
indicate that all orbitals in a major shell should
be retained since important correlations result

from configuration mixing —see for example, the
Ma and True calculations. '

A conventional shell-model calculation for Po
would be to diagonalize the Hamiltonian matrix
where the basis states consist of coupling two
holes and two particles to a given total angular
momentum J. Restricting the neutron holes and

proton particles to the orbitals between the magic
numbers of 82 and 126, there will be about 2500
basis states for J =2' in 'OSPo. Although not im-
possible, it is not feasible with present day com-
puters to evaluate and diagonalize the resulting
2500 by 2500 J =2' Hamiltonian matrix. An alter-
native approach, which is used in this paper, is
to do a two-step shell-model calculation where a
set of correlated basis states are used which con-
tain the important correlations between particles
or holes in a major shell and where a suitable
truncation can be made such that the Hamiltonian
matrices to be diagonalized are not large.

The uncorrelated "Pb ground state will be taken
as the "vacuum" state or "core," and creation and

annihilation operators for particles and holes are
defined relative to this core. The Hamiltonian can
be written symbolically as

H =Ho +Ho p +Hot, + Vpppp+ Vgggg+ Vgpp+ V' . (I)

In E|I. (I), Ho represents the Hamiitonian of the
core consisting of the kinetic energies and mutual
interaction energies of all the particles in the core.
The eigenvalue E~ of H~ is a constant energy which

will not be considered further since all energies
will be renormalized so that the ground state of
'"Po will lie at zero energy.

H~ p
is the core-particle Hamiltonian represent-

ing the kinetic energy of the particles outside the
core plus their interaction with the particles in
the core while H~h describes the holes in a sim-
ilar fashion.

V&hh&, Vpppz, and Vhp&p rePresent the hole-hole,
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particle-particle, and hole-particle interactions,
respectively. V' represents everything else in the
Hamiltonian and will be neglected from now on
since V' will not contribute to the Hamiltonian ma-
trix elements when the basis consists of two-hole-
two-particle states.

In the conventional shell-model calculation de-
scribed above, the basis states are eigenfunctions
of H~ p+H~h. One would then calculate the matrix
elements of Vpppp+ Vhhhh+ Vhphp and diagonalize the
resulting Hamiltonian matrix. However, as was
pointed out above, this approach is not feasible as
very large matrices would be encountered.

An alternative approach, the two-step shell-
model approach, is to form a set of correlated
basis states by vector coupling the eigenfunctions
of Hpp+ Vpppp to the eigenfunctions of Hch+ V»» and
then diagonalizing the interaction Vhphp For "'Po,
the eigenfunctions of Hp p+ Vpppp are the '"Po eigen-
states while the eigenfunctions of H~h+ V»» are
the ' 'Pb eigenstates. If all the allowed eigen-
states of ' Po and Pb were used to construct a
correlated basis for the second step in a two-step
calculation, the matrices to be diagonalized would
be just as large as for the conventional shell-mod-
el approach described above since both bases span
the same configuration space. However, if energy
considerations and/or some other criteria can be
used to limit the number of eigenstates which are
used from "Po and 'Pb, then the number of basis
states used in the second step of the two-step ap-
proach can be made relatively small. As will be
seen in Sec. III below, only nine eigenstates from

Pb and five eigenstates from "Po were used in
constructing a correlated basis for the "'Po cal-
culation.

It should be stressed, however, that the '"Pb
eigenstates will have neutron-hole correlations
from the whole major neutron shell contained in
them and similarly the proton-particle correlations
from the major proton shell will be contained in
the '"Po wave functions. Providing the particle-
hole interaction is not so strong as to significantly
alter these correlations, the two-step approach
will be valid. If, on the other hand, these correla-
tions are significantly altered, then a larger basis
will have to be used in the two-step calculation and
the two-step approach may become just as "compli-
cated" as a conventional shell-model approach. As
will be discussed in Sec. III, the good agreement
between the experimentally observed energy levels
in ' 'Po and those calculated by the two-step pro-
cess implies that the hole-particle interaction
does not drastically alter the correlations which
are already present in the '"Pb and" Po eigen-
functions.

For the two-step calculation to work, the eigen-
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FIG. 1. The experimental single-particle levels in the
lead region from Ref. 2. The energies are in MeV.

states used to form the correlated basis should be
"very good" eigenstates. For example, the eigen-
states of ' 'Pb and ' Po used to construct the cor-
related basis for ' 'Po should give very good de-
scriptions of the low-lying states in '"Pb and
' Po, respectively. If this were not the case,

then one would not expect to obtain a good descrip-
tion of the low-lying states in ' 'Po.

In a two-step calculation where one vector cou-
ples two multiparticle eigenstates together, care
must be taken to insure that all like particles are
antisymmetrized and that center-of-mass spurious
states are eliminated in the final results. Neither
of these two problems arise for the two-step cal-
culation of ' 'Po. The neutron holes are already
antisymmetrized in the '"Pb wave functions and
the proton particles are already antisymmetrized
in the '"Po wave functions. In general, there are
no center-of-mass spurious state problems if one
restricts oneself to a single harmonic-oscillator
shell. In the "'Po case, the major shell for neu-
tron holes and proton particles differ from the
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harmonic-oscillator N =5 shell due to the single-
particle spin-orbit interaction. This interaction
causes the li»» orbital from the N=6 shell to be
included and the 1hyg/2 orbital from the N =5 shell
to be excluded. The center-of-mass raising and
lowering operators have selection rules of 4l =1
and b,J & 1. But these operators will not connect
the 1i»„orbital to any other orbital in the major
shell used. So indeed, there are no spurious state
problems in the Po calculatj. on.

B. Two-hole-two-particle matrix elements

The evaluation of the two-hole-two-particle ma-
trix elements is most conveniently done by using
second quantization techniques with the introduc-
tion of creation and annihilation operators for the
holes and particles.

Let H, and P& represent the quantum numbers
n, , l„j;,q; of the holes and particles, respec-
tively, where q& represents a charge quantum num-
ber to distinguish between neutrons and protons.
When H; or P; appears in a 3-j, 6-j, etc. , coeffi-
cient, they will represent j& only. lH& and lP, will
be used to represent the l; for the holes and parti-
cles while h; and P; will represent the magnetic
quantum numbers (z component of j) of the holes
and particles.

