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Employing the unitary-model approach of Shakin, Waghmare, Tomaselli, and Hull, and a
modified version of the Yale potential, adjusted to yield a lower percentage of the “D” state
in the deuteron ground state without affecting the other two-nucleon quantities calculable
from the Yale potential, the ground-state properties of the even-even N = Z nuclei are calcu-
lated for the 2s-1d shell by using the Hartree-Fock self-consistent approach. The healing
distance for the relative 351 state is not used as a parameter since healing is “naturally”
achieved for this state. Using the same values of the oscillator and level-shift parameters,
the modified Yale interaction with its reduced tensor force component yields binding energies,
single-particle energies, rms radii, and deformations which are generally closer to the ex-
perimental values than those reported for the Yale potential.

particle energies, ground-state energies, rms radii, and ground-state defor-
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mations. Hartree-Fock method. Modified Yale interaction.

I. INTRODUCTION

In recent years several structure calculations
for the 2s-1d shell nuclei employing realistic
nucleon-nucleon potentials with different core
structures have been reported in the literature.
Pal and Stamp! and Stamp? have used the hard-
core Yale potential for performing the Hartree-
Fock calculations for the N=Z nuclei for 8 <A <40
with various oscillator parameter strengths. More
recently Nisley and Hull® have employed the Yale*
and Reid® soft-core two-body interactions to carry
out calculations for the same nuclei. In calculat-
ing the effective two-body interactions, Nisley and
Hull employed the unitary-model operator approach
as first developed by Villars® and later refined and
used in practical calculations by da Providencia
and Shakin,” and by Shakin, Waghmare, Tomaselli,
and Hull.®~°

The potentials employed above had been deter-
mined from the two-nucleon elastic scattering data
and certain bound-state properties. It is well
known that the elastic scattering data fix only the
asymptotic form of the two-nucleon wave function,
leaving the wave function at short distances unde-
termined. It therefore seems desirable to exam-
ine the sensitivity of the three- and many-nucleon
systems to the short-range part of the two-nucleon
potential. The problem has been studied by Haftel
and Tabakin'! by examining the binding energy of
nuclear matter for exactly phase-shift-equivalent
potentials generated by applying a unitary trans-
formation to the Reid soft-core potential. The
new potentials had a short-range nonlocality but
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reproduced exactly the two-body observables cal-
culated with the Reid potential. It was found that
potentials that are exactly equivalent in the nucle-
on-nucleon scattering problem may give variations
of approximately 10 MeV in nuclear matter bind-
ing-energy calculations. For finite nuclei the off-
shell effects for a set of phase shift equivalent po-
tentials have been studied by Haftel, Lambert, and
Sauer,’ who found a variation of up to 2.8 MeV per
particle. The phase-shift-equivalent potentials
employed in the above calculations produce wave
functions which have very unusual properties at
short distances, e.g., in some cases the trans-
formed wave functions are found to have extra
nodes while in some others the two nucleons are
found to approach each other very closely with an
unexpected high probability.

It is well known that most of the widely used two-
body interactions, namely, the Yale, Hamada-
Johnston,*® and Reid potentials yield a percentage
admixture of the D state (Pp) to the ground state
of the deuteron of about 7%. Due to uncertainties
in the theory concerning the effects of meson ex-
change currents, this P is expected to be some-
where between 3.5-10%. Since the relative
strengths of the central and noncentral compo-
nents in the two-nucleon interaction are not well
determined by the nucleon-nucleon scattering data,
it should be possible to readjust the parameters
of any one of the above-mentioned potentials in
such a way as to affect the D-state probability
while leaving unchanged the values of the other
quantities calculable from the potential. This may
be accomplished by decreasing the relative contri-
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bution of the tensor component of the two-nucleon
potential to the total potential. This has been re-
cently done by Breit and collaborators™ for the
Yale potential (Y), and the modified Yale potential
(MY) yields a D-state probability P, =3.44%, re-
taining the quality of agreement of other calculable
quantities almost the same as with the Yale poten-
tial. The wave functions obtained with the modified
Yale potential have expected normal behavior.

It is therefore desirable to study the effect of the
variation of the tensor force in the two-body inter-
action in the nuclear structure calculations. For
the triton the sensitivity of the binding energy to
Pj had been studied for the Yamaguchi separable
potential by Levinger and collaborators.’® It was
found that the binding energy went from 7.94 to
9.01 MeV when P, was changed from 7 to 4%.
These calculations were carried out by adjusting
the four parameters in the Yamaguchi tensor po-
tential to fit the deuteron binding energy, the trip-
let effective range, the quadrupole moment, and
Pp. This procedure, did not of course maintain
the fit for the triplet phase parameters above the
effective range region.

The present paper employs the modified Yale
potential for calculating the two-body effective in-
teraction following the unitary-model operator ap-
proach of Shakin, Waghmare, Tomaselli, and Hull.
Using the matrix elements obtained in this fashion,
the ground-state properties of the closed-shell nu-
clei 0 and *Ca and deformed nuclei *Ne, ‘Mg,
258i, *S, and %A are calculated employing the
self-consistent Hartree-Fock procedure. The re-
sults are then compared with the earlier calcula-
tions of Shakin et al. and Nisley and Hull. The gen-
eral spirit of this work is to investigate the differ-
ences and similarities of the calculated quantities
for the above-mentioned nuclei that arise when the
MY and Y potentials are used without altering the
approximations that enter the calculations. For
this reason this study is not claimed to be an ex-
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haustive one and not much emphasis will be put on
seeking agreement with the available data on the
binding energy, root mean square radius, single-
particle energies, etc., though occasional com-
parisons will be made. We will also make rough
comparison with recent calculations based on non-
local separable and density-dependent interactions.

