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Effect of deuteron breakup on elastic deuteron-nucleus scattering
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The properties of the transition matrix elements V&(R) of the breakup potential Vz taken
between states P, (r) and Q~(r) are examined. Here P, (r) are eigenstates of the neutron-proton
relative-motion Hamiltonian, and the eigenvalues of the energy &, are positive (continuum
states) or negative (bound deuteron); Vgr, R) is the sum of the phenomenologicaL proton nu-
cleus V& z(~H —2 r () and neutron nucleus V„z([8+ & r () optical potentials evaluated for nu-
cleon energies equal to half the incident deuteron energy. The bound-to-continuum transi-
tion matrix element for relative neutron-proton angular momenta l = 2 are found to be com-
parable in magnitude to the ones for l = 0 for values of ~N larger than about 3 MeV, and both
decrease only slowly with &, suggesting that a large breakup spectrum is involved in deu-
teron-nucleus collisions. The effect of the various breakup transitions on the eLastic phase
shifts is estimated by numericaLly solving a set of coupled equations. These equations couple
the functions g~(R) which are the coefficients of the expansion of the neutron-proton-nucleus
wave function in a set of the Q~(r)'s. The equations are rendered manageable by performing
a (rather crude) discretization in the neutron-proton relative-momentum variable 4. Numer-
ical resuI, ts for 21.6-MeV deuterons incident on ¹iand Ca which include only the first momen-
tum bin (&, ~ 10 MeV) and l =0 and 2 show that the effects on the elastic phase shifts are sim-
Qar in several respects to those found by Johnson and Soper.

NUCLEAR REACTIONS Elastic deuteron-nucleus scattering theory. Effect of
deuteron breakup. Numerical applications to E =21.6 MeV d-Ca and d-Ni.

I. INTRODUCTION

Several attempts have recently been made to
include the effect of breakup on the elastic scat-
tering of deuterons from nuclei. Among them are
several which do not attempt to include the full
three-body treatment, but rather try to stay clos-
er to the two-body optical model formalism. ' '
The present study falls into, the same category.
Particularly the work of Johnson and Soper, ' to be
referred to as JS in what follows, has raised a
good deal of interest because of its success in im-
proving the distorted-wave Born-approximation
(DWBA) predictions for stripping and pickup re-
actions. ' The idea of JS is to consider a wave
function )((H) which describes the motion of the
center of mass of the neutron-proton pair relative
to the nucleus. This wave function contains simul-
taneously the bound-deuteron (elastic) component
as well as some portion of the breakup components.
The assumption which makes it possible to include
both bound and breakup components simultaneously
into one function )((H) is that, for low energies s,
of relative neutron-proton motion, the relative
n-P wave function P~(r) is quite similar to the
bound-deuteron wave function P, (r) for small val-
ues of the n-P distance r. Here

R = a(r„+ r~}, r = r„-r~, (l)

and r„and r~ are the position vectors of the neu-
tron and proton, respectively, relative to the
center of the target nucleus. By replacing the
energies e, by the bound-state energy &„JSman-
age to obtain a single local Schrodinger equation
for X(R}. For the calculation of the DWBA strip-
ping matrix element, knowledge of the neutron-
proton wave function for only small distances of
r is required because of the appearance of the
short-ranged neutron-proton potential V~(r) in
the integrand, and hence the use of )((R) in the
stripping matrix element has a good deal of valid-
ity. For the calculation of the deuteron elastic
scattering phase shifts however, the bound-deuter-
on component has to be extracted from y, which
JS accomplish by solving a set of two coupled equa-
tions. For the calculation of elastic scattering the
assumption that only the low-energy breakup spec-
trum enters significantly into the full n-P wave
function is more questionable than for the strip-
ping calculation, because larger values of r are
involved in the former. Nevertheless, even for
the stripping calculation it is of interest to inves-
tigate the extent of the neutron-proton relative
momentum breakup spectrum which is excited
when a deuteron impinges upon a nucleus.

It is the purpose of this investigation to examine
the above question by calculating the breakup ma-
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trix elements for transitions between the bound to
the breakup neutron-proton states, both as a func-
tion of the relative neutron-proton momenta k, as
mell as for several values of the relative neutron-
proton angular momenta l.' These matrix ele-
ments are calculated numerically for 21.6-MeV
deuterons incident on the nuclei of nickel and cal-
cium, and are also calculated analytically under
simplified conditions in order to obtain a better
idea of their k and l dependence. These matrix
elements are functions of 8 and play the role of
coupling potentials in the set of coupled equations
for the functions )t,(R) which describe the motion
of the broken-up neutron-proton pair relative to
the nucleus. These coupled equations are very
difficult to handle since the functions )t„(R}depend
on the continuous index k, and also because some
of the coupling potentials are of quite long range
in A. Nevertheless, in ordex to obtain an idea of
how strongly the breakup spectrum affects the
elastic scattering phase shifts, the coupled equa-
tions are subjected to a crude discretization in k

space, the momentum expansion is truncated at
k ~ k, and the resulting coupled equations are
solved numerically. Although the expansion in
momentum space is expected to converge satis-
factorily (as k ' or k „'), the choice of k
=0.5 fm ' mas still found not to be large enough
in the present example; for this and various addi-
tional reasons the numerical illustration still
1.acks realism. However, it should be kept in
mind throughout that the purpose of the present
calculation is to cast some light on the nature and
the extent of the breakup spectrum excited during
deuteron-nucleus collisions. The hope is to there-
by clarify the nature of the approximations suitable
in the evaluation of rigorous theories of either the
elastic scattering, the stripping, or the breakup
reaction.

nucleus} H ~(r),

H„~(r) = T, + V~(r),

(H.), &-a)4'a' '(r) =o,
(2)

(3)

The bound-state solution of Eq. (3) is denoted by
the subscript k, (t),(r) =r 'u, (r)F,O(i). It is nor-
malized to unity (i.e. , J, ~u, ~'dr =I) and is orthog-
onal to all (}),'s The ene. rgies e, and e), have the
value -2.225 MeV and k'/m for the bound and con-
tinuum cases, respectively. The expansion of the
wave functionxlx(r, R) in terms of the (()),'s is as fol-
lows:

is nom introduced. Here T, is the kinetic-energy
operator of relative neutron-proton motion, V~
is a neutron-proton potential, k and l are the neu-
tron-proton relative linear and angular momenta,
respectively, and m is the projection of l along
the z axis. All nucleon spins are disregarded,
and the potential V~(r) is taken to refer to the
triplet isospin zero nucleon-nucleon state, repre-
sented by a local Gaussian potential'

V„,(r) =-V, exp(-m ),
V, =66.92 Mev, n =0.415 fm-',

which adequately represents the low-energy nucle-
on-nucleon properties. In the absence of tensor
forces the radial components u, (k, )') of (t)I,

'(r) =x 'u, (k, r)V)„(r)

obey simple uncoupled radial Schrodinger equa-
tions and are assumed to have the asymptotic form

u)(k, r) (2/v-)"'sin(kr ——,'Iv+5)),

whexe the 6&'s are the elastic real scattering
phase shifts. The above normalization insures
that

II. THE FORMALISM

A. General discumion

x(R, )=x,()x)e (x) P f & xl'x"(R) X( )

The wave function describing the neutron and

proton in the presence of the target nucleus is
denoted by 4 (r, R). The internal coordinates of
the nucleons in the target nucleus are not explicit-
ly indicated. The antisymmetrization of the wave
function for interchange of the incident nucleons
with the nucleons in the target is ignored. The ef-
fect of antisymmetrization has been investigated
by several authors, '8 and for deuterons with inci-
dent energy larger than about 15 MeV the effect
mas found to be small.

