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A perturbative approach for rapid calculation of recoil corrections to heavy-ion distorted-
wave Born approximation has been developed. Without making either the local momentum
approximation or the Hankel function approximation, we expand the final scattering wave func-
tion about r~ =Q.r&. We have modified the existing no-recoil code RDRc to include exactly the
first-order term, allowing one to correct for both longitudinal and transverse recoil effects.
Sample calculations have been performed, including an analytically solvable test case, plus
the reactions 9 Mo( C, C)9 Mo and Ca( N, 3C) Sc for which data have been taken and an-
alyzed previously with RDRc. The relative u independence of the results argues strongly
for convergence.

NUCLEAR REACTIONS 4 Ca( N, tC), E= SO, 50, 70 Mev; Mo( C, C),
E =48.5 MeV; calculated proper first-order recoil DWBA. Q, L, and o.'

(scaling parameter) dependence of calculated 0.

I. INTRODUCTION

In the past several. years the utility of distorted-
wave Born approximation (DWBA) codes for anal-
ysis of heavy-ion-induced single-nucleon transfer
data has been clearly demonstrated. ' ' Existing
heavy-ion DWBA codes employing the so-called
"no-recoil" approximation have often been suc-
cessful in reproducing transfer angular distribu-
tions, but are unlikely to be completely reliable
for extracting spectroscopic strengths. There are
undoubtedly situations for which an exact finite-
range code' is necessary to permit meaningful
evaluation of the direct-reaction mechanism. Un-
fortunately extensive use of such codes is rendered
somewhat impractical by the large requirements
of computer time and core memory.

In this paper we present an approximate method
of calculating recoil effects in which the no-recoil
calculation is seen as the zeroth order of a per-
turbation series. The form-factor localization
implicit in the no-recoil approximation may then
be exploited to obtain a rapid convergence for the
series. The method is a series expansion' of the
exit channel scattering distorted-wave function
4' '(kz, rz) about the point rf =ar;. Only the zeroth-

and first-order terms in this expansion are re-
tained. Nagarajan 'has performed a similar ex-
pansion but with the additional approximation of
replacing a bound-state wave function with a Han-
kel function, and of using a constant local wave
number as the gradient operator in the first-order
term. We make no such approximations and there-
fore our calculation approaches the exact finite-
range result when higher-order terms are small.

In this paper we present an outline of the form-
alism required for our perturbative approach
and apply the resulting code to two cases of exist-
ing data previously analyzed with the no-recoil
code RDRC. An extensive comparison with an
exact integration of the finite-range formalism
is in preparation. '

II. FORMALISM

The single-nucleon transfer reaction is of the
form:

(A+n)+B-A +(B+n),

where A +n is the projectile and B the target nu-
cleus. We use the coordinate system shown in
Fig. 1. If spin-orbit interactions are ignored the
exact DWBA cross section in the post representa-

tion may be written'

with

dv m, np kq 2' +1, , ~ (2L+1)
dQ (2' ) k; 2Z;+1 ' ' ~ (2l +1)

I"" "= g (I,m LM( f, m~) (0 ' ' (kz, rz)y'2~2(r~)
~ V(r, ) ~

yI&~&(r, )@'+' (k„r;)), (2)
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where 4'"(k„r,), 4'I '(k&, r&) are the entrance and
exit scattering wave functions while P," ', y™
are the wave functions for the transferred particle
bound to the projectile or target. The no-recoil
approximation is obtained by setting rf =ar; in 4
A more accurate procedure is to expand 4'' ' in a
series about o.r;.

From the exact relations

M~
ry = Pr +Jr~ ~ B+ n

(M~ +M~ +M„)M„
(M~ +M„)(Me +M„) '

we get

r~ ——ar; + [(p —a)r; + yr; j . (4)

FIG. 1. Coordinates used in evaluating the DWBA in-
tegral.

where the no-recoil form factor is defined by

If the transfer took place at a single point along
the line joining the centers of target and projectile
the no-recoil procedure would be sufficient. One
then sees that reasonable values for a vary be-
tween P for transfer taking place at the center of
the projectile to about P+yR, /(R, +R,} for trans-
fer at the projectile surface. In the post version
of DWBA the Woods-Saxon form for V(r, ) in Eq.
(2) cuts off transfer much past this surface.