II. CALCULATION OF MATRIX ELEMENTS

The effective interaction matrix elements were
calculated following the method of Shakin et al.
The matrix elements between normalized and anti-
symmetrized two-body states of the type

<"1(11%)j1: "z(lz%)jz | Vege | ”3(la%)j3: ”4(14%).74 dor

are calculated using the modified Yale potential
with oscillator parameters =1.76 and 5 =1.99 fm.

Table I shows the healing distances d and pseudo-
potentials VP for the various relative states. It is
important to point out that for the relative states
1Sy, 3S;, 3P,, D,, °D,, °D,, and °D, with the prin-
cipal quantum number » =0, the “healing” is
achieved without introducing a pseudopotential.
This “natural” healing is especially pronounced in
the °D, state since it was achieved even for the
state with principal quantum number »=2. For the
other states the strengths of the pseudopotentials
for the MY potential are comparable with those
for the Y potentials. For the P, (n=0) state, for
instance, the pseudopotential strengths are 703
and 719 MeV, for the MY and Y potentials, respec-
tively.

The importance of this natural healing is realized
when one focuses attention on the relative state 3S,,
since it plays a paramount role in the resulting
binding energies. This lack of choice amounts to
essentially removing a fitted parameter, namely
the healing distance of the 35, state.

Table II exhibits the relative matrix elements
for various interactions along with the oscillator

TABLE I. The healing distances and pseudopotentials of the relative states for the modified
Yale interaction. The healing distance d is in Moshinsky units (1 Moshinsky unit=v?2 fm).

The oscillator parameter b =1.76 fm.

State s, 3s, p, P, P, P, D, D, *D, 5D,
a 0.769 0.616 0.700 0.701 0.701 0.617 0.611 0.454 0.680 0.616
n Pseudopotential VP (MeV)

0 0 0 =703 -260 242 0 0 0 -—248 0
1 -14 —-24 -710 —-272 —-253 =10 -2 0 —-252 -2
2 -30 —42 —-735 -280 -259 -16 —4 0 -256 -8
3 =50 —-67 —-T44 =292 265 -28 -10 -20 -260 -12
4 =72 -92 -769 -298 -274 -36 -11 -50 -272 -14
5 -100 -124 -778 =308 -284 —46 =17 —-80 —-276 -20
6 -134 -158 —798 -324 -298 -59 -19 -100 -280 —-26
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parameters and healing distances used. For the
oscillator parameter b =1.76 fm the healing dis-
tances for the MY interaction are quite close to
those for the Y interaction except for the 3S, and
3D, states. However, as the healing distance for
the 3S, state for the MY interaction is decreased
by over 20% as compared to that with the Yale in-
teraction, the strength of the matrix element de-
creases by about 1% for the n=0, »n’ =0 case, in-
creases by about 9% for the =0, »’ =1 case, and
slightly decreases for the n=1, n’ =1 case. For
the 3D, state the MY interaction matrix elements
show a slight increase over the Y matrix elements.
For the oscillator parameter b =1.76 fm, the MY
matrix elements are in reasonable agreement with
those calculated for the Y, Reid (R) and Hamada-
Johnston (HJ) interactions. The matrix elements
for the HJ interaction were calculated by Grillot
and McManus'® and Becker and Mackellar. It
may be mentioned that Grillot and McManus used
a state-dependent level shift parameter A while
the present calculations employed A =20.0 MeV.
The °D, state matrix element provides another
example for comparison purposes of the relative
strength of the matrix elements for the different
interactions. Between the matrix elements for the
MY and Y interactions obtained with healing dis-
tances of 0.680v2 fm and 0.677vV2 fm, respective-
ly, the former is in closer agreemernt with the ma-
trix elements obtained with the R and HJ interac-
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tions, as obtained by independent ways. Note,
however, the abnormally short healing distance
in this state for the Reid interaction.

Table II also affords another very interesting
comparison, in showing the dependence of the ma-
trix elements on the oscillator parameter 5. In
general, the matrix elements obtained with the MY
interaction with 4 =1.99 fm are smaller than those
for the smaller oscillator parameter. The ulti-
mate test of the matrix elements is, of course, in
the nuclear properties calculated by means of them.

A valuable comparison can also be made by cal-
culating the relative matrix elements using the
same healing distances and oscillator parameters
for the MY and Y interactions as it will reveal the
dependence of the strength of the matrix elements
on the variation of the tensor force. Such a com-
parison is also included in Table II. For the MY
and Y interactions with b =1.99 fm, the matrix ele-
ments for the 35, state show marked differences
which vary from 24% for the n=0, n’ =0 case to
over 50% for higher values of #» and n’ (not shown
in the table), the matrix elements obtained with
the Y interactions being of greater magnitude.
This increase can be understood by realizing that
in order to achieve the shorter natural healing dis-
tances of the MY interaction larger pseudopoten-
tials (-536.0 MeV for the n =5 node) had to be used
for the Y interaction. This in turn demands that
the level shift parameter A be increased. This is

TABLE II. Comparison of the relative matrix elements of the modified Yale interaction for two oscillator parameters
with those for the Yale, Reid soft-core,and Hamada-Johnston (HJ) interactions. The healing distance d is given in

Moshinsky units (M.u.).