A complete set of eigenstates (()),
' (r) of the

neutron-proton Hamiltonian (in the absence of the

An expansi. on of thi. s type is very old. ' The coef-
ficients X& of the above expansion are functions of
R to be determined from the solution of a set of
coupled equations which follow from the Schroding-
er equation, as is discussed below. The boundary
conditions for the X's, for the case of incident deu-
terons are that, asymptotically, X~ has both inci-
dent and outgoing waves and the X's only outgoing
waves.

The Sehr'odinger equation is

[Ts+ V„(R, r)+H„), -E]xl(r, R) =0, (9)

where the potential V„ is given by the sum of the
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nucleon-nucleus optical potentials

V„(R, r) = Vp „(( R —2 r
( ) + V„„(( R + 2r ( } (10)

+ d'r'd'R'G~" R, r;R'r' VN R'r'4 r', R',
(11)

where GE' is the three-body Green's function

x g()+'(E —e((, R, R') .
(12)

Here g'," is the free two-body Qreen's function
with outgoing wave boundary conditions, the func-

and T& is the kinetic-energy operator in the vari-
able R. The internal degrees of freedom of the
nucleus are embodied in the potentials V~ „and
V„» which are chosen to be the complex phenom-
enological nucleon-nucleus optical potentials at a
nucleon incident energy equal to half the deuteron
energy. For the incident bound deuteron the cor-
rection to Eq. (10) due to the internal motion of
the nucleons in the deuteron is estimated" to be
less than 10%%uo. However, for the high relative
n;P momenta this choice of the V's in Eq. (10) is
increasingly suspect. " In particular, for negative
nucleon-nucleus relative energies V„„should be-
come real and admit bound states —a possibility
not allowed by the choice of the V's in Eq. (10).

Equation (9) can be rewritten in the Lippmann-
Schwinger form

4(r, R) =e'"'"P,(r)

tions P, were defined in Eqs. (3), (5), and (6), the
symbol J in Eq. (12) indicates that the bound state
P, is to be included in the expansion, and k, in
Eq. (12) represents the incident-deuteron momen-
tum.

The representation of Ge' given by Eq. (12) has
been given, for example, by Newton, "Qlockle, "
and Takeuchi. " This representation for G~" is
equivalent to the expansion of 0 (R, r) given by Eq.
(8}, together with the outgoing wave boundary con-
dition for the }t(,'s. The use of G(z' given by Eq. (12)
assures that the correct outgoing boundary condi-
tions in the breakup channel are satisfied; how-
ever, no assurance can be given that the proper
boundary conditions in the stripping channels are
obtained. For this purpose additional equations
with different Green's functions are required. "'"
If, as will be done later on, the expansion given
by Eq. (8) is truncated by admitting only a finite
number of partial waves in the relative angular
momenta of the coordinates r and R, l ~ l,„, and
L ~ L, respectively, and breaking off the inte-
gration over k at a finite upper limit k, then the
resulting truncated wave function% (r, R) contains
no stripping components in the asymptotic region.
This can be seen by noting that the asymptotic be-
havior of 4r for large r and R (apart from the
plane-wave component of y, ) is of the form r '& ',
which when translated to the coordinates r„and r~
gives rise to (r~) for r„ finite, in contradiction
with the expected asymptotic (r~) ' behavior of a
(d, p) stripping channel. The function kr(r, R) thus
does not describe the full three-body properties of
the n-P nucleus system.

B. The coupled equations

By introducing the bipolar harmonics"

Y«z, ,~„(r",R) = P(JM~ ( LLmM)Y»(R)Y, „(r), (13)

where (an/bcPy) are Clebsch-Gordan coefficients, and introducing the radial functions f«»» (k, R) as the
coefficients in a spherical harmonic expansion of X,

""'(R), then the truncated form, Eq. (8), of the expan-
sions of 4 can be rewritten as

1,Lmax ~ max, K

(R, )=—p f dk, (h, r(f„,„(k,R)1;, , „
/L J'Ng

(14)

where again the symbol f means that the bound state u(, (r) is also included.
By inserting q given by Eq. (14) into Eq. (9}, multiplying on both sides by r 'u, (k', r)Y(, ~,z „., and inte-

grating over d'xdQ~, one obtains the coupled equations for the f 's

~ max ~L max »max
[(T„) —(E —t, (]f„,„(k , (Q ((C,», , f '(', , ((,', k, Rlf„, „(k,(((dk=D.

XtL

(15)
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Here (T„)1,. stands for -(g'/4m)[d'/dR' —f, '(I, ' +1}/R'], and the coefficients C are given by

C~", Lg = (-)"' [(2l' + 1)(21+1)(2L' + 1)(2L, + 1)(231+1)]"'
0 0 0 0 L L'

(16)

The expressions in round or curly brackets in Eq.
(16) are Wigner coefficients or six-j symbols, re-
spectively. " The breakup matrix element Vj~& is
defined by

v, , (k', h, B) fw=, (k', r)v~(R, r(u, (h, r)dr,

(17a)

V', (bk, R) , fu =(r), (R, r), (l, r)dr, (17b}

III. BREAKUP POTENTIALS

A. General properties

The bound-to-continuum and the continuum-to-
continuum breakup potentials are defined in Eqs.
(17). They are denoted by V„(k,O', R) and

V,', (5, k, R), respectively, and serve as the po-
tentials which couple the various radial functions

f&»&~„(k,R) in Eqs. (15). They are also called
"transition matrix elements" in what follows. The
k and l dependence of these potentials determines
the feasibility of solving the coupled equations,
Eqs. (15). For example, if Vt, (b, k, R) decreases
rapidly with increasing k and l, then only a small

where vq is the spherical-harmonic-expansion co-
efficient of V„,

V„(R, r) = g (4v)(2K+1) '
vq(R, r)Y'&*, (R)Y'y (r) .

(18)

The functions V, , are the main objects of the pres-
ent investigation. The coefficients C are the same
"geometric" factors as the ones which occur in in-
elastic e-nucleus coupled-channel calculations.
For example, for the case of the collective rota-
tional or vibrational model the functions V, , (R)
are replaced by the inelastic transition matrix ele-
ments

Vk (R) PX Rs VOM(R ROM}

v4m aRo„

(to lowest order in the deformation parameter Pq),
8pM being the radial fall-off parameter of the +-
nucleus optical potential VoM, and ~ giving the mul-
tipolarity of the deformation Pz of the nuclear op-
tical potential. The coefficients C have the proper-
ty

(CJ'l )2

range of the breakup continuum is expected to af-
fect the bound (deuteron) distorted-wave behavior.
It is the purpose of this section to discuss some of
the properties of the breakup potentials. Unless
explicitly stated otherwise, only the contribution
to the breakup potentials from the nuclear part of
V„(R, r) will be considered.