To improve on no-recoil we use Eq. (4) to ex-
pand 4 ' ' to first order as:

(-)
4 ' '(r~) =4 ' '(ar, )+(p —a)r, (ar;)' s(ar;)

d r,y," '(r, )V(r, )y,'»(r, ) . (7)

A nonlocal form factor could have been introduced
in the exact expression Eq. (2) by

F~„(r, , rg) = Q (l2rrqfMI l, m, &

mym2

x q " '(r, )V(r, )y" '(r, ),

whence the no-recoil result would follow from the
ansatz

+y ~ V;4 ' '(ar;) (5) F~(r;, r&) =5(r& —ar, ) Pz„(r,).
and insert the result in Eq. (2).

The first term of Eq. (5) leads to

mynt2

x dr 4'( '
k& o, r,

y~5." (r,.)e~'& (k,-, r,.}, (6)

It is clear a strong localization is imposed on
F(r, , rz) by the cutoff form of interaction, and to
a lesser degree by the target bound-state wave
function. This localization to some extent justifies
the above ansatz and thereby the no-recoil ap-
proximation.

The second term in Eq. (5), which vanishes when
n =9, can be calculated by a minor modification
of a no-recoil code. We will investigate the third

term in more detail:

I,'p'2~"- —g (f,m, LMI l, m, & y(r, ~ V, 4' '( r,a)y™(r,) I V(r, ) I qr,'~~~(r, )4 "'(r;)) .
I

nt y7$2

If we first write r, in spherical coordinates

r, =g (-1)"r,(4w/3)"'Y,"(r,)t' „,
and use both the partial-wave expansion for 4 ' '

4' ' (ar;}=4v g i ' YP. (kz}YP (r, )f, (ar, ), (12)
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as well as the gradient formula'

~ &f, (ar;)Y, (ri) =(-1) (l'-m'1- i»~i'+1-m' —li)Y ~ "(r-) ' ' — f (ar )
l'+1 '". . . , - &f, (ar;) l'

2 E 2~g+3 +1 i li(( r ) ~r i i

1/2
(l' —m' 1 —p,

~

l' —1 —m' —p)2/'-1

we then obtain

"() ' ' f ( )i'-i ri
d( )

+ i' ori

(
~ r, V, y~-~*~~, =4~y ~-' V, . i, -I I" r, 4~ 3'f'V~ r,

t 'm' P

x, (l' m'1 —-u
I
l'+1-m' —i»& Y;.,';&(r, )I l +1

df (ar ) l' l'
fi (+«)d(nr;) ar; ' ' 2l ' —1

(l'-m'1 —p ~

l' —1 -m —li)

df, .(ar, ) l'+1 )' ] (14)

The expression for I&,'&" may now be written

I'"» =4m P i ' Y (k) " " dr(1)

where

x [Yi '," (r; )(l'm' 1li
~

l' —1m' +!»)8, ~,(r, ) + Yi;," (r, )(l'm'1 g ~

l' + 1m' + li) D, „(r,)]
xF„q(r;)y&'& (p, ),

are modified radial "wave functions, " while

F„„(r,) = P ~I (4iij3)'"Y",(r, )Yi &(r",)Yi»(r, )p, (r, )V(r, )y, (r,)r,dr, (im LM~l, m)
llL

g
7142

is a modified form factor.
F»(r, ) may be evaluated by applying the identity

M„+M„(
)

A

and then using the Sawaguri-Tobocman expansion to integrate over r, ." In particular we may write for
arbitrary functions y&(r, ) and p» (r»)

(19)

Yi » (r, )Yi &(r,)y» (r»}rp&(r, )dr» = 9 (L'm» m, l, m, ~
l»m„-).(2I.'+ l)(2' +1)

x(L 0!,0~ i, o) Y;; 'i(r, )F,'~!»(r,).-

Of course F' ", (r;) depends on the explicit radial form of y» (r, ) and y, (r,} in addition to l, , 1» and L'.
We use expression (19) by letting y» (r») = y»(r» }and p, (r,}= V(r, )y, (r, )r, .

Some tedious but straightforward Bacah algebra must now be performed. The explicit partial wave ex-
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pansion for the incoming channel is

4d"'(r;) =g i '[ 4v(21+ I)]'"Y', (r;)f, (r;) (20)

for a quantization axis along the direction of the incoming beam. One obtains finally

x(UML M)l0)-(l "OLO)l0) U(l'11M l L)I"d;r;'C (r )D, (r )f (r »), (21)

with

1/2 +r
C (r, )= —(x (i,Ol, —10)dO)U(l, l, il;Ll, —1)E" "'(r;) ~ ' (l,01, 10(10)

x U(l, lEIA.; Ll, +1)F'~&' "E(r;), (22)

and D, .„and D, , are defined in Eqs. (16) and

(I'I)
Including recoil introduces additional trans:-

ferred angular momenta. If spin-orbit forces in

the scattering channels are ignored, the allowed
L values are restricted by the triangular relations

and

I l, —I, I& L&
I l, +I, I.