Modified Modified
Yale Yale? Yale Yale Reid? HJC
b=1.76 fm b5 =1.76 fm b=1.99 fm 5=1.99fm  5=1.76 fm b=1.76 fm HJd
d d d d d A b=1.76 fm
State n n’ (M.u.) Ve (M.u.) Vg (M.u.) Ve (M.u.) Ve (M.u.) Ve (MeV) ¢ t
'S, 0 0 0.769 -6.27 0.769 —6.10 0.769 —4.73 0.769 —4.64 0.752 —5.85 80 —5.97 —6.05
01 —4.80 —4.59 —4.04 -3.88 —4.67 -4.73 —5.54
11 -4.45 —4.04 -3.92 -3.69 —4.32 36 —4.43 —4.98
% 0 0 0.616 —-8.52 0.800 —8.60 0.616 —6.37 0.616 —-7.91 0.952 —9.16 80 —6.62 —8.87
0 1 -7.45 —6.84 -5.98 -7.79 -8.35 -5.13 -10.44
11 -7.33 -7.35 —6.15 -8.23 -8.80 36 —5.63 -9.71
P, 0 0 0.700 044 0.705 1.52 0.700 0.44 0.700 0.40 0696 1,35 58 1.76 1.55
S, 0 0 0.701 -2.05 0.705 —-2.36 0.701 -1.53 0.701 -1.53 0.752 —1.93 58 —2.14 -1.69
0 0 0701 2,12 0.705 242 0.701 142 0.701 142 0.752 1.90 58 1.85 1,72
’’, 0 0 0.617 —0.81 0.613 —0.83 0.613 —0.49 0.613 -0.49 0.536 —0.77 58 —0.83 —-0.91
D, 0 0 0.661 -0.55 0.665 —0.58 0.657 —0.32 0.661 —0.32 0.712 —0.44 36 —0.50 —-0.50
5Dy 0 0 0454 1.10 0.565 1.08 0.454 0.71 0.584¢ 0.68 0.752 1.23 36  1.68 1.21
D, 0 0 0.680 —2.16 0.677 —2.01 0.680 —1.35 0.680 —1.28 0.360 —2.19 36 -2.11 -2.14
D, 0 0 0616 0.03 0.693 0.05 0.616 0.02 0.616 0.02 0.696 0.36 36 0.04 —0.06
38D, 0 0 —4.50 —5.50 -3.11 -3.54 —-5.29 36 —5.57 —5.51
10 -1.62 —-2.85 -1.39 —-2.04 —2.65 —2.85 —2.64

2 Reference 9.
b Reference 3.

¢ Reference 16.
dReference 17,
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TABLE III. Comparison of some modified Yale inter-
action two-body matrix elements with those of the Yale
interaction for the 1p3,, 1p4, states with n;=2 or 3,
respectively, and b =1.76 fm. The healing distances are
given in Moshinsky units.

Modified
Yale Yale 2
Healing distance 0.616 0.696

ng n, n, ng dJ T Matrix element
2 2 2 2 0 1 -2.86 -2.57
1 0 -2.69 -2.45
2 1 -1.19 -1.13
3 0 —4.24 -4.84
2 2 2 3 1 0 3.48 4.45
2 2 3 3 1 0 1.49 1.81
2 3 2 3 1 0 —5.82 -6.92
1 1 —0.49 -0.53
2 0 -5.34 -5.87
2 1 -2.30 -2.23
2. 3 3 3 1 0 0.76 1.39
3 3 3 3 0 1 -0.37 —-0.04
1 0 -2.67 -2.74

3 Reference 3,

not done in an effort to keep the model parameters
as nearly the same as possible. It must be men-
tioned at this point that the effective matrix ele-
ments of the Y interaction with 5 =1.99 fm are not
expected to yield reasonable results when used

for calculating the ground-state nuclear properties
because of their large magnitude. This point will
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be discussed further in the text.

Table III shows the comparative strengths of
some selected two-body matrix elements calculat-
ed with the MY and Y interactions with #; =2 or 3
for the 1p;,, and 1p,,, states, respectively. The
healing distance of the 3S, state for the MY inter-
action is smaller than that for the Y interaction
by more than 11%; the values of the two-body ma-
trix elements do not change in the same direction
for all cases, although their over-all values are
not radically different.