One of the notable properties of the continuum-
to-continuum transition potential is that for large
values of A it decreases with 8 only very slowly
(like R ' under certain conditions), while the
bound-to-continuum potential decreases much fast-
er. This property can be understood by first con-
sidering the behavior of vq(R, r), defined in Eq.
(18), and then considering the integral in Eq. (17)
defining V,", (R). For the purposes of this discus-
sion V„(R, r), defined in Eq. (10), will be replaced
by V~ „(~H —~r~), and the function V~ „will be as-
sumed to be of short range, i.e. , V~ „will be as-
sumed negligible when r, (r~ =R —Pr) is larger than
the nuclear radius a. Under these conditions it
will now be shown that when R»a, u~(R, r) is neg-
ligible when r lies outside the interval 8 —a& r & 8
+a, and, further, when r lies in that interval the
value of vz(R, r) has the order of magnitude (a/R)'.
This can be seen by noting that Eq. (18}implies
that

(2o)

where x=r R =(r,' -R' —,'r'}/Rr is th—e cosine of
the angle 8„~ between r and R. %hen R»a and
when V„ is replaced by V~ „(r~), the integrand in
Eq. (20) is large only when a~& a, i.e., when both
R —a&~2&A+a and x is very close to unity, i.e. ,
1~ x& 1 —a'/Rr. The main contribution to the in-
tegral in Eq. (20) thus comes from a, small region
of size a'/Rr near the upper limit, and thus the
value of the integral itself is of the order of V~ „a'/
Rx. This result can be made more rigorous by
changing the variable x to r~ in Eq. (20). By using
dx= 2v~dr~/(Rr), one -obtains the result

R+ $r
g„(R,y}=(21+1)"'(Rr) '

V~ „(r~)P„(x)r~dr~.
l~-k~l

If V~ „is now replaced, for the sake of argument,
by a square well of depth Vo and radius a, and if
Pz(x) is replaced by unity (valid when R» a since
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then x= 1}, one obtains for vq

v„(R,r)- (2A, +1)"'(Rr) 'V, —,'[a' —(R - —,r)'],

=0, IR ——,'rI &a,

(22)

which illustrates the properties of v„(r, R) stated
above.

When the value of R is less than or equal to the
range a of the optical potentials, then v~(R, r) will
be appreciable for all values of r less than 2(R+a),
and the R dependence of the transition potential de-
pends intimately on the form of the radial depen-
dence of the optical potentials. As an example of
the above considerations concerning vz(R, r), the
case of an exponential nucleon optical potential

V~ „(r~) = Vo exp(-Br~) (23)

will now be considered. For this case it can be
shown that

vz(R, r) =-v 2(2K+I)"'V,(Rr} "'
a

'dB
x—Ig„g,(a)Kg+ v, (Z), (24)

vq(R, r)- -(2K+1)v (V /0Rr)

x—{B 'exp[-BIR —
~r I ]) ~

where terms of the type exp[-B(R+ ~r)] were ne-
glected. The above result illustrates that when
R» &B ', vq(R, r) becomes rather insensitive to
&, and also that v„(R,r) becomes small when m
differs from R by much more than B '.

An idea of the R dependence of V,",.(k, k', R) for
large values of R can now be obtained from the
above-mentioned properties of vq(R, r} Since.
when R» a, vq(R, r) is appreciable only for r in
the interval R —a& ~&&R+a, it is the value of
u, (k, r) and u, (k, r) for r lying in this interval that
contribute mainly to the integral in Eq. (17) for
V, f When both l and l' are small enough so that
both u, and u& are beyond their turning point in the
above-mentioned interval of r, i.e., when 2kR& l
and 2k'R & l', then the product u, u, . can be approx-
imately represented by terms of the form
cos[(k —k')r —5 ] —cos[2(k+k')r —5, ], and then
V,", (k, k', R) will become proportional to terms of

where Z and z are the larger and smaller, respec-
tively, of the quantities BR and —,'Br, andI, and K„
are modified Bessel functions' of order v =X+ ~.
When both ~& BR and X& —,Br, so that the asymp-
totic forms of the function I, and K„can be used,
then vz becomes approximately independent of X

[apart from the factor (2A. + I)'~'] and is given by

the type R ' cos[2(k a k)R +6,]. The proportionality
constants are akin to Fourier transforms of vq(R, r)
for Fourier momenta k + k' which in turn are relat-
ed to Fourier transforms of the nucleon-nucleus
optical potentials. This point is made more pre-
cise later on. When k- k' [or more precisely,
when 2(k —k')a«w] then the term in
R ' cos[2(k —k')R +6 ] will become nearly inde-
pendent of k and k', as can be seen by carrying
out the integrations for V„ in Eq. (17a}using for
vz(R, r) the approximate form given by Eq. (22)
for the square-well example. A similar argument
should also hold for (small) distances of R of about
the range of the optical potential. In this case the
range of r for which vq(R, r) is nonnegligible is
about twice that (r-2a), and provided that both
2ak& l and 2ak'& l', the oscillatory approximation
for u, u, . stated above should hold for a significant
part of the range of integration in Eq. (17), and
the magnitude of the result should be only a weak
function of k and k'. Of course in this case the R
dependence of V„(R) is no longer of the form R '.
Illustrative results of V„ for the exponential nu-
cleon optical potential will be given below.

On the other hand, when either one or both val-
ues of I are so large that 2kR« I or 2k'R« I' (and
R is still large compared to a), then u, u, . for r-2R
will be small compared to unity, and V„.(k, k', R)
will also be small and will increase with increas-
ing R until both u, (2kR) and u, (2k'R) again become
oscillatory functions of R of nearly unit magnitude,
in which case the R '

cos[2(krak')R]

behavior will
again set in.

If one of the u's corresponds to the bound (deu-
teron) case, then at large values of r, u~ decreases
exponentially like exp(-br), with b-0.231 fm ',
and Vo»(b, k, R), the bound-to-continuum transition
potential, is expected to contain the factor R '
x exp(-2bR) for large values of R. The k depen-
dence of the coefficient will be related to the Fou-
rier transform of the product u, (r)vq(R, r) with
Fourier momentum k. However, the latter is not
related very directly to the Fourier transform of
the nucleon optical potentials, as will be discussed
further on. In addition to the term in Vo (b, k, R)
of the type R ' exp(-2bR) discussed above, there
will be others due to the small, but in this case
nonnegligible, value of vq(R, r) for small values
of r, even when R is large. The presence of such
terms is seen for the exponential example which
will now be discussed. These terms would be less
easy to see for a Gaussian optical potential, since
such a potential falls off with distance much faster
than the deuteron bound-state radial function.