In the no-recoil approximation the additional parity
restriction (-1)'1"&' =1 applies, leading to so-
called normal L values. This restriction disap-
pears in the full-recoil calculation; the additional
allowed L values are then referred to as non-
normal. This is evident from inspection of Eqs.
(21) and (22). If M =0 for a nonnormal L the parity
restriction still holds and the corresponding ampli-
tude vanishes, at least within our coordinate
framework.

III. CODING AND CONVERGENCE

The resultant first-order recoil formalism has
been coded as a modification of the existing no-re-
coil code RDRC.4 We will call the modified code
FRC (first-order recoil code). The coding was
checked by comparison with an analytical calcula-
tion employing plane-wave scattering states 4 ~'~

and oscillator bound states y, , A typical calcu-
lation with our code takes some 3 or 4 times long-
er than the corresponding calculation with RDRC.
Half the increase in time results from the addi-
tional, nonnormal, angular-momentum transfers.
It is then quite practical to analyze data with this
code, provided one is considering a case for which

the present procedure is convergent.
Some estimate of the degree of convergence may

be obtained by examining Eqs. (5) and (14). One

can write Eq. (5) in the form

lilt )(r&) =exp(i[yrL+(p —n)r, ] V }()I&d&(c(r&).

(23)

In a local-momentum approximation V, -k,.(or,.)
and our procedure then reduces to an expansion of
the exponential in Eq. (23)

exp(i[yr, + (p —(r)r,.] k,.}
=1+ik; [ ]+—,'(ik; [ ])'+ . (24)

When k, ll r, radial derivatives of the scattering
wave function are relevant and one might take

I

k" )= ([E—U(rr) —U(rr))-, .')
where Uis the real optical potential and V~ the
Coulomb potential in the exit channel. For the

grazing l, one expects transfer to be strongest at
or near the distance of closest approach where

I k,
" '

I
=0. This suggests the radial derivative

terms in Eq. (14) may be small. The remaining
terms in Eq. (14) result from angular derivatives,
i.e., k, zr„ for these clearly I

kL
I =([E—U(rz)

—Vc(rz)](2p, z/8')}'l'. Since we expect transfer to
take place reasonably near the Coulomb barrier,
i.e., where (d/dr&)(U+ Vc) =0, the local momentum
k is considerably decreased from k„= (2ldE/KE)' '.
This aids convergence. A crude estimate of the
expected accuracy can be obtained by examining
the second-order term in Eq. (24) which, for n =P,
is ~Ey'(k rL)2. Using the above arguments for kL,
All and averaging over the "angle" between k,. and

r„we are led to

( —,'y (k r, ) ) = 6 y'(E —U- Vc)—Er, '

"2(E —U- Vc)rL
3 pk
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For projectiles like "O, "C, r, -2.5-3 fm and we

deduce a second-order term -(E—E9„,. ,)/15}4.
This calculation gives only a crude guide to the re-
gion of validity of our first-order estimate; clear-
ly the approximation will break down at energies
sufficiently above the barrier.

Perhaps a better indication of the convergence
of our code may come from examining the depen-
dence on the "hidden" parameter z. An exact ex-
pansion of the power series must lead to a result
independent of this parameter. The extent to which
this is accomplished by a truncated series should

give an indication of the degree of convergence.
Later we will quote results indicating the first-
order calculation satisfies this criterion to a sur-
prising extent. It is, in fact, impossible to unique-
ly state the effect of recoil on the reaction cross
section without fixing a value for a. In general,
for a projectile considerably lighter (and therefore
smaller} than the target nucleus, one finds the o4

dependence much stronger in the prior rather than

in the post representation of the amplitudes. This
suggests recoil corrections are larger in the prior
form, as indeed one might expect from the large
value of (r, ) to be inserted in expression of e&'9'v4

in Eq. (22).