III. HARTREE-FOCK CALCULATIONS
A. Spherical nuclei

For the closed-shell nuclei **0 and *Ca the
Hartree-Fock (HF) calculations are performed
using the single-particle orbitals expanded in the
truncated space of harmonic oscillator wave func-
tions. The bases used are

NSy1/2s MP1yas P32y 1=1,2,3 (1)

and
NS 112y MP3s2s NP1y Mgy Mgy, n=1,2,3. 2)

The bases (1) and (2) were used for the calculation
of the ground-state properties of *O and basis (2)
was employed for the corresponding calculation of
“Ca. These bases are not as extensive as used in
the work of Ford, Braley, and Bar-Touv,'® Lee
and Cusson,’ and Zofka and Ripka.?® The effect

TABLE IV. Hartree-Fock results for 6O for the modified Yale (MY) and Yale (Y) interac-
tions for basis (1) (nsys, np3s, npys,n =1,2,3) and basis (2) (#sy3, npysy, npyy3, ndsy, nds s,
n =1,2,3). The healing distance and the oscillator parameter are denoted by d and b, re-

spectively.
MY Y? MY MY
basis (1) basis (1) basis (2) basis (2) Experiment
b (fm) 1.76 1.76 1.76 1.99
d (fm) 0.871 0.984 0.871 0.871
BE/A (MeV) -6.98 -9.80 -8.14 -6.79 -7.98b
rms radius (fm) 2.16 2.06 2.09 2.26 2.67+0.03°¢
Single-particle levels (MeV) nd pe
1sip -68.4 -78.7 -71.4 -61.5 —-417.0 -40+8
1p3p -29.6 =37.0 -34.0 -28.8 -21.8 -18.4
191 —20.5 -26.8 -24.3 -21.7 -15.7 -12.1
ldsp -4.8 -3.2 -42  —0.6
281/2 -1.0 -1.2 -2.5 -1.2 -3.2
1dy,, 3.9 3.2
1p4-103p
splitting 9.1 10.2 9.7 7.1 6.1 6.3
Gap A 19.5 25.6 19.5 18.5 11.5f

2 Reference 3.
b Reference 23,
¢ Reference 24.

dReference 25.
€ Reference 26.
f Reference 27,
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of using truncated single-particle bases had been
earlier investigated by the Massachusetts Institute
of Technology group.?!'?* However, as mentioned
in the Introduction, our main object is to compare
our results with those of Stamp, Shakin et al., and
Nisley and Hull who had also used these very bases
in their calculations, and look for the differences
and similarities in the results.

Table IV shows the results for the Hartree-Fock
calculations for O carried out with the MY poten-
tial with 4 =1.76 fm and compares them with the
results obtained with the Y interaction and the ex-
perimental values.?®"2° The healing distance of
the 35, state is 0.616v2 fm for the MY interaction
and 0.696v2 fm for the Y interaction. The binding
energy per nucleon for the MY interaction is less
than that of the Y interaction by about 17% and is
in better agreement with the experimental value.
The corresponding rms radius though still consid-
erably smaller is in better agreement as well. The
MY interaction also gives better values for the
single-particle energy levels, energy gap, and the
1p1/2-1p5,, splitting. -

Table IV lends itself to a valuable comparison
of the results of the HF calculation for **O for two
oscillator parameters, b=1.76 and 1.99 fm. It is
known that the oscillator parameter which minimiz-
es the binding energy for **0O is in the neighborhood
of 1.76 fm. On the other hand, calculations with
b=1.99 fm yield better agreement for the rms ra-
dius and the energy gap. The single-particle basis
used in this case is the expanded basis given by (2).
Some further improvement in the binding energy is
possible by employing a still larger basis and by
varying the oscillator parameter appropriately.
However, this is not attempted here.

The results of the HF calculation for Ca are
shown in Table V. The expanded basis given by
Eq. (2) is used and the comparison is made to the
results obtained with the Y potential employing
same values of the oscillator parameter and heal-
ing distance. The MY binding is -12.94 MeV per
nucleon and the Yale —20.06 MeV. The MY single-
particle energies for the two lowest orbitals are
20-25 MeV higher than those of the Y potential,
but are still twice as deep as the experimental val-
ues, while the unoccupied levels are underbound.
The disparity between the MY and Y results are
solely the effect of the variation of the tensor force
and thus lend to a valuable comparison. Closer
_ agreement with experiments can be obtained by in-
creasing the oscillator parameter and the expan-
sion basis.

The inferiority of the MY results in comparison
with the R results, also listed in Table V, may be
understood in terms of a relatively short “natural”
healing distance for the 3S, state for the MY inter-

action. The difference in the oscillator parameter
may also account for some of the overbinding with
the MY potential. In addition a better choice of A
(i.e., larger A) would decrease the size of the ef-
fective matrix elements which in turn would result
in improved values of the binding energy for *Ca.
This, however, was not done as it lies outside the
scope of this paper.

The binding energies in Tables IV and V neglect
the center of mass and Coulomb energies, which
can be estimated by simple expressions

Ecou=32(Z-1)¢*/5R, R=1.3AY3fm,  (3)
and

E.., =—3w. (4)

c.m.

These corrections amount to an over-all reduc-
tion of the binding energy per nucleon by 0.27 MeV
for **0 and 1.67 MeV for *Ca.