The properties of V"„.discussed above will now
be illustrated by taking for V~ & the exponential
form given in Eq. (23), and by approximating the



EFFECT OF DEUTERON BREAKUP ON ELASTIC. . . 2215

functions u, (k, r} and u, (r} by

u, (k, r) = (2/v)"'krj ] (kr), (25)

u, (r) =M[exp(-br) —exp(-I)'r)]. (26)
Here b' is approximately equal to 1.5 fm ', M is

a normalization constant, and j is the spherical
Bessel function. Using the exact expression for
vq given by Eq. (24} and carrying out the integra-
tions explicitly, one obtains in this case, for X = l
= I' =0, the following results .For R

~

k —k' ~» 1

one obtains

„B cos[2(k —k')R] cos[2(k+ k')R]
()() ' ' () 7fRB [BB+4(k ke)B]B [B'+4(k+k') ]'

For BR«1 and R(k+ k') «1 one obtains

(2/v) V B Bkk'

[,'B' + (k —k—')'][,'B'+ (k + k-')']

(27)

(28a)

For BR«1, R
~
k —k'

~
«1, and R(k+k')» 1 one obtains

BRV'„(k, k', Rl= —V,"I[. . .
)

B R I IB'R' 4(k —2')'R'] —
([ „.. .) sos[2(k ~ k )R]I

(28b)

The results in Eqs. (27) and (28b) illustrate the insensitivity of the magnitude of V() (k k' R) to both k and
k' when lk-k'1«BB and (k+k')»-.'B. In Eq. (27} the R ' dependence is also to be noted. ~en the aver
age of V'„(k, k', R) over k' in an interval & around k is considered, the first term in Eq. (27) gives

Jg
r

Vo B sin(2Rb )
VOB( 2 x, R)dx = (29}

which shows that the averaging process introduces another factor of R ' for distances larger than —']]/(4, .
This property is expected to be valid also for more realistic potentials, provided that the size of ~ is less
than the inverse of a characteristic dimension of the potential.

For the bound-to-continuum transition, assuming that b& BB, one obtains for R« ~b+ ,'B i+k~—

k
V', ,(k, k R)™(2V)"'V,

I[(k B) ~ k'] ~ [(4' B) 2]

and for R»
~

5 s ,'B+ik(—

(30}

1»z S bkcos(2kR)-+ B(BB'+k —b') sin(2kR)
R~ BB (k +I) + —B) —Bb (31)

for small and large values of R, respectively.
The result in Eq. (31) contains the R 'exp(-2bR)
term and the additional term exp(-BR), both ex-
pected to be present in view of the general discus-
sion made above.

The momentum dependence of the transition po-
tentials is of importance in order to ascertain the
errors involved in the truncation of the momen-
tum continuum for k& k „, as is discussed in con-
nection with Eq. (14}. The general considerations
concerning the momentum dependence of the tran-
sition potentials, discussed above, can be made
more precise in the case that the u[(k, r) and u, (r)
are approximated by spherical Bessel functions
and exponentials, as in Eqs. (25) and (26), respec-

tively. " As shown in the Appendix, the transition
potentials can. in this case be expressed exactly in
terms of integrals involving the Fourier trans-
forms v~(K) and v„(K) of the optical potentials

v, (R) f V „(r le '"'' d'r

through the combination

v]v(K) = v~(K) + (-)"v„(-K) .

(32a)

(32b}

It is also shown in the Appendix that when k and k'

become very different from each other, V„(k, k', R)
is expected to decrease roughly like v„"(2k), where
k is the larger of the two momenta, provided that
~«2kR. This behavior is already exhibited in the
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exponential example, given in Eq. (27), since in
this case the expression 8mB(B'+4k') ' is equal to
vN(2k). As a result, it is expected that the cou-
pling between two continua which differ apprecia-
bly in k will not be important. On the other hand,
it is believed that the coupling between neighbor-
ing continua, for small enough values of l, l', and
~ will in general be large, no matter how large the
momenta k and k', provided that the difference be-
tween k and k' remains small compared to the in-
verse of the range (or some other characteristic
length) of the nucleon optical potentials.

The momentum dependence of the bound-to-con-
tinuum transition potential will now be discussed.
In Appendix B a,n expression relating V,', (b, k, R}
to the Fourier transforms v„'(K) of the optical po-
tentials is established. However, this relation in-
volves an integral over all values of E, and a rela-
tion involving only those v„'(K)'s for which K lies
in a small range around k is not obtained. This
situation is illustrated by the exponential example
given in Eq. (23) for which the function Vooo(b, k, R)
has a part given in the first line of Eq. (30) which

varies with k like

tan '[Bk(b'+k' —,'B') '] ——tan '[Bk(b" +k' ——,'B') '].

This term, which for values of k larger than both
b and b' is expected to fall off like k ', is not re-
lated to the Fourier transform 8vB/[(k+ib}~+B ]2
of the optical potential, seen to occur approximate-
ly in the second line of Eq. (30), and which falls
off faster with k. Of course the exponential exam-
ple is not meant to suggest what k dependence to
expect for the more realistic nucleon optical po-
tential of the Woods-Saxon type, which will be
treated numerically in the next section. The intui-
tive reason why the k dependence of V,', (b, k, R) is
not very directly related to v„'(k} is that the bound-
state function u, (r) entering into Eq. (17b), has a
Fourier transform which remains large for val-
ues of the Fourier momentum of the order of b'

-1.5 fm ', due to the rapid variation of u, within
the rather short range of the nucleon-nucleon po-
tential V„~. In order to illustrate the large size of
b', it is useful to consider the corresponding value
of the relative neutron-proton kinetic energy e~

(e~ =k'k /m) for k-1.5 fm ', which is approximate-
ly 100 MeV. This value, when interpreted as a
breakup energy, is indeed quite large. The numer-
ical calculation presented in Sec. III B extends to
values of k below 1.2 fm ' and the elastic phase
shifts calculated in Sec. IV include momenta only

up to 0.6 fm '.

B. Numerical examples

Numerical calculations of the transition poten-
tials for the nuclei of Ni and Ca will now be dis-

The transition matrix elements defined in Eqs.
(17) are calculated by numerical integration over
r from 0 to r,„. The neglected contributions from
the region of integration beyond r decrease like
exp[(R —~r )/a] for an exponentially decaying
tail of V„(x)- V,"exp(-x/a}. The above error esti-
mate is applicable provided that R is smaller than

minus the range of the optical potentials. For
values of r,„of40 fm, the error in the continuum-
to-continuum transition potentials for Ni is less
than 15 and 5% for values of R of 14 and 12 fm,
respectively. The errors decrease rapidly for
smaller R values, and are smaller for the nucleus
of Ca than that of Ni since the optical potential is
of shorter range. For the bound-to-continuum
transitions the errors are less than for the con-
tinuum-to-continuum transitions due to the addi-

TABLE I. Optical potential parameters. The poten-
tials are given by V(r) =-Vp[1+exp(r -R)/a] -4iWp
x [1+ezp(r -R')/a'] ~ exp(r -R')/a'.