IV. APPLICATION

To illustrate our approach we examine two one-
nucleon transfer experiments performed at the

Brookhaven National Laboratory tandem Van de
Graaff facility, ~Mo("C, "C)~Mo and "Ca-
(' N, "C}'Sc at laboratory energies of 48.5 and 50

MeV, respectively. The results of a'theoretical
analysis of these reactions is reported else-
where. "" Of interest here are the effects of re-
coil, which were referred to but not described in

detail in this earlier work. The above reactions
and energies were chosen because of contrasting
angular distributions obtained. The neutron trans-
fer reaction occurs at an energy just above the
barrier and exhibits a semiclassical bell-shaped
angular distribution, while the proton transfer
occurs just below twice the barrier energy and

exhibits a strong diffractive and forward angle
structure. A qualitative picture encompassing
both these shapes is given in Ref. 13.

The results of no-recoil calculations and those
done with the first-order recoil code described
above do not differ appreciably in shape for a given
angular-momentum transfer L. This is illustrated
in Fig. 2 where no-recoil computations for 'Qa-
('4N, "C) to the "Sc (1f,&9) ground state and (2p9&9)

3.08-MeV state are compared with normal L re-
sults with recoil. In the case of the ground state of

Sc the normal parity transfer is for L =4. At an

5

w4
E

3

b2-

Co( N, C) Sc p (GROUNDSTATE)

50 MeV

FRC (L=4)—
IOX FRC (L=3) --—
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I I
I I I I K XJ
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IIc tf}
(de9)
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II, ff}
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FIG. 2. Comparison of no-recoil (RDRC) and first-
order recoil (FRC) computed angular distributions for
49Ca (44N 49C}498o

5t
Mo (I3C I2C) Mo 2 GROUND STATE)

Elob = 48.5 MeV

l2

IO-

8-

FRC (L=3)
10 X FRC (L=2)

RDRC (L=3) ---—

I

20 40 60 80
ec.m. (deg)

I 00 I 20

FIG. 3. Comparison of no-recoil (RDRC) and first-
order recoil (FRC) computed angular distributions for
9 Mo ( 9C, 'C) 99Mo.

energy of 50 MeV transfer is dominated by the

magnetic quantum states M =+4 for quantization
along the incoming beam direction. This results
in the most forward peak in the angular distribu-
tion occurring at an angle & IM I /f, =4/f, and sub-
sequent peaks at angles determined from
sin[(2l, +1)8,„]=1, where l, labels the outgoing
partial wave for which transfer is strongest. " The
nonnormal parity transfer is for L =3 in the
ground-state transfer which is again dominated by
the maximum

I
M

I
=8; an odd value which leads to

peaks in the angular distribution at sin(2l, +1}6= -1.
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TABLE I. Absolute magnitudes of peak cross sections calculated with RDRC and FRC.
Under S are the spectroscopic factors extracted from the heavy-ion-induced transfer data.

Reaction

9 Mo(3C, 2C)95Mo

0.821 3+
2

5+
2

RDRC

8.88

2.59

11.43

+FRC

ll. 10
0.28
3.05
0.59

14.07
0.39

0.59

&0.14

S(d,P)

0.59

0.255

0.17

Ca( N, 3C) 9Sc

3.08

7
2

3
2

1
2

5.03

1.07

20.3

5.75

6.48
0.10
0.82
0.14

24.8
0.75
8.13
1.50

0.67

0.36+ 0.06 -0.6

Thus the normal and nonnormal transfers in this
situation are both oscillatory (see Fig. 2) but just
out of phase. Should the nonnormal transfer be
large quite evident changes in oscillating angular
distribution would result. For the present one-
proton reaction the nonnormal transfer is not ap-
preciable to either the ground f,~, or 3.08-MeV

p, /, states.
In a case which is clearly a smooth "grazing"

angular distribution such as ~Mo("C, "C) at 48.5
MeV the angular shape shows almost no depen-
dence on L; no recoil and recoil, normal and non-
normal, are essentially indistinguishable (Fig. 3).

We have presented our calculations in various
other forms. In Table I we consider the prediction
of absolute cross-section magnitudes by comparing
the experimental data obtained at specific labora-
tory energies with calculations indicating sepa-
rately the no-recoil, normal, and nonnormal re-
coil results. For the relatively low-energy neu-
tron transfer we simply quote peak cross section,
whereas for the oscillatory proton transfer we use
total cross section as a measure of magnitude. If
the necessary ("C,"C) and ('~N, "C) spectroscopic
factors are taken from Cohen and Kurath' then
spectroscopic factors may be estimated for the
"Mo and 'Sc states. These compare wel. l with
spectroscopic information extracted from known
light-projectile transfer. " "'"'"Including recoil
corrections is significant for all states considered
but especially important for jz lz 2 final states.
Semiclassical arguments suggest that at low ener-
gy the incoming bound particle in a lp, ~2 (j, = I, —~)
will be favorably transferred into a j,= l, + -,' rather
than a j,= l, ——,

' final state in the target. 'This fea-
ture is borne out in the calculations and was used
to identify the spin of a 0.821-MeV state" in ana-
lyzing ~Mo final-state data.