The "'Pb eigenstates will be a linear combina-

tion of the basis states IH, H, J,M,) and the 'hopo

eigenstates will be a linear combination of the
basis states I P, P, J,M,). When these basis states
are vector coupled together, the two-hole-two-
particle correlated basis can be expanded as a
linear combination of the two-hole-two-particle
states IH, H, J„P,P, J„JM)where the coupling
scheme is 1+s = j, H, +H, =J„P,+P, =J„and
J, + J, = J. Antisymmetrization between like parti-
cles are implied in these basis states. Some addi-
tional notations which will be used below are:
a=—-a; 8(abc) -=(-1)""'; a=—(2a+1)"'; 5(ab)
-=Kronecker 5 function; 6(P,P, ) or 5(H,H, ) im-
plies 5(n,n, )5(l,f, )6(j,j,)5(q, q, ); IabJ) is a vector-
coupled two-particle state with a+b = J; V is a
two-body interaction;

(abJ
I

V
I
cdJ)D z —= (abJ

I
V I cdJ) 8(cdJ)(-abJ

I
V

I
dcJ);

(
a b c = %signer 3-j symbol;
n P y

~ ~a b c = Wigner 6-j symbol;
d e

a b c~/

d e f —= Wigner 9-j symbol.
g h i

The two-hole-two-particle matrix element of

Vhphp which will be called % is given by

(H,H2 Jh& P,P—
g Jg& JM

I VhPhPIHsH4 Js& P,P,J,& JM)

J, jm J„J48(IIhH,H, H4P, P~P~P4 J,J2 j~ J4)
([1 +(5HH, ) [1+ (5HH )J4[1+5(P,P, )][1+5(P,P, )J]"'

(h, h M,)(P, P, M, )(h, h, M, )(P, P, M, )(M, M, M)(M, M M)

X (Hhb h&Hmbm& Ph Ph& P2 P2 I VhPhPIH3b3&H4b4& P3 P3& P4P4) & (2)

where the sum is over all magnetic quantum numbers. The matrix element on the extreme right-hand side
of Eq. (2} can be expressed in terms of creation and annihilation operators which are then put in normal
form. This procedure will result in 16 terms for the matrix element%. The first term which will be
called%, is

J,J,J,J48(J,J~ Js J4)5(H2II4)5(P2P4)
][1+5(H H )][1+5(H H }][1+5(P,P, )] [1+5(P,P )]j'

all m's

" @'"' '"'~(M' M' &I)(&I' M' &I) (h' h' M')(h' h' M')

pl p2 M2 p3 p. M4 px h3 M' h z p3 M' (3)

The remaining 15 terms can be obtained simply from 3}t, as will be indicated in Eq. (6) below after the
sums over the magnetic quantum numbers in Eq. (3) have been done.

Using the identities in the book by Rotenberg et al. , the sums over the magnetic quantum numbers in
%, can be done. In the Racah algebra below, H;, h&, P&, and P& will be assumed to be half-integer num-
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bere. The successive steps in reducing the matrix element SR, are as follows: By Eq. (3.21}of Rotenberg
et al. 3

(P, P, M, )(P, P, M, ) P, h, M')(h, P, M')

P3, N'

J 0 x
)(HPP)h'( ' ' )( ' ') P P H

Xp Sl

by Eq. (2.20) of Rotenberg et aL

Ng) N2) hg

by Eq. (2.18) of Rotenberg et al

)(h M)( — — ') (
' ' —)(

' ' —')( ' ') =)(H H *)I ' ' I.
h2, h3, m

N3, N4, N

Using the above expressions, one can write It:, as

jij J J 8(j,j J J H, H H P )5(II H )5(P P )

{[1+ 5 (H, H2) ] [1+ 5(P,P, ) ] [1 + 5 (H, H, )][1+ 5 (P~P4) ]}"'

x g 8(j'xx)x J' P, J' H (P,H J'M'l VlH P J'M')-a-)a] J Ja Jh[ j j j. JS]

gl 1 2 3 2
2 1

The above sum over x can be done using Eq. (4.1) of Rotenberg et al. ' and%, expressed in terms of a
12-j symbol is

jh J~ Js J48(H~P4 Jh Ja)5(H2H4)5(P2P4)
([1+5(H,H, )][1+5(P,P2)] [1+5(H,H4}][1+5(P,P4)]j' ' ~

gl

x(P,H, J'M'l VlH, P, J'M')pp X. (5)

Equations (4) and (5) are expressions for the first term in the two-hole-two-particle matrix element which
holds in general. That is, there is no restriction on the holes and particles being neutrons or protons pro-
viding there is the same number of protons and neutrons in each side of the matrix element. The remain-
ing 15 terms in the two-hole-two-particle matrix elements can be easily obtained with Eq. (4) or Eq. (5).
Let SR,(H, =H, ) represent the matrix element%, of Eq. (4) or Eq. (5) with the quantum numbers implied by
H, and H, interchanged. Similarly %,(H, =H„P,= P, ) will imply that H, and H, are interchanged and that
P, and P2 are also interchanged. The two-hole-two-particle matrix element% is then given by

% =(H,H. J„P,P.J„JMIV».,IH, H4J„P.P.J„j»
=%, —8(IIhH~ J,)% (H, h=H, ) —8(P,P2 J2)SR,(P, Pm) —8(H, H4 J,)SR,(H, H4) —8(P3P,J4)%,(P, P4)

+ 8(FI,H2 P,P~ jh J,)%,(H, =H„P,= P, ) + 8(FI)HIHBH4 J,j~)SR,(H, =H2) H~=H4)

+ 8(FI,H P P J,J )%.,(H, =H, P P )+ 8(P,P H H J,j )SR,(P, P, H H )

+ 8(P,P~P~P4 Jm J4)SR,(P,= P2) P3 P4) + 8(H3H4P3P4 J3J4)%,(HI-H4) P3= P4)

—8(H, H~P, PBH3H4 J, j~ JB)%,(FI,=H, ) P,= P„H,=H4)

—8(HhH~P, P2P4P4J, J2 J4)%,(H, =H2, Ph P2) P3 P4)

—8(H, H 2 H, H4 P,P4J,J~ J4)%,(H, =H~ ) H, =H4, Pa = P4)

—8(P,P2H3H4P3P4 J~ J3J4)%h(P, P2) H4 H4, P3 P4)

+ 8(II,H, PhP, H, H4PSP4 J,J2 J4 J4)%h(H, =Ha, Ph Pi, H3=H4) P3= P4).
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TABLE I. The nine lowest ~Pb eigenfunctions calculated by Ma and True (Ref. 1). Only
the four largest amplitudes and any other amplitudes of magnitude greater than 0.1 are given
even though the complete eigenfunctions were used in the Po calculation as explained in
the text.