Vp
(MeV)

Neutron-nucleus

R a Wp

(fm) (fm) (MeV)

R' a'
(fm) (fm)

Ni 39.58 5.28 0.62
Ca b 44.87 4.343 0.66

3.75 5.28 0.65
9.6 4.343 0.47

Proton-nucleus

Ni
Ca

51.6
49.7

5.0 0.65
4.275 0.65

13.16 5.0 0.47
13.5 4.275 0.47

From Table I of Ref. 18.
From Table V of Ref. 20.

c From Ref 19

cussed. The incident deuteron energy is 21.6 MeV,
and the parameters for the nucleon-nucleus poten-
tials at 10.8 MeV, required for the calculation of
V„, Eq. (10), are taken from studies by Buck,"
Percy, "' and Rosen et al. ,' and are listed in Ta-
ble I. The functions u, (k, r) and u~(r) are calculated
numerically from Eqs. (3) and (5) by utilizing the
local V„~ potential given by Eq. (4), for values of
r up to r =40 fm. The spherical harmonic com-
ponents vz(R, r) of V„defined in Eq. (18) are calcu-
lated numerically according to

(»+1)"'
v„(R, r) =

rR
x2

x x[V~ „(x)+(-)"V„„(x)]Pg(u)dx,
Xg

(33)
where

u = (R'+ —,'r' —x')/(Rr),

x, = IR -~21, x. =R+ ,'r. -
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tional damping at large distances arising from the
exponential decrease of the bound neutron-proton
state. The contribution of the Coulomb interaction
to the transition potentials cannot be calculated by
the numerical method described above, since the
errors introduced by cutting off the integration at
r would be unacceptably large. Instead their
evaluation should be based on analytical methods.
If included, the Coulomb potential would give rela-
tively larger contributions to V„. for odd rather
than even values of X since in the former case the
nuclear contributions tend to cancel, while in the
latter case they add. An explicit approximate nu-
merical evaluation of Vo, (b, k, A), with inclusion
of the Coulomb potential, for Ni with l = 1 showed
that the result is still considerably smaller than
the result for either l =0 and 2, for distances A
comparable to the range of the nuclear optical po-
tentials. This suggests that for incident deuteron
energies above the Coulomb barrier, the Coulomb
forces should not play a major role in the breakup,
and they are left out in the calculations reported
on below.

The numerical results obtained for Ni are illus-

trated in Figs. 1 to 4. In Fig. 1 the real parts of
the bound-to-continuum transition matrix elements
are shown for various values of the breakup energy

Samples of the continuum-to-continuum transi-
tion matrix elements from a state with e„=5.42
MeV and 3=0 or 2 to various states with l=2 and
several values of e,. are shown in Fig. 2. The mul-
tipole component of V„whose matrix element gives
rise to the results shown in Fig. 2 correspond to
X =2. Confirming the observations made in Sec. I
the transition matrix elements go to zero near the
origin, become more oscillatory, and decrease in
absolute value as

~
k —k'

~
increases. The real

parts of the transition matrix elements for the ~ =0
multipole components of V„are shown in Fig. 3.

I
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l

21.6 MeV d-Ni
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x 20—

10 ™
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-20-
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FIG. 1. Heal part of the bound-to-continuum breakup
transition matrix elements Vo& (b, 4, R) for 21.6-MeV
deuterons incident on¹.The matrix elements are de-
fined in Eq. (17b), the values of l are 2 and 0 as shown,
and R is the distance of the c.m. of the neutron-proton
pair to the center of the nucleus. Each curve illustrates
the result for a different value of the relative neutron-
proton kinetic energy ez. The values in MeV of e& are
written next to each curve.

10

FIG. 2. HeaI. part of continuum-to-continuum transi-
tion matrix eIements V&"& (4, &', 8) for 21.6-MeV deuter-
ons incident on Ni. The upper set of curves corresponds
to 1=0, A =l'=2, the lower set to I,= l'=A = 2. The value
of 4 for all curves is 0.36 fm ~, the corresponding value
of ez is 5.42 MeV. The values of e&~ in MeV which char-
acterize the values of 0' are written next to the curves.
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These potentials have much larger absolute values
(as is seen by the different scale) than the ones
shown in Fig. 2.

The momentum dependence of the breakup transi-
tion matrix elements is of considerable interest
since it determines the value of k in the k trun-
cation of the wave function 4, defined in Eq. (14}.
The k dependence of the bound-to-continuum break-
up potential Vt, (b, k, R) can be deduced from Fig. 4
which shows plots as a function of k of the absolute
value of the maxima and minima of V,', (b, k, R) which
occur as a function of R. As is seen from Fig. 1,
the values of R where these extrema occur do not
change sensitively with k, and these values of R
are indicated in parenthesis next to the various
curves. A similar plot for the bound-to-continuum
transitions for 21.5-MeV deuterons interacting with
Ca is shown in Fig. 5. Comparison with the dash-
dot line shows that for k beyond -0.6 fm ' the I, =0

transition potentials fall off with k nearly as k '.
This is faster than the k ' dependence which would
be expected according to Eqs. (30) and (31) for
5& k& O'. For the moderately small values of R
here involved the exponential potential is evidently
not a good approximation to the Woods-Saxon po-
tential. It is clear from Figs. 4 and 5 that the l=2
bound-to-continuum transitions are important and
even exceed the l =0 transition matrix elements
for already quite moderate breakup energies,
while the I =4(g} transitions are comparatively
less important. It also appears that breakup en-
ergies e, up to about 10 MeV do most certainly
play a large role in the expansion of 0, and en-
ergies as large as 40 MeV (k= 1 fm ') may possi-
bly still be of importance. This point is discussed
further in the next section.

20-

I I I

s(4fm)

I I I

21.6 MeV

d-Ni

Ji
10—

-100— E
V

E

-200—

K

O

-100—

0.) I I

0.2

I
I
I
I

10 20
I I I

r I I I I I I

.0.4 0.6 0.8

k (fm -') ~

40 MeV
I

1.0

R(fm) ~
IO

FIG. 3. Real part of the continuum-to-continuum tran-
sition matrix elements V&& (k, O', R) for 21.6-MeV deu-
terons incident on Ni. The sets of curves in the upper
and lower halves of the figure correspond to values of
l of 0 and 2, respectively. The value of k for all curves
is 0.36 fm, which corresponds to E& = 5.42 MeV. The
values in MeV of e&~ are indicated next to each curve.

FIG. 4. Momentum dependence of the bound-to-con-
tinuum transition matrix elements Vo& (b, k, R) for 21.6-
MeV deuterons incident on Ni. The quantities Vo&(b,k, R)
have maxima and minima when considered as a function
of R, as can be seen from Fig. 1. The absolute value
of these extrema is plotted versus k in the present fig-
ure. The corresponding values of e~~ are illustrated in
the second horizontal scale. The letters s, d, and g in-
dicate the values of I., which are 0, 2, and 4, respective-
ly. The numbers in parenthesis next to each letter indi-
cate the approximate value of R where the extremum of
Vo&(b, k, R) occurs.
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IV. EFFECT OF BREAKUP ON THE

ELASTIC PHASE SHIFTS

The magnitude of the effect on the elastic deu-
teron wave function due to virtual transitions to
breakup states can of course not be assessed alone
by the magnitude of the bound-to-continuum break-
up transition matrix elements, since Green func-
tions and transitions to other intermediate contin-
uum states are also involved in the solution of the
coupled equations [Eqs. (15)j. However, before
Eqs. (15) can be solved, this infinite set of equa-
tions must be reduced to a finite one by replacing
the continuum variable k by a set of discrete vari-
ables. In the present study this is accomplished
by dividing the range of k between 0 and k,„ into
bins of size 4k and by considering the averages of
the wave functions f&»,z(k, R), the energies e„and
the transition matrix elements V&&.(k, k', R) in each
bin. In the present study this averaging procedure
is done rather crudely, in order to assess the in-
fluence of the l =2 breakup states on the elastic
phase shifts, and in order to gain an idea how

large k should be.