All in all, the MY interaction with natural heal-
ing for the 35, state yields better HF results for
80 than those obtained with the Y interaction. The
HF results for “Ca obtained with the MY interac-
tion are inferior to those for the R interaction with
a much larger healing distance for the %S, state.
The effect of decreasing the tensor force is to de-
crease the binding energy per nucleon for “Ca sig-

TABLE V. Comparison of the Hartree-Fock results
for ¥Ca for the modified Yale (b =1.99 fm), Yale (b
=1.99 fm), and Reid (b =2.09 fm) interactions. The sin-
gle-particle expansion basis consists of the states nsy;,
np 19, WP3sps ndsyy, ndys, n =1,2,3. Experimental refer-
ences are given in Table IV,

Modified
Yale Yale Reid? Experiment

d (Moshinsky 0.616 0.616 0.952

units)
d (fm) 0.871 0.871 1.346
BE/A (MeV) -12,94 -20.06 -11.23 -8.55
rms radius 2.64 2.60 2.80 3.52

(fm)

Single-particle levels (MeV) n P

154 -110.3 -137.3 -96.5 -50+11
1P3, -74.7  -95.8 —64.6
151 -68.3 —88.7 —60.5 —34x 6
ldsy -41.2 -55.5 -34.2 -—22.8 -15.5
251 -30.5 —38.0 -25.0 -18.4 —10.9
ld; -29.7 -—-425 -26.7 -15.8 -8.3
2P312 —6.0 -89 -34
2p1/2 _3.5 —6,0 —1.8
1p1,0-1b3) 6.4 7.0 4.1

splitting
1dy,5-1ds 11.5 13.0 7.5 7.0

splitting
Gap A 23.7 33.6 23.3 7.3

2 Reference 3.
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TABLE VI. Hartree-Fock minima for 2%Ne. The oscillator parameter b =1.76 fm. The
single-particle energies are given in MeV,

Spherical Oblate Oblate Prolate Experiment
BE/A (MeV) —5.78 —5.82 —5.66 -6.13 —-8.032
B 0.00 —-0.183 —-0.194 0.391 0.87b
¥ 0 0 0 0
rms radius (fm) 2.783 2.774 2.745 2.752 2.91°¢
Single-particle levels
15y, 172 —56.89 —56.81 —55.48 -56.45
195t 32 —27.04 -27.94 —28.61 —25.45 19, —1g ¢
1yt 102 —217.04 —-26.80 -28.22 -30.97 T
3
1pyp* 12 -22.26 -22.28 -23.54 —22.18 -12¢
1dg,* 52" —5.86 -7.03 -7.48 -3.61
1ds,*%2 —5.86 ~5.82 —-6.98 —6.52
1dg,,* 12 -5.86 —4.50 -4.23 -12.68
25, 12 —-8.25 —8.89 -7.117 -4.71
1dy 5t —0.87 -1.85 —-2.99 0.92
1dy,* 172 -0.87 0.16 -1.22 -2.12
Energy gap A 2.39 1.86 0.31 6.16 10.112

3 Reference 29,
b Reference 28.

- nificantly, and by using a natural healing distance
the additional parameter of the healing distance,
used in fitting the calculated binding energy for

2s-1d shell nuclei, is effectively removed.

B. Deformed nuclei

The doubly even N=Z deformed nuclei are treat-
ed following the procedure of Pal and Stamp. Their
prescription dictates that one start with a spheri-

cal density matrix and then force asymmetry by

¢ Reference 24,
dReference 29.

introducing terms in the Hamiltonian, through the
use of Lagrange multipliers A, and A,. These La-
grange multipliers are expressed as functions of
two parameters A and 6.

®)
6)

A, =M cosé,
1
A.z =ﬁ)\ sinf.
The parameters X and 6 are then varied from —22

to +22 and 0 to 40°, respectively. Moreover, an
elongation parameter 8 and an angle of asymmetry

TABLE VII. Hartree-Fock minima for 24Mg. The oscillator parameter & =1.76 fm. The
single-particle energies are given in MeV. The experimental references are given in Table

V1.

Spherical Oblate Oblate Prolate Asymmetric Experiment

BE/A (MeV) —5.96 -5.30 -6.52  —6.64 -6.78 —8.26

B -0.027 -0.563 —0.291 0.352 0.368 0.65

Y 0 0 0 0 19°11

rms radius (fm) 2.844 2.950  2.862 2.850 0.851 3.01+0.03

Single-particle levels

1sy,,%172 -61.72 -58.89 —63.35 —62.84 —62.54

1p4,,3/2 -32.93 -36.19 -34.65 —29.99 ~31.65

195,912 —32.93 -15.18 —-34.20 —38.37 -37.88

19,5 V2 —-33.18 -35.35 —27.09 —28.58 —26.84

1dg,,* 52 -10.35 -17.22 -12.93 —-6.95 -7.77

1dg 32 -10.35 -3.10 -12.47 -11.91 -14.41

1dg,,* 12 -10.35 467 -7.31 -17.80 ~17.70

25,12 -10.29 -16.51 —14.49  -6.47 -9.10

1d,,y*%2 -9.19 -15.39 -6.66  —3.65 —2.89

1dy,* 12 -9.19 -2.99  -3.59 -11.22 —5.88

Energy gap A 0 0.21 0.46 0.69 5.31 9.21
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TABLE VIII, Hartree-Fock minima for 288i. The os-
cillator parameter b =1.76 fm. The single-particle en-
ergies are given in MeV., The experimental references

are given in Table VI.