J~,N E (MeV) Eigenfunctions

2P 1/2 fS/2
2 2 2P 3/2 1 13/2

2

0+, 1
0+, 2

0.0
1.106

0.800
0.545

0.400
-0.745

0.364
-0.128

-0.187
0.307

0.166
-0.172

P 1np3i/2 f5/2P3/2

1+, 1 1.747 1.000 0.000

2+, 1
2', 2
2+, 3

0.701
1.482
1.753

0.708
0.658
0.166

—0.539
0.731

-0.320

0.268
-0.128
—0.904

~ 1/2 f5/2 P 1/2P 3/2 f5/2
2

-0.168 0.205
-0.118

f5/2P3/2 P 3/2
2

&3/2f 7/2 & 13/2

0 ]97 ~ ~ ~

0.196

P1/2f 5/2 f5/2P3/2 P 1/2f 7/2 f5/2 h8/2

3+, 1 1.426 1.000 -0.007 0.003 0.010

P 1/2 f7/2 f5/2
2 f5/2~3/2 f5/2f 7/2 P3/2f 7/2

4+, 1
4+

1.644
2.053

0.275
-0.121

-0.590
-0.794

0.717
—0.589

0 ~ 130 -0.147
0.057

Equation (6) along with Eq. (4) or (5) can be used
to evaluate the two-hole-two-particle matrix ele-
ment of V&php The matrix element % will consist
in general of less than 16 terms implied by Eq. (6)
because of the Kronecker 5 functions which appear
in each term. However, evaluation of the 12-j co-
efficients and the sum over J' can be quite time
consuming in evaluating the two-hole-two-particle
matrix element. This matrix element can be ex-
pressed in a different manner so that its numerical
evaluation is considerably simplified. The Appen-
dix shows how this matrix element can be rewrit-
ten and the final form of 6)f, is given by Eq. (A8).

III. Po CALCULATION

A. Correlated basis

The nine lowest eigenfunctions of '"Pb and the
five lowest eigenfunctions of '"Po calculated by
Ma and True' are given in Table I and Table II,
respectively. These eigenfunctions represent the
results of the first step of a two-step procedure.

As pointed out in Sec. II above, a truncated basis
must be chosen in the second step in order that the
matrices not be top large. In the results described
below, it was found that only the lowest nine levels
in Pb and the lpwest five levels jn ' Pp need be
considered in order to describe the low-lying lev-
els in ' 'Po. This truncation in the number of lev-
els used from 'Pb and Pp greatly reduces the
size of the Hamiltonian matrix. For example,
there are only 20 correlated basis states for J =2'

TABLE II. The five lowest Po eigenfunctions cal-
culated by Ma and True (Ref. 1). Only the four largest
amplitudes and any other amplitudes of magnitude great-
er than 0.1 are given even though the complete eigen-
functions were used in the Po calculations as explained
in the text.

J",N E (MeV) E igenfunc tions

0+

2', 1

4+, 1

0.0

1.073

1.452

hs/2
2

0.811

hg/2
2

0.938

he/2
2

0.994

2fz/2

0.357

h~/2 fs
0.076

h9/2f 7/2

-0.064

2
$13/2

-0.437

f7/2
2

0.185

fz/2
2

0.047

fs/2
2

0.145

2
13/2

-0.264

2
Z 13/2

-0.047

6+, 1 1.527
h8/2

2

0.998
hs/2f 7/2 f7/2f s/2
-0.051 0.020

~ 2
113/2
0.029

8+, 1 1.558
hs/2

2

0.992
hs/2 f7/2
—0.127

2i 13/2
-0.026

instead of about 2500 basis states for a "complete"
calculation.

In the '"Po spectrum shown in Fig. 2, there is
an energy gap above the first J=8' level which in-
dicates that this may be a suitable place to trun-
cate the '"Po states in forming the correlated ba-
sis for the low-lying states in "'Po. In '"Pb,
there is not such a clear cut energy gap to indi-
cate a suitable place to truncate the "'Pb states.
Calculations using the lowest five levels from

Pp and varying numbers pf levels frpm Pb



2280 W. W. TRUE AND C. W. MA

showed that the structure of the low-lying levels
in '"Po became "stable" when the first nine levels
in ' 'Pb were used.

In Tables I and II only the four largest ampli-
tudes (plus any amplitude whose magnitude is
greater than 0.1) is given for each eigenvalue to
conserve space. However, the calculations for
'"Po described below were done with the complete
wave functions containing all the components which
had a nonzero amplitude. As pointed out above,
the energy eigenvalues and eigenfunctions should
give a "good" description of the levels in '"Pb and
'"Po in order that the second step of the two-step
approach will be meaningful. The eigenstates of
Ma and True' in Tables I and II do describe '"Pb
and '"Po as is indicated by the good agreement be-
tween the calculated and experimental energy lev-
els shown in Fig. 2. In addition, these wave func-
tions reproduce fairly well the observed E2 and
M1 transition rates in ' 'Pb and '"Po as well as
the observed spectroscopic distribution in '"Pb
and '"Po. (See Ma and True' for details. }

The eigenstates of 'Pb and ' Po given in Ta-
bles I and II were calculated with an interaction
potential

V = [ V,e " + n,r,'r, 'P, (cos 8»)

+ o,r, 'r, 'P, ( cos8„)][P +qP ],
where P and P are the singlet-even and triplet-
even projection operators, respectively. The val-

2.5

ues for the parameters V„P,a„n„andg are
given in Table III. The radial part of the single-
particle orbitals is assumed to have a harmonic-
oscillator shape with v =0.1842 fm '.