A. Momentum discretization

Each momentum bin of size nk (for k contained
between 0 and k,„) is denoted by s = 1,2, . . . N. In
each bin a radial wave function f«~&z(s, R) is de-
fined, which is related to a certain momentum-
averaged value of the true (but unknown} function
according to

f&, ~)~ (s, R) = (n k)"'f«~)~ (k, & R) . (34)

Im

The corresponding coupled equations for the func-
tions f (s, R) are obtained by integrating Eqs. (15}
over k' within a given bin, and replacing the inte-
grals of the various quantities by average values
within each bin. For example, Jb. , e, f«L,~.(k'R)dk'
is replaced by e,f«z &z.(k„R)b k, and e, is replaced
by some constant, even though rigorously c, should
be a function of R which depends on the value of f.

I I I I

21.6MeV d-Ca -10—
g=o

——~bb

s(2fm)

10—
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-20
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o e -40

-80-

R(fm) ~
l

IO

Qg—
I

10
I I

20 &I, MeV 40

0.2
I I I I I

O.I. 0.6 0.8
k(fm )

FIG. 5. Same as Fig. 4 for 21.6-MeV deuterons inci-
dent on Ca. The dash-dot curve drawn next to the s(2
fm) curve illustrates a 0 2 dependence.

FIG. 6. Momentum-averaged continuum-to-continuum
central potentials for 21.6-MeV deuterons incident on
Ni. The potentials illustrated are Vfgi(s, s, R) for & = 0
and l= l' having the values 2 and 0 for the dashed and
solid curves, respectively. The momentum-averaging
bin, characterized by s=s'=1, spans the range 0.06
fm ~k ~0.54 fm . The real and imaginary parts of
these potentials are illustrated in the lower and top
halves of the figure, respectively. The scales for each
half of the figures are not the same. The dash-dotted
curves illustrate the Watanabe potential VI)~ =—Voo (b, b, R)
defined in Eq. (17b), which of course is not averaged
over momentum.
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n4k X s' s
V, , (s', s, R) =—

2 g V, , (k;, k~&A) &n
(35a)

nk"' "
Vo, (s, b)R) = Q Vo, (k;, b&A). (35b)

The factor (b,k)"' in the definitions of the radial
wave function, Eq. (34), is convenient because the
dimension of the resulting functions f (s, R) is the
same as that of the (bound-state) wave function

f«&z &z (b, R). Similarly the "discretized" transition
potentials given in Eqs. (35) have the same dimen-
sions as V»(R), i.e. , energy.

For the discussion which follows, it is conve-
nient to rewrite the "discretized" coupled equa-

In the numerical calculation described below, a
rather large value of 0.48 fm ' is taken for hk. In
a similar fashion, the momentum-averaged transi-
tion potentials are calculated by subdividing each
bin into n equal intervals of size 5k =n.k/n The n

values of k at the center of each interval in bin s
are denoted by k'„k,', . . . , k„', and the n' values of
V,"., (k', k, R) are calculated at these points. The
averaged (or discretized) transition potentials are
then defined according to

tions thus obtained in the simplified form

(Ts —E&&+ V»&&)X&&+ g VI&IXI =0
&

&, S

(36a)

~t 1I l'i 1(T„—E, + V... )X,.+ V...X, +V «, X« =0
&

S&S (36b}

im

where the X,'s stand short for the f&&~&~(s, A)' s
while V,'', and V,', represent V&&.»(s'& s, A) and
V'„(s', s, R), respectively, E, =E, —e„and the
vector addition coefficients C are suppressed.
Since the continuum-to-continuum transitions are
large for neighboring momenta, the averaged po-
tentials V„with s =s' are larger than for sos'.
The former ones (with s = s' and X =0) are thus
considered as central potentials and are placed
inside the round brackets in Eq. (36b). Taking for
n the value 4, the values of k in the four intervals
in the first bin are 0.12, 0.24, 0.36, and 0.48 fm '
and the corresponding values of e~ are 0.601, 2.41,

I I I I I I I I

Im

d -Ni
Bin 1

-10-

4-
Re

K

Ll 0

-20
X

IX

-I&0
o&

-60-

-12—

R (MgV) ~
10

I I I I I I I I I I I

2 4 6 8 10

R(fm) ~
FIG. 7. Same as Fig. 6 for the target of Ca.

FIG. 8. Momentum-averaged bound-to-continuum
breakup potentials for 21.6-MeV deuterons incident on
Ni. The potentials illustrated are V&&(s, b, R) defined
in Eq. (35b), the value of l being indicated in the figure.
The momentum-averaging bin is the one for s=1, i.e. ,
0.06~&~0.54 fm ~. The real and imaginary parts are
shown in the lower and upper halves of the figure, re-
spectively.



E F FE CT OF DE UTE RON BREAKUP ON ELASTIC. . . 2221

5.42, and 9.63 MeV, respectively. In the second
bin the corresponding quantities have the values
k=0.60, 0.72, 0.84, 0.96 fm ' and 15.05, 21.68,
29.5, and 38.6 MeV, respectively.

An interval length 5k of 4~k=0 ~ 12 fm ' was cho-
sen so that the four points in a bin run across a
complete wave length of the oscillatory transition
matrix elements for a distance R of about 8 fm.
It was thus hoped that the averaging procedure of
Eq. (35) would thereby achieve a rough cancella-
tion of the oscillatory part of the transition poten-
tials beyond 8 fm. Indeed, the resulting average
potentials are reasonably smooth functions of R,
as is seen from Figs. 6 to 9.

The real and imaginary parts of the averaged
central potentials are displayed in Figs. 6 and 7
for the nuclei of Ca and Ni, respectively. The po-
tentials result by averaging the X =0 continuum-
to-continuum transition matrix elements accord-
ing to Eqs. (35). The averaged bound-to-continuum
and continuum-to-continuum transition matrix ele-
ments obtained with ~ =2 for Ni are shown in Figs.
8 and 9, respectively. The corresponding results
for Ca (not shown) are quite similar, with the ex-

d-Ni
X=2, Bin 1

ception that they are shifted by about one fm to
smaller values of R. By comparing the magni-
tudes of the potentials displayed in Figs. 8 and 9,
one can observe that the continuum is coupled to
itself rather strongly, more strongly than the cou-
pling between the bound to the continuum. The
momentum —or bin —dependence of the bound-to-
continuum averaged transition potentials is illus-
trated in Fig. 10. For the higher momentum bin
the averaged potentials have oscillations in R of
shorter wave length, in agreement with the ana-
lytical example discussed above. While the bin 2

l =0 transition potential is already considerably
smaller in magnitude than the corresponding bin 1

result, this is not yet the case for the l =2 poten-
tials. However, according to Fig. 4, a consider-
able reduction in magnitude is to be expected for
the next bin for the l =2 case also. The diagonal
potentials also show a considerable momentum
dependence. For example, for the continuum-to-
continuum transition l =0 to l = 0 (with A =0) the
real part of the averaged transition potential has
a depth of about 56 MeV in bin 1, for the nucleus
of Ca. For bin 2 the same transition potential has
a depth of 75 MeV and a somewhat shorter range,
its value becoming smaller than the bin 1 result
beyond 5.5 fm. For the X =0, l = l' =2 Ca case the

4- Im
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FIG. 9. Momentum-averaged continuum-to-continuum
breakup potentials, V&"&, (s, s', A). Here A =2, and the
transitions from l = 0 to l'= 2 and l =2 to l'= 2 are illus-
trated by the solid and dashed curves, respectively.
The momentum-averaging bin is the one for s=s'=1.
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FIG. 10. Bound-to-continuum breakup potentials aver-
aged over two different momentum bins for 21.6-MeV
deuterons incident on Ni. Bins s= 1 and s= 2 are given
by the intervals 0.06 —& ~ 0.54 fm ~ and 0.54 —~ —1.12
fm, respectively; the corresponding relative kinetic
energies ez can be read off from Fig. 4. The real parts
of Vpg (s & R) with s = 1 and 2 are illustrated by the
dashed and solid lines, respectively. The value of l is
indicated in the figure.
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difference is even more significant. The depths of
the averaged potentials are -29 and 78 MeV for the
bin 1 and bin 2 cases, respectively, the two poten-
tials crossing over at about 6 fm.