Spherical Prolate

Oblate Experiment

BE/A (MeV) -7.00 -7.67 =7.79 -8.45
B -0.011 0.319 -0.324  —0.40
b% 0 0 0

rms radius (fm) 2.914 2,921 2,925 3.08+0.06

Single-particle levels

15,12 —-68.01 —68.19 —68.75

1py,* 3" -38.41 —36.01 -—42.26 36
1yt 12 ~38.41 —44.54 -30.31
1pyp* 12 —40.87 —33.06 —40.73 —28
1d;p,* 52 ~14.67 -11.46 —20.66 —17.0
ldg)y*%? 14,67 -19.28 —10.88

Lds)* ' ~14.67 -22.81 -10.43

25y, 17 ~14.39  -9.75 -20.26 ~-13
1dy*37 -15.41  -7.05 -18.36

1dy,* 17 -15.41 -16.24 —5.69

Energy gap A 0 4.78 7.48 8.69

v are introduced which in terms
coordinates are given by

of the collective

a, =pcosy, (7
a2=a_2=71§Bsin'y. (8)

Starting with density matrices

at the most appar-

ent minima, once the energy surface for a nucleus
is explored, an unconstrained Hartree-Fock calcu-
lation is initiated and the true minima in the bind-
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ing energy are revealed. The single-particle
states were expanded in the 2s-1d shell basis con-
sisting of the states 1s,,,, 1ps,,, 1P,)/5, 1dg,5, 2S,,,
and 1d,,,.

For *°Ne, the Hartree-Fock minima are dis-
played in Table VI. The ground state is found to
be axially symmetric with BE/A =-6.13 MeV. As
will be discussed later, this value is about 20%
better than the value obtained with the Y interac-
tion and 5% better than the result for the R inter-
action. Some improvement in binding energy would
result from using a still larger basis and perform-
ing angular momentum projection.

The ?*Mg nucleus is found to be axially asym-
metric and Table VII shows the various minima
for this nucleus. The minima for 28Si are found
in Table VIII; it shows that this nucleus is an ob-
late one in the ground state with a prolate solution
nearby. The binding energies and other calculated
parameters are substantially better than those ob-
tained via the Y and R interaction.

An asymmetric ground state is also found for *8.
Table IX shows the various minima for the eight-
hole nucleus. It is interesting to note the close-
lying oblate and prolate solutions for *S. For %A
two sets of minima were found corresponding to
two oscillator parameters. The ground-state
shape for both cases is found to be oblate. The
minimum for =1.76 fm yields BE/A =-9.84 MeV
and -6.80 MeV for » =1.99 fm as shown in Table
X. The dependence of the results on the oscilla-
tor parameter indicates that the number of states
included in the expansion should be enlarged. The
last value is judged more appropriate as the oscil-

TABLE IX. Hartree-Fock minima for 32S. The oscillator parameter b =1.76 fm. The
single-particle energies are given in MeV, The experimental references are given in Table

VI.
Spherical Prolate Oblate Asymmetric Experiment
BE/A (MeV) —8.32 -8.50 —8.58 -8.70 -8.49
B 0.068 0.172 -0.221 —-0.224 -0.37
¥ 0 0 0 19°9’
rms radius (fm) 2,984 2.971 2.977 2.975 3.23+0.07
Single-particle levels
154172 —-76.15 -73.89 —74.46 —74.05 ~—80
1p5,*3"2 —43.55 —42.63 —-47.48 -48.21 32
1pypti? —43.55 -47.89 -38.29 —44.79 B
1pp* 172 —45.29 -41,74 —45.22 -37.75 -22
1dg* 5" -18.81 -17.27 —24.19 -25.41 -16
1dg,*3/? -18.81 -22.67 —-21.47 —23.44
1dg* 112 -18.81 -24.94 -16.60 —-14.68
25,212 —20.81 —-15.60 -23.31 —21.72 -9.1
1dg,*3? -19.45 -15.17 -18.20 -19.22
1dy %172 -19.45 —20.82 -11.79 -10.98
Energy gap A 0 1.67 1.60 4.54 6.43
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TABLE X. Hartree-Fock minima for 3A. The oscillator parameter b =1.99 fm. The
single-particle energies are given in MeV. The symbols Sp., Pr., and Ob. denote spherical,
prolate, and oblate solutions, respectively. The experimental references are given in Table

VI.
b=1.99 b=1.76
Sp. Pr, Ob. Sp. Pr. Ob., Experiment
BE/A (MeV) —6.59 —6.65 —6.80 -9.64 -9.70 -9.84 -8.52
B —0.062  0.085 —0.179 —0.049  0.065 —0.135
¥ 0 0 0 0 0 0
rms radius (fm) 3.415 3.415 3.409 3.020 3.020 3.015
Single-particle levels
syt 12 —59.96 —59.90 -59.31 —80.34 —80.25 —79.43
1pg)3r -36.62 —35.72 —-38.60 —-49.83 -48.83 -52.03
1pg 17 —36.62 —38.47 -37.83 —49.83 —51.80 —50.94
191t 12 —-36.33 —35.26 —33.00 -48.72 —47.59 -44.96
1dg* 5" -17.78 -16.29 -20.58 -25.01 —23.18 —28.37 —-20
1dg,*3? —-17.78 -18.67 —19.30 -25.01 —26.00 —26.64
1dg,t 12 -17.78 -20.02 —11.35 -25.01 —27.69 -16.54
25yt 12 -17.99 -16.50 -19.70 —24,92 —24.03 -27.27
1dy,,*3" —-16.60 —-15.35 -16.69 -22.35 -20.95 -22.47
1dy,* 12 -16.60 -17.59 -16.88 -22.35 —22,67 -23.19
Energy gap A 0 0.94 5.34 0 1.72 5.93 6.48

lator parameter b =1.76 fm is only fitted to give
minimum binding in the neighborhood of 0.