The eigenfunctions of '"Pb will be written as

I (206)J,N, ) = Q A(H, H2 J,N, )IH, H, J,N,),
Hy, H2

where N, =1, 2, etc. denote the first, second, etc.
state of angular momentum J,. Similarly, the
states of '"Po will be written as

I(210)J,N~) = Q B(P,P2 J,N2)IP, P2 J2N2). (9)
Py ~ P2

The states of "'Pb and '"Po are then vector cou-
pled together to form the correlated basis states
which will be written as

I (206)J&Nx (210)J2N~, JM)

Q A(H, H2 J,N, )B(P,P2 J~N~)

x
I H, H2 J,N„P,P2 JRN2, JM) . (10)

These correlated basis states will be used as the
basis states in the second step of the two-step cal-
culation. Note that these basis states are already
diagonal in Hc p+ Vppp and Hca+ Vhahh with eigen-
values of E[(206)J,N, and E[(210)J',N, ], respec-
tively.

B. Results for Po

2.0—

I.5—

1.0—

0.5—

0.0

—(o')—(2 ) +—4p—4

(2 )
]
+

4+
+

2+—2
3+—3+

0+—0

2+
2+

o+ — o+
EXP. MT

206pb

6+
+

0+
8

8 8
6+ ++ 6+
4+

0+—0
EXP. M T

2IOP

'p+ ~)+5+
)7+ Yl+

5+

6+

4+
5+ 5+

EXP. MT

208B-

The matrix for the Hamiltonian of Eq. (1}with
the correlated basis states of Eq. (10) was calcu-
lated and diagonalized for each value of J. In cal-
culating the two-hole-two-particle matrix ele-
ments, Eq. (6) along with Eq. (AS) was used
whe re the neutron-hole-proton-particle interac-
tion is given by Eq. (7) with the parameters in Ta-
ble III for 2osBi.

It should be stressed that the neutron-hole-
proton-particle interaction parameters were taken
from the ' Bi calculation of Ma and True' and
there are no adjustable parameters. The good

TABLE III. The force parameters Vp, P, n2, u3, and
g used in the calculations of 8Pb, Po, and Bi by
Ma and True (Ref. 1) and in this paper for Po as ex-
plained in the text.

Vp p 02 ns
(MeV) (fm ) (10 MeV/fm ) (10 MeV/fm )

FIG. 2. Comparison of the low-lying experimentally
observed levels in p Pb, 2~pPo, and Bi with those cal-
culated by Ma and True (MT) in Ref. 1.

Pb -22.75 0.2922
' Po -22.75 0.2922

Bi -22.75 0.2922

-5.00
-2.50

0.00

-0.50
-1.20
-1.95

1.8
1.8
1.8
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agreement between the observed and calculated
levels in "'Bi shown in Fig. 2 indicates that the
'o'Bi force parameters given in Table III do seem
to describe fairly well the neutron-hole-proton-
particle interaction in the lead region. However,
since the truncated model spaces used in the '"Pb,
'"Po, and "'Bi are all different from each other
and from the model space used in "'Po, the inter-
actions used in the former calculations need not
necessarily be the appropriate ones for "'Po. That
the interactions are the same implies that '"Pb
represents a "good" core in a shell-model sense.

The energy eigenvalues resulting from these cal-
culations are compared with the experimentally
observed energy levels' ' in Fig. 3. In Fig. 3,
Calc. A used the "'Pb and '"Po energy eigenval-
ues and eigenfunctions calculated by Ma and True. '
Cale. B, on the other hand, used the experimental
energy eigenvalues of ' 'Pb and '"Po with the ei-
genfunctions calculated by Ma and True. The main
improvement of Calc. B over Calc. A is that the
first 2 level ls 1n better agl cement with the ex-
perimentally observed 2' level at 0.69 MeV. The
higher excited levels are essentially unchanged
except in detail. In view of the approximations
made in these calculations, the changes of the
higher excited levels a,re not considered signifi-
cant. For both calculations, the wave functions
of ' 'Po are essentially the same and so only the
results of Calc. A will be discussed below.

The spectrum of '"Po has been extensively stud-
ied by Treytl, Hyde, and Yamazaki' and Yamazaki'
from the decay of OSAt as well as with 'o'Bi(P, 2n),
'O6Ph(n, 2n), and 20'Ph(n, 4n) reactions. Goldman
et a/. ' have studied 'O'Po by observing the internal-
conversion electrons following 'o Bi(P, 2n) reac-
tions. These and other results are summarized
by Lew1s 1n the Nuclear Data Sheets. ' Recently
Bhatia et al.'' have identified several new levels
in "'Po which were populated in a '"Po(P, f) re-
action.

As is seen in Fig. 3, the agreement between the
calculated and experimentally observed energy lev-
els is quite good. That is, the first 2' state at 0.7
MeV and the group of levels around 1.5 MeV are
all well reproduced to within about 100 keV.

Since there is some uncertainty in the experi-
mental data on the group of levels observed around
1.5 MeV, they will be discussed in more detail.
The 2' levels at 1.26 and 1.54 MeV have recently
been observed by Bhatia and co-workers~' and
are in good agreement with the two calculated 2'
levels at 1.21 and 1.65 MeV, respectively. Bhatia
and co workerss, 9 and Treytl, Hyde, and Yama, -
zaki' observed a 4' level at 1.58 MeV which agrees
very mell with a calculated 4' level at 1.60 MeV.
A 4' level at 1.35 MeV and a 6' level at 1 ~ 52 MeV
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FIG. 3. The experimentally observed levels below
2.5 MeV in Po compared with the calculated results.
All states have positive parity except for the one experi-
mental level at 2.37 MeV. Calc. A uses the calculated

GPb and ~ Po energies and wave functions of Ma and
True (Ref. 1} as input while Calc. 8 uses the experimen-
tal 206Pb and 2~0Po energies and the calculated wave func-
tions of Ma and True for input as explained in the text.

have been observed by Treytl, Hyde, and Yama-
zaki, ' and Goldman et al.' and these levels agree
quite well with the calculated 4' level at 1.24 MeV
and the calculated 6' level at 1.55 MeV.

Goldman and co-workers' have observed internal-
conversion electrons for a transition energy of
1.27 MeV which they believe corresponds to a EO
transition to the ground state of ' 'Po. There is a,

calculated 0' level at 1.38 MeV which could be as-
sociated with this observed level.