The k averaging procedure described above is
extremely crude. The size of the momentum bins
bk has an effect on the R dependence of the average
potentials, in particular that of their long range be-
havior. The smaller the size of ~k, the larger is
the distance R beyond which the long range oscilla-
tory R dependence is changed from a R ' to a R '
falloff, as is illustrated by Eq. (29). Hence the
elastic phase shifts obtained from the solution of
the k-discretized coupled equations may be quite
sensitive to the choice of the bin size ~k. A more
careful k averaging could be accomplished for ex-
ample by means of the use of the WKB approxima-
tion for the functions f&,L»(k, R) at large values of
R being investigated by Austern and collaborators, "
or it can be avoided by replacing the continuum set

I I & I I I I I I I

21.6 MeV d-Ni

0.2—

0

0.6

of functions Q, by discrete sets. The latter method

is being used by Tandy and Johnson" for the calcu-
lation of the effect of breakup on stripping cross
sections.

B. Elastic phase shifts

The coupled equations, to be solved in this sec-
tion, have many deficiencies, as is pointed out

above. Nevertheless it is hoped that the present
results for the effect of breakup states on the elas-
tic phase shifts will serve as a guide for future
more reliable calculations. The crudeness of the
discretization may not be too serious since errors
which occur in the diagonal potentials at large val-
ues of R may not give rise to errors in the corre-
sponding Green's functions at small values of R.
This is true for example if the JWKB approxima-
tion is valid at the large R values. Under this con-
dition one can show that errors in the diagonal
breakup potentials in the breakup channels for val-
ues of R larger than the range of the bound-to-con-
tinuum transition potentials will propagate into the
elastic phase shifts only through third and higher
order transitions to the breakup states, and hence
may be small. An idea of the effect of k can be
obtained by replacing the function X,

' in the second
term in Eq. (36a) by an appropriate Gree'n's func-
tion integrated over V'„}t,[neglecting coupling to
the continuum in Eq. (36b)]. Taking the Green's
function outside of the sum one obtains sums of

0.4
I I

21.6 MeV d-Cc

-0.2-
E

0

6 8 10

L~

FIG. 11. Elastic deuteron-Ni scattering matrix ele-
ments. The curves connect points which represent the
values of Sz ——exp(2iKz) defined in Eq. (37) for discrete
values of the deuteron-nucleus orbital angular momenta

The results without coupling (dashed lines) are ob-
tained with the Watanabe potentials Vq& = &pp(&, b, &)
lustrated in Fig. 6. The results with coupling (solid
lines) include neutron-proton relative angular momenta
l of 0 and 2, together with the bin 1 momentum-aver-
aged transition potentials as is described in the text.
The discrete open points represent the optical-model
results obtained with the phenomenological parameters
of Ref. 23 which approximately fit the experimental cross
sections.

0.
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FIG. 12. Same as Fig. 11 for the target of Ca.
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the type Q V'„V,', . If the sum is cut off beyonds, the error would be of the form (k ) ' if one
were to assume, in accordance with the previous
considerations, that V„ falls off with k, as k, '.
The presence of the Green's function improves
the convergence in k,„, by introducing another
power in k,„'.

The cases of 21.6-MeV deuterons incident on Na
and Ca were chosen in order to establish a com-
parison with the method of JS who also consider
these examples. " The numerical solution of the
"discretized" coupled equations is carried out as
follows: Coupling of the elastic channel to the l =0
and l =2 breakup states averaged over the first
momentum bin (0.06 & k &0.54 fm ') only is includ-
ed. The average value of e„ in this bin (0.15 & e,
~ 12.5 MeV} is 4.57 MeV, and an approximate val-
ue for e~ in this bin of 5 MeV is taken. The cou-
pled equations used are the ones which follow from
the discretization of Eqs. (15). The appropriate
values of the coefficients C~, ~„defined in Eq.
(16), are used: X, I, and I' take the values 0 or 2,
L and L' are taken as large as required so as to
make the elastic phase shifts sufficiently small,
which is about 16; the averaged central as well as
the transition breakup potentials, shown in Figs.
6-9, are introduced by numerically approximating
them by various combinations of Wood-Saxon-like
functions and their derivatives. (Thus the expect-
ed R ' or R ' long range dependence is suppressed. )
Coulomb potentials are added in an ad hoc fashion
to the central potentials (X =0) only, as potentials
due to a uniformly distributed charge of radius
R, =4 and 5 fm for Ca and Ni, respectively.

The results obtained for the elastic phase shifts
are shown in Figs. 11 and 12. They illustrate the
real and imaginary parts of the elastic scattering
S matrices

It is remarkable that the inclusion of coupling pro-
duces a relatively minor enhancement of the ab-
sorption coefficients (i.e. , a reduction of the qz's)
and that for some partial waves coupling even de-
creases the amount of deuteron absorption. This
is unexpected since normally coupling to addition-
al channels enhances the amount of absorption in
the entrance channel. For the full coupled chan-
nels this occurs for partial waves 7, 8, and 9 for
Ni and 6, 7, 8, and 9 in Ca, while almost for the
same partial waves it is also seen to occur for the
results obtained with a simulation of the JS method
of calculation to be described below. This effect
also takes place even if the imaginary parts of the
coupling potentials are set to zero and seems to be
an inherent feature of the coupling to breakup
states. For the "interior" partial waves, i.e. ,
for L ~4, the effective values of the reflection
coefficients both for the coupled and uncoupled
calculations hovers in the vicinity of 0.2, i.e. , the
deuterons propagate through the interior of the nu-
cleus without suffering excessive absorption. The
reason is probably that the correlation between
the two nucleons is sufficiently reduced when the

1.0

0.8—

0.6-

0.4-

0

S~ = exp(2f K~ }, (37}

where K~ are the complex nuclear elastic phase
shifts for each partial wave of orbital angular mo-
mentum L. The discrete points in Figs. 11 and 12
show the results obtained with the phenomenolog-
ical deuteron optical model. The parameters are
taken from the entries of Table II of Percy and
Percy, "without spin-orbital potential. It can be
seen from Figs. 11 and 12 that coupling (solid line)
changes the uncoupled values of Sz (dashed lines)
towards the optical-model values, particularly
for L ~ 6. This type of change is also obtained by
the method of Johnson and Soper, ' as will be dis-
cussed further below. There is almost no change
for L&6 in the case of Ni, while for Ca there is
considerable change.