TABLE II. Total cross sections (in mb) for j & and j&
states in Ca(' N, 3C) Sc as a function of incident pro-
jectile energy.

30 50 70

2
(FRC)
(RDRC)
(FRC)
(RDRC)

0'& /0& (FRC)
(RDRC)

(FRC)
(RDRC)
(FRC)
(RDRC)

0&/0& (FRC)
(RDRC)

4.03
3.76
0.253
0.455

15.9
8.26

28.4
23.9

7.15
6.24
3.97
3.83

6.48
5.03
0.818
1.07
7.92
4.70

24.8
20.3

8.13
5.75
3.05
3.53

6.22
4.88
1.35
1.20
4.61
4.07

20.4
17.6
7.60
4.43
2.68
3.97

The j and Q dependence of the recoil corrections
are best understood by performing theoretical ex-
periments, rather than by comparison with specif-
ic data. In Table II and Fig. 4 we explore these
dependences for iwo j pairs of levels, (2p, &,—,

2p, g, ) and (If,y„ If7(, ), appropriatetothe single-
proton transfer ending in Sc. Table II indicates
the energy dependence of the ratios o,/o, . In each
case the transferred particle is initially bound in
a 1pz /2 state in the proj ectile. The previously
used semiclassical argument suggests as the ener-
gy increases the j =l+-,' state should be less fa-
vored relative to the j = l ——,

' final state. This ar-
gument depends, however, on a proper treatment
of recoil. TableII indicates the ratio o,/o, gener-
ally deer'eases more with energy when our first-
order recoil correction is included. A point of
interest in Table II is the decrease produced at
30 MeV in the f,~, cross section when recoil is in-
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eluded. In this table both 1f states are calculated
at the + ground-state Q value and both 2p states
are calculated at the 3.08-MeV excited state
for 9Sc.

Perhaps the most revealing manner in which to
display this comparison is indicated in Figs. 4 and
5 where the no-recoil and first-order recoil total
cross sections are plotted as a function of excita-
tion energy [= Q(g.s.) —Q]. The cross sections cal-
culated at laboratory energies of 50 and 30 MeV

for the reaction 4'Ca('4N, "C) are shown in Figs.
4 and 5. Both j, states exhibit crossovers, with

recoil values being sometimes larger, sometimes
smaller than no-recoil. Some care must then be
taken in using a no-recoil analysis to extract
structure information for j, states. On the other
hand, the j, states are well described by the no-
recoil approximation over a wide range of Q val-
ues or excitation energies.

The optimum or peak Q values for the j& states

I 00 ) I ) I I I I I I I I I I

Ca( N C) Sc
(

b= OMeV

Q DEPENDENCE

I I I I I I I I I I I

Ca ( N, C) Sc EIab = 30 MeV

Q DEPENDENCE

IQ

IO—
P

2
FRC(L=2)
R DR C (L=2)—

P

2 Q. I

FRC(L=O)

RDRC(L=0) O.OI =

RC(L=Q)

E
IO

O

b

FRC(L= 4)
R DRC (L=4)

O

I.O

r f

2
Q I

/
/

I' f

2

O.OI =
i FRC(L=2)

R DRC (L= 2)

FRC(L= 2+3)
FRC(L=2)

IQ

RC( L= 2)

FRC(L=4)-

O. I

-3 0 5

EEx (M V)

IO
O. I

0 5 IO

EEx (Mev)

FIG. 4. Q dependence of computed cross sections for
+C(4N, I4C)44sc at 50 MeV.

FIG. 5. Q dependence of computed cross sections for
Ca( N, 3C) Sc at 30 MeV.
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TABLE III. Dependence of Ca( N, C) BSc calculated
cross sections as a function of the scaling parameter 0.
at 50 MeV.