Lewis' reports a level at 1.42 MeV with tentative
spin assignments of (2-4). Treytl, Hyde, and
Yamazaki' assign this level a spin of (2') while
Goldman et al. ' assign it a spin of 2'. Lewis' in-
dicates that this level decays by an E2 transition
to the 2, level at 685 keV. Since there is no exper-
imental evidence that this level decays to the
ground state of "'Po, it is possible that this level
corresponds to the calculated 0' level at 1.38 MeV.
If this is the case, then there is no other calculat-
ed 0' level in this region to explain the 0' level at
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TABLE IV. Eigenvalues and eigenfunctions of the levels below 2 MeV in Po expressed in terms of the correlated
basis states, ( (206)J&N&, (210)JAN&, JM), for each spin (the basis configurations are given as J~N~, JtN&). The en-
ergy eigenvalues and their corresponding amplitudes are given if their magnitudes are greater than 0.10. In every
case, the four largest nonzero amplitudes are listed even though some may be less than 0.10 in magnitude. With re-
spect to the Pb core, E~&, —-5.79 MeV for the ground state of Po while E,„&=5.84 MeV.

J~,N E (MeV) Eigenfunctions

01, 01 02, 01 21, 21 22, 21 23, 21 41,41 42, 41

0, 1
0+, 2
0+

0.00 0.935 0.061 —0.349
1.38 -0.948 —0.140
2.00 -0.310 ' -0.837

0.028
-0.071 0.271

-0.105 -0.420 0.101

11,01 11,21 21, 21 22, 21 31,41 41,41 42, 41

1,1 1.55
1,2 1.89 0.973 -0.112

0.969 -0.057
-0.152 -0.113

0.229 —0.051

01, 21 02, 21 21, 01 22, 01 23, 01 21, 21 22, 21 23, 21 21, 41 31,21 41, 21 42, 21 41, 41

2, 1 0.58
2, 2 1.21
2, 3 1.65
2+, 4 1.98

0.513
0.724

0.352

—0.784
0.496

0.938 -0.146
-0.161 -0.815

0.304

-0.152 0.117
-0.234 -0.115

-0,419
—0.115

0.237

—0 138 ~ ~ ~

0 199 ~ ~ ~

0.145 0.129

21, 21 22, 21 21, 41 31, 01 31,21 41, 21 42, 21 41, 41

3, 1 1.65
3,2 1.84 0.787

-0.112
—0.507

—0.949 0.219
-0.249

-0.112
0.201

01,41 21, 21 21, 41 21, 61 41, 01 42, 01 41, 21

4+, 1
4+

1.24 0.689 -0.595 0.261 -0.179 -0.223
1.60 -0.505 -0.425 ' ' 0.284 -0.631 0.125

0.109
0.229

01,61 21, 41 21, 61 21, 81 41, 21 41, 41 41, 61

6+, 1 1 55
6, 2 1.99

0.885 —0.413
0.345 0 ~ 564 -0.695

-0.127
0.228 —0.107

—0.094

8+, 1 1.48

01, 81 21, 61 21, 81 41, 81

0.847 -0.067 -0.514 -0.093

1.27 MeV observed by Goldman and co-workers. '
The only other "unassigned" calculated levels in
this region are a 1' level at 1.55 MeV and a 3' lev-
el at 1.65 MeV. So until more experimental evi-
dence is forthcoming, nothing more can be con-
cluded about these states.

Treytl, Hyde, and Yamazaki' and Yamazaki' ob-
serve that the 6,'- 4y 2y Oy sequence is also fed
by a 380-nsec transition although they did not ob-
serve the internal-conversion electrons or y rays
associated with the 380-nsec transition. Qn the
basis of this evidence, they conclude that an 8'
level located about 10 keV above the 6,' level is
decaying by an E2 transition to the 6,' level. An
8' level is calculated at 1.48 MeV and could be a
candidate for an unobserved 8' level at 1.53 MeV.
However, more experimental information is need-
ed before definite statements can be made.

The wave functions of the low-lying states of' 'Po expressed in terms of the correlated basis
states ((206)J,N„(210)J,N„JM)are given in Ta-

ble IV. Although some configuration mixing takes
place, it is seen in Table IV that many of the low-
lying states in ' 'Po still have a single dominant
component of over 60%%uo. This lack of configura-
tion mixing verifies that the correlated basis space
can be severely truncated and still give a very good
description of the "'Po levels. Note also that the
strong neutron-hole correlations of "'Pb and the
strong proton-particle correlations of '"Po have
been retained. If this was not the case, one would
have been forced to use a much larger correlated
basis space to describe the low-lying "'Po levels.

The wave functions of "'Po can also be expressed
in terms of the two-hole-two-particle basis
~H, H, J„P,P, J„JM)by multiplying together the
corresponding amplitudes in Tables I, II, and IV.
This has been done for the low-lying levels of' 'Po and the major components of the wave func-
tions in terms of the two-hole-two-particle basis
are given in Table V. It is seen from Table V that,
in general, the configuration mixing appearing in



TWO-STEP SHELL-MODEL CALCULATION OF "'Po 2283

TABLE V. The eigenfunctions of the low-lying levels of Po expressed in terms of a two-neutron-hole-two-proton-
particle basis. The only basis states listed below are those which have an amplitude whose magnitude is greater than

0.3 and are denoted by I H, Hg J, , P,Ps Jz, J) .

J",N E (MeV)

0+, 1 0.00

0+, 2 1.38

0+, 3 2.00

1+, 1 1 55

1+, 2 1.89

2, 1 0.58

2, 2 1.21

2, 3 1.65

2+, 4 1.98

3 1 1.65

3, 2 1.84

4, 1 1.24

4, 2 1.60

6, 1 . 1.55

6+, 2 1.99

8, 1 1.48

Eigenfunc tions

0 607IPus'o, hsn 0, 0) +0 303lfs» 0 hsn 0 0) —0 327IPus 0 izg/g 0 0)

-0 419IP us 0 hs/g o o) +0 573lfs/z 0 hg/z 0 0) —0 309lfs/g'O, i,s/s'0, 0)

-0.556lpus f»g2, hs/g 2, 0) +0.423lpz/sps/g2, hg/g 2, 0)