Table XI gives an overview of the quality of the
MY interaction for the four nuclei *°Ne, 2*Mg, %%Si,
and *8 by comparing the corresponding HF results
with those of the Yale and Reid potentials and with
experiments.

For *Ne the value of BE/A for the ground state
is —=6.13 MeV which represents an improvement
over the value -5.07 MeV for the Y potential and
-5.84 MeV for the R interaction; the calculated
deformation parameter § is also better for the MY
interaction than for the other two interactions by
10% or more. When one notes the results for >*Mg
and other heavier nuclei one finds that the values
of the binding energies are increasingly improv-
ing for the MY potential for a high A nuclei. For
24Mg, the value of BE/A is —6.78 MeV with the
MY interaction and is over 22% better than the
—5.54 MeV value for the Y interaction and over 6%

better than the Reid interaction value of -6.37 MeV.
The value obtained for the deformation parameter
is also closer to the experimental value than for
either of the other interactions, although it is still
quite far from the experimental value. Upon fur-
ther examination of this table one is convinced of
the over-all improved agreement with the experi-
mental values obtained with the MY interaction.

The results summarized in Tables IV, V, and
XI do not include the center of mass and Coulomb
corrections to the binding energy. These correc-
tions can be estimated by the simple expressions
(3) and (4).

IV. COMPARISON WITH OTHER CALCULATIONS

It may be desirable to compare our results with
some others that have appeared in the literature
in recent years. In making this comparison it
should be remembered that some of these calcula-

TABLE XI. Comparison of the present results with the results of the Yale and Reid interactions for the minimum en-

ergy solutions. All the binding energies are given in MeV.

Modified Yale Yale 2 Reid? Experiment

BE/A B v BE/A B v BE/A B Y BE/A Be

20Ne (prolate) -6.13  0.391 0 -5.07 0.349 0 -5.84 0.356 0 —-8.03 0.87
Mg (axially asymmetric) —6.78 0.368 19°11’ —5.54 0.332 18°56' —6.37 0.338 19°22' —8.26 0.65
283i (oblate) ~7.79 -0.324 0 -6.35 —0.292 0 —7.24 -0.298 0 -8.45 —0.40
823 (axially asymmetric) —8.70 —0.224 19°9’ -7.11 —0.200 10°4’ —8.07 —0.208 19°13' -8.49 —0.37

2 Reference 2.

b Reference 3.

¢ Reference 28.
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tions like those of Ford, Braley, and Bar-Touv ent model spaces. In their calculation using all
(FBB) and Lee and Cusson employ potentials which orbitals up to the 1g,,, as the basis, FBB impose
are free from the complexities that accompany a the constraint that the predicted ground-state ra-
hard-core potential in the calculation of the effec- dius should equal the experimental value. This
tive interaction. FBB employ the Tabakin inter- was accomplished by adjusting the oscillator length
action® and perform HF calculations for the de- parameter in their calculation. Lee and Cusson
formed nuclei in the 2s-1d shell using three differ- used an expansion basis consisting of the first five

TABLE XII. Comparison of the modified Yale (MY) interaction results with those of Ford,
Braley, and Bar-Touv (FBB), Lee and Cusson (LC), and Zofka and Ripka calculationI (ZR)
for the density-dependent interactions of Negele (LINEG) and Brink and Boeker (B1). All the
energies are given in MeV and rms radii are given in fm. The Hartree-Fock energy gap is
denoted by A.

ZR ZR
MY FBB Lc? (LINEG) (Bl) Experiment
180 b (fm) 1.76 1.66 1.67 1.62
Deepest level -71.4 -64.1 ~—47
Last filled level —24.3 -21.1 ~—4,23
A 19.5 20.6 17.9 23.1 11.53
rms radius 2.09 2.34 2.65 2.65 2.67+0.03
BE/A -8.14 -7.85 -7.94 -5.81 -17.98
20Ne b (fm) 1.76 1.88 1.66 1.83 1.76
Deepest level -56.4 -46.1 —-67.6
Last filled level -12.7 -7.96 -15.3
A 6.2 7.03 9.7 7.2 15.1 10.11
rms radius 2,75 2.73 2.65 2.96 2.96 2.91
BE/A -6.13 -2.00 -7.34 -17.60 -5.51 -8.03
Mg b (fm) 1.76 2.09 1.66 1.83 1.79
Deepest level -62.5 —44.1 -70.6
Last filled level -14 .4 -4.56 -15.1
A 5.3 1.70 8.2 5.0 12,1 9.21
rms radius 2.85 3.03 2.83 3.14 3.16 3.01+0.03
BE/A 6.78 -1.70 -7.35 -7.72 -5.46 —8.26
88 b (fm) 1.76 2.09 1.66 1.83
Deepest level —68.8 —48.7 -75.4
Last filled level -18.4 -8.5 -18.6
A 7.5 7.24 8.8 8.8 13.5 8.69
rms radius 2.93 3.10 2.94 3.27 3.31 3.08+0.06
BE/A -=7.79 -2.19 -7.58 -8.12 -5.64 —8.45
328 b (fm) 1.76 2.19 1.75 1.77 1.80
Deepest level -74.0 —48.95 -78.0
Last filled level -19.2 -6.1 -16.7
A 45 1.02 7.7 5.0 11.1 6.43
rms radius 2.98 3.24 3.05 3.30 3.3¢ 3.23+0.07
BE/A -8.70 -2.02 -7.71 -8.30 -5.71 —8.49
%A b (fm) 1.99 1.75 1.74 1.80
Deepest level -59.3 -82.6
Last filled level -16.7 -18.3
A 5.3 8.9 6.6 12.1 6.48
rms radius 3.41 3.09 3.34 3.37
BE/A -6.80 —8.03 —-8.72 -5.95 —8.52
Ca b (fm) 1.99 1.75 1.711 1.75
Deepest level -110.3 —87.6 -50%11
Last filled level -29.7 -21.2 -15.8
A 23.7 18.4 14 4 20.5 7.27
rms radius 2.64 3.13 3.37 3.39 3.50
BE/A -12.94 -8.44 -9.13 -6.24 -8.55