RDRC FRC

(7 ) 300
24o

(& ) 32
26'

n =0.98
3.95
3.86

16.77
17.70

0. =1.01
4.61
4.65

21.29
22.42

~ =0.98
4.99
4.96

20.83
21.60

0. =1.01
5.04
4.99

22.22
23.05

g —'+—' =mv, (25)

in both Figs. 4 and 5 are reasonably well described
by the classical relationsis, i6

mv' kv
Q= U —U. + -A. —

2 2

mv kv=U —U — +A. —
2 'r'

we would like to argue that to a considerable de-
gree the first-order recoil calculation eliminates
or greatly reduces the unwanted dependence. We
have also previously argued the independence from
n is a sign of convergence. Table III and Fig. 6
summarize the results of exploratory calculations
again on the ('4N, "C}transfer. Table III considers
n dependence of lf, &, and Ip», states at experi-
mentally observed excitation energies (0 and 3.08
MeV}.

In every case the variation of cross section with
n is reduced appreciably by the first-order recoil.
Qne might, in fact, use the remaining variation in
cross section as an estimate of error in our cal-
culations; thus f,~, (30') is expected to be accurate
to -1% and p, ~, (32') to -I% or so. A more striking
display of this information is obtained by replotting
the Q curve of Fig. 6 for the f,&, final state. For
this particular state and a 50-MeV incoming "N
projectile we have the greatest calculated discrep-
ancy between no-recoil and first-order recoil.
Nevertheless, with extreme choices for n in the

where U, , Uz are the real optical potentials at po-
sitions of transfer in the entrance and exit chan-
nels, v is the local relative velocity at transfer,
r, and r, are radial distances of the transferred
particle from projectile and target, and X» A., the
projections of angular momentum for the trans-
ferred-particle orbits in a direction perpendicular
to the plane of motion at transfer. The choice of
A, y A. 2 is somewhat ambiguous. At 30-MeV labora-
tory energy, ' N ions incident on 'Ca are just
about at the Coulomb barrier and we expect v-0
and Q = U& —

U& = 2.2 MeV for all four states f7~2 ~, ~2,

p 3/2 g /2 The curves in Fig. 5 confirm this state
independence and all exhibit a maximum near
E,„„.„„.,„=+Q„+2.2 =4 MeV. Clearly recoil plays
little role in the Q curves of Fig. 5 as one expects.
It is only possible to crudely analyze the j, curves
at 50 MeV in a manner consistent with Eqs. (25),
also differences between j„j,are not included in
the classical relations. The increased role of re-
coil is evident at 50 MeV; there is a more notice-
able shift between recoil and no-recoil values for
the optimum Q. The slower dependence of cross
section on Q at 50 MeV, for say the f,&, curve,
makes the classical concepts less useful at this
higher energy.

Convergence and n dependence

IO

E
I

O
b

O. I

= I.02

=0.98

=I.02-

RDRC --—
a =0.98

I I

0
I I I I I I I I I I

5 IO

EEX MeV

48Ca (14N, ~C) Sc(5 5 E =50, L=2
k2 / lab

a, Q DEPENDENCE

Perhaps the most unsatisfactory feature of the
no-recoil approximation is the presence of the
scaling parameter n. We have argued a physical
range is p& o. & p+yR, /(R, +R, ). Our approach to
including recoil builds on no-recoil and necessari-
ly retains some dependence on n. In this section

FIG. 6. Q dependence of +Ca( 4N, ~~C)496c (2 ) at
50 MeV for two values of the scaling parameter n. The
(2 ) state shown has the largest differences between no-
recoil (RDRC) and first-order (FRC) calculations. Note
that FRC calculations are relatively O.-independent over
a broad Q range.
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expected range, the two recoil calculations shown

in Fig. 6 track each other surprisingly well with

Q. We take this as a strong indication of conver-
gence for our series approach at these energies.

CONCLUSIONS

The present code is ideally suited for use in the
analysis of experimental data. It consumes ap-
proximately twice the time of a no-recoil code for
a given angular-momentum transfer and apparently
converges well over a wide range of Q values and

projectile energy. The clearest evidence for con-
vergence is the degree to which independence from

the scaling parameter o. is achieved (Fig. 6).
Ideally, this should be checked by comparison with
results of formally more complete approaches.
What has been done so far indicates good agree-
ment with "in-principle" exact quadrature of the
finite-range transfer. For example in the reac-
tion "Sr("0,"N) to the p, &, ground and g,&, ex-
cited states of ' Y at energies from 42.5 to 59
MeV (lab) over-all peak cross sections differ by
no more than V% whereas recoil corrections are
at least four times larger. '

The authors would very much like to thank P. D.
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