0.644 IP zn f»g2, hg» 2, 1) 0.49O IPz/gP3/g2 hg/g 2, 1)

0.789IPz/gps/zl, hg/z 01) +, 0.347IPz/gpg/gl, fz/g 0, 1) —0.425IPugP's/gl, z&g/z 0, 1)

0.385IP uz0, hg» 2 2) 0 450.IPz/gI»g2, hg/g 02) +, 0.343IPz/gPs/z2, hg/s 0, 2)

0 543IPz» 0 hg/z 2 2)

0 5o1IP ugf»22'hs/2 0, 2) +0.556 IP z/gpg/22'hs/2 O, 2& —O.3OOlpugpg»2'zzg/2 0, 2)

O.5981fg» 2 hs/s 0, 2) —0 3221fs/g'2, i,g/, 0, 2)

-o 770lpz/zfg/23' g/2 0'3) 0' 3391 Pz/2 f»2 3' f7/2 o 3& +o 4»lpusfs/23'zzg» o 3&

0.523 Ip s/gf »g2, hg/s'2, 3) —0.398 Ip z/gag/z2, hs/s 2, 3) —0.357 IP ug jsn2 hg/z

0 548lpz/g 0 hs/g 4zi4) —0.395Ipz/gfs/g2 hg/g 2 4) +0 301lpugpg/z2 hg/g 2 4)

-0 402 IP z/g O, hs/s 4, 4) +0 3021jg/g 4, hs/g 0, 4) —0 3671j»gpg/g4, hg» 0, 4)

0.707IP z» 0 hg/g 6, 6) +0.353lfgn O, hg» 6, 6) +0.321IPs/g 0, hg/g 6, 6)

0.397IP &/z fsn2, hs/s 4, 6) —0.302 IP &/gpg/z2, hs/g 4 6) —0 491IP&»fs/g2. hs/g 6 6) +0 374lpugpg/s2, hg/z 6, 6)

0.672IPzn O, hsn 8, 8) +0.3361fgn O, hs/g 8, 8) +0.306IPg/g 0, hg/z'8, 8) —0.361IPz» fgn2, hs/g'8, 8)

these wave functions is now much larger and that
there is no dominant configuration when one con-
siders a two-hole-two-particle basis. Consequent-
ly any calculation of 'Po with a two-hole-two-
particle basis would be in doubt unless the com-
plete two-hole-two-particle basis was used.

Using the "'Po wave functions in Table IV, the
B(E2) transition rates for the 8;-6;-4;-0;se-
quence have been calculated and are given in Ta-
ble VI. The effective charges were 0.87 e for the
neutrons and 1.50 e for the protons and are the
values used by Ma and True' in ' 'Pb and '"Po,
respectively. However, the effective charges are
expected to depend more sensitively on the model
space used than does the effective interaction, and
it is not clear that the effective charges used in
"'Pb and '"Po are necessarily the appropriate
ones to use in "'Po.

If we assume that the 8y 6y transition has a half-
life of 380 nsec as suggested by Yamazaki, ' the
calculated B(E2) value of 85 e' fm' from Table VI
indicates a transition energy of less than 15 keV.
(See Sec. IV of Yamazakis for details. ) This very
low value for the transition energy is probably the
reason why this transition was not observed by
Yamazaki' or Treytl, Hyde, and Yamazaki. ' The
calculated B(E2) value of 531 e'fm' for the 6;-4',
transition is considered to be in reasonably good

C. "Weak-coupling" model for Po

It is possible to obtain a fairly good indication
of what the low-lying spectrum of "'Po will look
like by just vector coupling together the observed
low-lying states of ' 'Pb and '"Po and neglecting
the neutron-hole-proton-particle interaction
(V„sqs=0). This weak-coupling approach is com-

TABLE VI. The calculated B (E2)'s in Po for the
81 61 41 21 01 sequence.

JTI' ~JTTf

B(E2) (e2fm )

8+ -6+
1 1

85

6+ ~4+
1 1

531

4+ 2+
1 1

733

2+-0+
1

649

agreement with the experimental value of 450 e' fm4

as determined by Treytl, Hyde, and Yamazaki. 4

This calculated B(E2) value of 531 e' fm' and the
experimental value of 450 e' fm' are to be com-
pared with an observed B(E2) value of 245 e' fm'
for the 6y 4y transition in '"Po indicating an en-
hancement in the "'Po case.

In addition to the eigenvalues and eigenfunctions
given in Table IV for the calculated levels below
2 MeV, the lowest calculated levels for J =9', 10',
11', and 12' are at 2.15, 2.53, 3.14, and 3.64MeV,
respectively.
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pared in Fig. 4 to the experimental "'Po spectrum
and the calculated ' 'Po spectrum of this paper
which uses as input the experimental energies of
'"Pb and '"Po (Calc. 8 of Sec. III 8).

Figure 4 indicates that the weak-coupling calcu-
lation does reasonably well in describing the low-
lying levels of "'Po. However, when the neutron-
hole-proton-particle interaction is included, con-
siderable energy shifts and reordering of the lev-
els above 1 MeV take place. Figure 4 indicates
that the more detail. ed microscopic calculation ap-
pears to give better agreement with the experimen-
tally observed levels than the weak-coupling pic-
ture does.

As indicated in Table IV, the eigenfunctions in
Po contain for the most part relatively little

configuration mixing of the correlated basis states.
Consequently, it would be difficult to distinguish
experimentally between the weak-coupling case and
the more complete microscopic calculation done in
this paper. The two lowest 2' states and the tmo
lowest 4' states are exceptions to the above rule in

that their largest component is less than 65% of
that predicted by the meak-coupling picture. { on-
sequently these three states could be used as an
experimental test of the calculated wave functions.

Another experimental fact which favors the more
detailed microscopic calculation over the weak-
coupling picture is the observed B(E2) value of
450 e' fm' for the 6', - 4,' transition in "'Po. The
weak-coupling picture predicts that this B(E2)
should be the same as the corresponding 6,'- 4',
E2 transition in "OPo which has a B(E2) value of
245 e' fm'. The calculated B(E2) value of 531 e' fm'
is in better agreement with the experimental value.

Lastly, the experimental binding energy of ' 'Po
with respect to the ' 'Pb ground state is 5.84 MeV.
The weak-coupling picture predicts a binding ener-
gy of 5.33 MeV while the calculation described in
this paper gives a binding energy of 5.79 MeV
which is closer to the observed value.