2 The energies of the single-particle levels are those for neutrons.
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major shells plus the 12,,,, subshell and the semi-
realistic nucleon-nucleon interaction No. 2 of
Saunier and Pearson.?! Certainly our bases are
much simpler and therefore only a rough compari-
son with these calculations is possible.

Table XII also includes a comparison with the
calculation I of Zofka and Ripka using the density-
dependent effective interaction of Negele,*? and Bl
interaction of Brink and Boeker.3?

A glance at Table XII indicates that the calcula-
tion of Lee and Cusson (LC), like ours, only semi-
quantitatively reproduces the total binding energy
systematics, the rms radii as well as the energy
gaps. For the spherical nuclei, the MY interaction
yields deepest and last filled single-particle levels
which are more tightly bound though both are over-
bound with respect to the observed values. For the
deformed nuclei the reverse is true and the LC
levels are somewhat overbound. The quality of
agreement for the energy gaps is about the same
and the LC calculation yields radii which are
slightly bigger though still small in comparison
with the experimental values. In their calculation
FBB have not laid emphasis on seeking agreement
for the binding energy but rather on the properties
which depend mostly on the long-range part of the
two-nucleon interaction. Their occupied single-
particle energies are not as strongly bound as ob-
tained by LC and in this work. The density-depen-
dent interactions yield results which show an over-
all better agreement with experiments.

V. CONCLUSIONS

Previous calculations utilizing realistic poten-
tials in calculating effective matrix elements
through the unitary-model operator method and
subsequently using them in Hartree-Fock type cal-
culations for 2s-1d shell nuclei, have employed
two parameters in their attempts to reproduce the
experimental properties of these nuclei: the heal-
ing distance of the 35, relative state and the choice
of the oscillator parameter. The modification of
the Yale interaction has essentially removed one
of these parametrization procedures since the 3S,
state heals naturally without an additive pseudo-
potential. The modified Yale potential, which is
obtained by decreasing the relative contribution of
the tensor component of the two-nucleon potential
to the total potential, leads to Hartree-Fock re-
sults for the binding energies of nuclei in the 2s-1d
shell, which are better than those of the R and Y
interactions by 20-6% when the same prescription,
with nearly the same parameters, is used. The
modified Yale potential also yields improvement
in the calculated deformation parameter g for the
nuclei *Ni, %*Mg, 2°Si, and 32S. The improvement
amounts to about 12% over the value given by the

Y interaction and about 10% for the R interaction.
For the closed-shell nuclei the improvement is
significant for the *0O nucleus; the calculated bind-

ing energy per nucleon for the MY interaction is
-8.14 MeV, as opposed to —9.80 MeV for the Y
interaction with a little larger healing distance,
and the experimental value is -7.98 MeV. The rms
radius is also slightly improved as shown in Table
IV. The “Ca results represent a marked differ-
ence to the improving trend which is evidenced in
the lighter nuclei; the binding energy of —12.94
MeV is to be compared with the value -11.23 MeV
for the R interaction but with a much greater heal-
ing distance for the 3S, relative state. Both the in-
teractions give considerable overbinding since the
experimental value is —8.55 MeV per nucleon.

The most striking difference, however, is evi-
denced in the HF results for “Ca as obtained with
the MY and Y interaction using effective matrix
elements calculated with the same values for the
oscillator parameter, the 3S, state healing dis-
tance, and the level shift parameter A; the bind-
ing of -12.93 MeV per nucleon is to be compared
with that of —20.06 MeV per nucleon. Evidently
the reduction of the tensor component of the two-
nucleon potential is responsible for this large re-
duction in binding energy.

It is thus safe to conclude that a reduction of the
strength of the tensor component of the two-nucle-
on Yale potential without affecting the other quan-
tities calculable from the potential leads to some
improvement in the nuclear structure properties
of the 2s-1d shell nuclei. However, the method
still leads to the following general failures: (1) For
spherical nuclei, the method gives single-particle
energies for the low orbitals that are twice as deep
as the observed values while the unoccupied levels
are somewhat underbound. (2) It does not seem
possible to achieve simultaneously an agreement
for the binding energies and the rms radii, though
one can obtain improved results by varying the os-
cillator parameter from nucleus to nucleus and
using larger expansion bases as well as varying
the strength of the level-shift parameter A. Fur-
ther improvements in the results can be obtained
by pursuing the generalized Hartree-Fock-Bogoliu-
bov approach.3% 3%
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