D. Remarks on isospin violation

The Hamiltonian used in this paper violates iso-
spin conservation in two ways as discussed belom.

Even though the neutron holes and proton parti-
cles are restricted to the same major shell, the
single-particle spacings used for the neutron holes
in the "'Pb calculation are different from the sin-
gle-particle spacings used for the proton particles
in the '"Po calculation as can be seen in Fig. 1.
These single-particle spacings are experimental'
and to date, there are no theoretical calculations,
Hartree-Fock or otherwise, which can explain
why these single-particle spectra differ. Presum-
ably this difference can be associated with the fact
that the neutron orbitals describe neutron holes in
the "'Pb core while the proton orbitals describe
proton particles outside the "'Pb core. The lack
of an alternative prescription for the neutron-hole
and proton-particle orbitals, and the reasonably
good fits obtained by Ma and True' to the observed
levels of "'Pb and '"Po indicate that one is justi-
fied in using these non-isospin-conserving single-
particle spacings.

Furthermore, it is expected that this isospin-
violating Ham, iltonian will give about the same re-

0.0—
EXP.

0
4 pal@

0

208po

Q
CA LC. 8

TABLE VII. Comparison between the squared ampli-
tudes of the calculated analog state in 208Bi and those of
a pure analog state. T =22 is the isospin of the Pb
ground state.

Pro. 4. Comparison between the 2 Po experimentally
observed levels, the levels in the weak-coupling approx-
imation, and the levels from the more detailed micro-
scopic calculation (Calc. 8). All states have positive
parity except for the one experimental level at 2.37
MeV.

208Bi 0 24 0.1S 0.15 0.12

023
2T 0.18 0.32 0.14 0, 0S 0.05

2n ~p ~9/2 ~9/2 f7/2f 7/2 13/2 ~13/2 f5/2f 5/2 P3/2P3/2 P 1/2P 1/2
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suits as an isospin-conserving Hamiltonian. The
isobaric analog state to the "'Pb ground state, a
highly excited 0' state in "'Bi, has been calculated
by True, Ma, and Pinkston' and their results are
compared to a pure analog state in Table VII. The
small differences in Table VII between the square
amplitudes of the "'Bi configurations and those for
a pure analog state indicate that the isospin-violat-
ing effects are small.

The second place that the Hamiltonian used in
this paper violates isospin conservation is that the
parameters nR and o.3 in the residual interaction
given by Eq. (7) take on different values for "'Pb,"Po, and ' 'Bi. As discussed by Ma and True'
(Sec. II) a residual force given by Eq. (7) with o.,

Q3 0, gives a fairly good fit to the nuclei in the
lead region providing one does not mind one or two
levels on the average per nucleus deviating from
the observed levels by about 200 keV. The isospin-
violating nonidentical values nR and a3 for Vpppp,

V»», and V»» are not expected to make any large
quantitative changes in a "'Po calculation as com-
pared to a calculation where identical values or
even zero are used for nR and a3 in Vpppp, V»»,
and Vh&hp since the levels used from ' 'Pb and '"Po
are not very sensitive to variations in these param-
eters.

This calculation on the energy levels of "'Po in-
dicate that a two-step shell-model calculation is a
valid approach which works whereas a convention-
al one-step shell-model calculation is essentially
impossible because of the very large matrices
which must be diagonalized. The two-step shell
model appears to have a wide range of applicabil-
ity and could, in principle, be applied to many
nuclei —even those away from a doubly magic nu-
cleus where conventional one-step shell-model
calculations are essentially impossible to do. The
authors would like to note that Glendenning and
Harada" have previously done a two-step shell-
model calculation for ' Po where they used trun-
cated single-particle orbital spaces to calculate
the '"Pb and '"Po eigenfunctions instead of using
all the orbitals in the appropriate major shell.

The authors would like to thank Professor P. D.
Barnes for sending us his recent experimental re-
sults prior to publication.

APPENDIX

Equations (5) and (6) enable one to evaluate the
two-hole-two-particle matrix element

% =(H, H~ J„P,P~ J2, JM
~ Vhphp~H~H~ J~, P~P, J4, JM) .

IV. CONCLUSIONS

It is seen that a two-step shell-model calcula-
tion gives a fairly good energy fit to the observed
low-lying energy levels of '"Po. However, more
experimental information is needed on '"Po before
a more detailed comparison between the calculated
results and the experimental results can be made.
It should be stressed that there were no adjustable
parameters in this calculation as the basis wave
functions, zero-order energies, and the effective
interactions were all taken directly from the pre-
vious work of Ma and True' on ' 'Pb, ' Po, and
Ro8B

V= V(r)(W +MP'+BP +HP "P ), (A1)

where P" and P' are the space-exchange and spin-
exchange operators, respectively.

In Eq. (5), the 12-j symbol will be replaced us-

However, if these expressions are used to actually
calculate the matrix element, the sum over J' and
the evaluation of the 12-j coefficients can be quite
time consuming. The expression for % can be con-
siderably "simplified" for computational purposes
as will be shown below. For this purpose, consid-
er a central force

ing Eq. (4.1) of Rotenberg et al. ,
' viz.

PR P3 4 3

~P Js H J ~ g(H H H PPP J J J J JrJ+)"2( 3 1 ( 2 4 3 1 ( 1 3

Next the jj matrix element in Eq. (5) is transformed to the LS coupling scheme yielding a LS matrix
ment of

(IP,LH3LS i Vi IH, LP~LS)D r .

In the general case, the particles and holes can be either neutrons or protons and one has the general rela-
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tion

(l, / LS~ V~ /3/4LS}~ x =(/, /, LS~ V(r)(W+MP'+BP +HP"P ) ~ /, /, LS)~
„

= [W5(q, q, )5(q,q, ) -H5(q, q, )5(q, q, )](/, /, L
~
V(r) i l, /, L)

+ 8(S)[M5(q,q4)5(q~q, ) —B5(q,q, )5(q,q~)](/, / L~ V(r)
~ l, l4L)

+ 8(l, l,L)[M5(q, q, )5(q, q, ) —B5(q,q, )5(q, q, }](l,l, L ~
V(r)

~ l, l,L)

+8(l, l,LS)[W5(q,q, )5(q,q, ) H5(q-, q, )5(q, q,)]«,/, L~ V(r)~ l, /, L), (A2)

where q& is the charge quantum number associated with the particle having the quantum number l;.
For the special case of ' 'Po, where the holes are neutrons and the particles are protons, this LS ma-

trix element reduces to

(/P, lH, LS~ V~ /H, /P, LS)~ x =-H(lP, /H, L~ V(r)i /H, /P, L)+8(S)M(lP, /H, L~ V(r)
~
/H, /P, L)

—8(/H, /P, L)B(/P, /H, L) V(r) [ lP, /H, L) + 8(lH, lP, LS)W(lP, lH, L) V(r) ( /P, /H, L) .

(A3)

The LS matrix element (l, l,L~ V(r}~ l, l,L) can be expanded in the conventional way, viz.

«, /. L
I V(r)1/, /, L) = 8(/, /. L) g R'(/, /, /. /. ) «, Ii

C"
)I /) «. II C'[[ /4) ~

'
[ 4 3

(A4)

which defines the conventional Slater integral R (/, / /, l, ) while (l, ~~C ~~ l,) is the reduced matrix element
defined by Racah. ' " That is,

(/, m, [C,"J/,m, ) =8(/, m, ) ' (/, I C'I /,),
m~ g m~

where

gk ~ yk 6}

For conciseness in notation in reducing the matrix element K„the following notation will be used:

5(FI~H~)5(P~P~)J~ J~ J3 J4H, P,H3P~
[[1+5(H,H, )][1+5(H3H4)][1+5(P,P, )][1+5(PP )]p" ' (A5a)

[P, P, x ]J, J, x J, J, xI
(Asb)

y~(k):—R"(P,H~H, P3) (lP, ((
C"

(] /H, ) «H~ () C [) /P~},

yx (k) =R"(P,H,P,H, ) (/P, —
[( C (( /P ) (/H, [) C ([ /H, ),

D, = W5(q, q, )5(q, q, ) H—5(q,q, )5(q, q, ), -
D, —=M5(q, q, )5(q, q~) —B5(q,q, )5(q, q, ),
X, -=M5(q, q, )5(q, q, ) —B5(q,q, )5(q,q, ),
X~ =W5(q, q, )5(q~q3) -H5(q, q3}5(q~q ) .

(A5c)

(Asd)

(A5e)

(A5f)

(ASg)

(A5h I
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With the notation indicated in Eq. (A5) above, the K, matrix element can now be written as

1 1
2 2

K, =o g P(x)J' S L x 0(JJ J LH, H PP IH IH x)
x, k lP1 lH3 L

r„s,z'

1 1
2 2 S

H1 P3 J
lH, lP3 L

K, in Eq. (A6) is seen to consist of sums over four terms and will be written as

1 11 12 13 14,

where K» refers to the term with D,y~(k), K- to the term with 8(S)D,yD(k), K» to the term with 0(L)X,yz(k),
and%„to the term with 0(LS)X,y»(k)

The sums over L, S, and J' in K» can now be done in the following manner. Using Eq. (2) of Talman

and True, "the sum over L gives

1 1 1 1
2 2 S 2 2 S

1 1 g 1 1

) ~ 3 1 ) lP1. lH 1 k, lH3 lP3 k

Using Eq. (2.10) of Rotenberg et al. '

1 1

Q e(s)s'q *
l

I
=-25~

S ( 2 2

which implies that C =k only (see the 9-j coefficients above) and so the sums over A and C are eliminated.

Using Eq. (2.7) of Rotenberg et al. , the sum over J' gives

x]5P, H, J'I, 5H, H, x[
k

5

As A = 0 and C = k, the two 9-j coefficients above can be reduced to two 6-j coefficients . Consequently the

first term in Eq. (A6) can be written as

K„=aD,g P(x)y~(k)x 8(JJ,J,H, HBH, P,P2P, IH, LP~k)

Xf

(A7 )

At this point it appears that the single sum over J' in Eq. (5) has been replaced by a double sum over x

and k in Eq. (A7). However, Eq. (A7) is really much simpler because the 12-j symbol in Eq. (5) requires
a sum over x to evaluate it. In addition, the matrix element in Eq. (5) has to be transformed to the LS

coupling scheme and then expanded in terms of Slate r integrals, reduced matrix elements, etc. So to eval-
uate Eq. (5), one would have to sum over J', L, S, x, and k and clearly Eq. (A7) is a great simplification.

9R12 %13 and %„canalso be reduced using similar methods as were used in the reduction of %'11 above .
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The matrix element%, can then be written as

1 11 12 13 14
= ne(jj~ j4H, H~H~P, P~P~LH, LP3)

Z'~~"» ~'~*""'ji' i'
aI jiii' iil -'I jii' iii' -I

~ g~ a*i~ (ii'i(i) j"' '"' "I j'"' '"' *Ij"' "' *I
k, x 3 3 X 3 1 2 1 3 2

P3 P1 g tH3 LH1 q H1 P1 2 P H3k, g, q

(A8)

where n, P(x), yD(k), yx(k), D» D2, X» and X,
are defined in Eq. (A5}.

Equation (A8) for 5)L, is completely general in
that the holes and particles can be either neutrons
or protons providing there is the same number of
protons and neutrons on each side of the two-hole-
two-particle matrix element of Eq. (2). As pointed
out above, even though Eq. (A8) appears more com-
plicated than Eq. (5), it really represents a con-
siderable simplification for numerically evaluat-
ing the two-hole-two-particle matrix element. The
remaining 15 terms in the two-hole-two-particle
matrix element can be obtained by making the
changes indicated by Eq. (6) in Eq. (A8). For the
special case of ' 'Po which is calculated, D, =-H,
D, =M, X, =-B, and X, =W as indicated in Eq. (A3)

above.
Equation (A8) was derived for the central force

given in Eq. (Al). This expression is slightly
more general than has been implied and could be
used for some other types of interactions besides
ones which contain a V(r). For example, if V(r)
in Eq. (Al) was replaced by a multipole force of
the form

n~r, r, P~ (cos8»},L L

the sums over k in Eq. (A8) above reduces to k =L
only and the Slater integrals R'(L, L, L, L,) are re-
placed by

o'i(L Ir'
I L.& &L, lr' I l.}.
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