The absolute values of the SL's are the reflection
coefficients g~, which are illustrated in Fig. 13.

0.6—

0.4—

0.2-

0
10

FIG. 13. Reflection coefficients for elastic 21.6-MeV
deuteron scattering on Ni and Ca. The full and dashed
lines connect results obtained with the full coupled equa-
tions and with a simulation of the method of Johnson and
Soper, respectively, as is discussed in the text. The
open and full circles illustrate, respectively, the re-
sults obtained without coupling and the optical-model
results.
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FIG. 15. ELastic scattering matrix elements S& for

21.6-MeV deuterons incident on Ni. The solid and dashed
lines connect values of exp(2i &I ) obtained, respectively,
with the full coupled equations and with a simulation of
the Johnson and Soper method described in the text. The
full circles illustrate the results of the fulL coupled equa-
tions which, however, include only coupl. ing to the L= 0

breakup states, while the open circles illustrate the re-
sults obtained in the absence of coupling.

FIG. 16. Same as Fig. 15 for the target of Ca.

extent by the neglect of coupling to the l =2 break-
up states. It appears that the cancellations men-
tioned above can be understood in general terms"
and this point is being investigated further in col-
laboration with Johnson.

simulation" and the results for the elastic scatter-
ing elements SL, are shown in Figs. 15 and 16 by
the dashed lines. The solid lines indicate the re-
sults of the full coupled equations, already shown

in Figs. 11 and 12.
Comparison between the full and dashed lines in

Figs. 13, 15, and 16 shows a remarkable agree-
ment between the simpler method of calculation of
JS and the present results. The agreement is of
course not perfect. The differences for the large
values of L could be due to the fact that the l =2
breakup potentials have a longer range than the
l =0 ones. The effect of the l =2 breakup states is
quite large. This effect is illustrated by the dis-
tance between the discrete full circles and the
points connected by the solid lines in Figs. 15 and
16. Without these l =2 contributions the good
agreement of the elastic phase shifts with the re-
sults of the JS simulation would not have been ob-
tained. This last remark suggests that the effects
of the several approximations made by JS seem to
largely cancel each other. Thus the approxima-
tions of neglecting the breakup energy in the cou-
pled equations seems to be compensated to a large

V. SUMMARY AND CONCLUSIONS

The main conclusion of the present investigation
is that a large spectrum of breakup states appears
to be involved in the description of deuteron-nucle-
us interactions. This is seen from Figs. 4 and 5,
which illustrate that the matrix elements of the
breakup potential V„(r„,r~) (the sum of the proton
and neutron-nucleus optical potentials} taken be-
tween the bound and continuum neutron-proton rel-
ative momentum states are large for a consider-
able range of the relative n-P linear momentum.
Breakup energies up to 10 and most likely 40 MeV
could be involved. This suggests that simple ener-
gy-independent assumptions for the propagator of
the wave function for breakup intermediary states
are not reliable. Indeed, for the numerical exam-
ples of 21.6-MeV deuterons incident on Ni and Ca
it was found that the correction to the elastic phase
shifts depends sensitively on whether the average
n-P kinetic energy for the n-P centers of mass mo-
tion in the breakup state was calculated with a Q
value equal to zero (e„=-2.225 MeV) or equal to
7.225 MeV (e, = 5 Me V}.
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If it is found that contributions from breakup
states with breakup energies &, larger than, say,
50 MeV do not sensitively influence the elastic
phase shifts, then there is a possibility that the
set of coupled equations discussed in the present
study may provide a practical way of including the
breakup intermediary states (but not the stripping
states). This holds provided of course that im-
provements such as the inclusion of the Coulomb
interaction, a finer discretization interval b, k, and
a careful examination of what happens in the tran-
sition region in which the breakup channel ener-
gies change from positive to negative, do not prove
too cumbersome. Questions such as the inclusion
of the dependence of V„on the momenta of the nu-
cleons from the broken-up deuteron, "~ the inclu-
sion of stripping channels" and of the Pauli exclu-
sion principle' '" remain to be investigated.

It is remarkable that coupling to the breakup
channels has a relatively small effect on the re-
flection coefficients

~ S~ ~
. This suggests that per-

haps an alternative way of including the breakup
process would consist in an adaptation of the Born-
Oppenheimer method, in which the neutron-proton
eigenstates Q, (r) of H„~, given by Eq. (3), would
be replaced by P, (R, r), solutions of [H„, + V„(r, R)
—e~(R)]P~(R, r) =0 with R playing the role of addi-
tional parameters. " The resulting deuteron-
nucleus potential, V»(R) + e, (R) —e,(~) would then
allow for the "stretching" of the deuteron, and
would thus include effects of deuteron polarizabil-
ity on the elastic potential. '" This line of ap-
proach might be relevant also to the study of heavy-
ion interactions.

A further conclusion of the present study is that
the general results of Johnson and Soper' for the
elastic scattering phase shifts are qualitatively
confirmed by the present study. Notable amongst
these is the reduction (compared to the ri suits
based on the Watanabe potential V» in the absence
of coupling) of the absorption of the deuterons in
the elastic channel for a few surface partial waves.
This is an effect which appears to be required in
order to improve the agreement with the phenom-
enological optical model results. Furthermore,
the present study confirms that the reflection co-
efficients for the "interior" partial waves are
larger than the optical-model ones and are not
strongly affected by the breakup channels. Pre-
sumably this means that in the nuclear interior
the magnitude of the elastic radial waves is larger
than that of the optical-model ones.

It would be interesting to investigate whether
the l =2 breakup states, found in the present study
to be strongly coupled to the elastic channel, will
also have an effect on the stripping cross sections.
The effect might be similar to that due to the l =2

component in the bound deuteron state, "which re-
sults from the presence of the tensor forces ne-
glected here. However, the present method of
expanding the wave function would most likely not
be suitable for the calculation of the effect of
breakup on stripping reactions, since it does not
capitalize on the fact that only small values of rel-
ative neutron proton distances are important. In-
stead, other methods such as the one presently
under study by Tandy and Johnson, "but augment-
ed so as to include the breakup d state effects,
would be desirable.

In summary, more insight is being gained on
the participation of the breakup states in the deu-
teron nucleus interaction, but more work is need-
ed before this effect can be reliably calculated.
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APPENDIX A. CONTINUUM-TO-CONTINUUM

TRANSITION POTENTIALS

The neutron-proton continuum wave functions
u, (k, r) are now assumed to be given in terms of
spherical Bessel functions, according to Eq. (25).
In this case the continuum-to-continuum transition
potentials V,", (kk'R) can be expressed exactly as
integrals over the Fourier transforms of the nu-
cleon-nucleus optical potentials v~(K) and v„(K)
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given by Eqs. (32)

C„.gV,", (k, k', R)
= (2I( + 1) kk'(2v)

l'
x Q ( J v (")(j(i((o()Y„(i'c„)

m. m'(m m' M
x Y,

* (k)Y,*, ,(k')dQ„dII~, .

when 2kR» X, jz(KR) varies sinusoidally and very
rapidly with K, and it cannot be taken outside of
the integral. Using the approximation KR =2kR
+2k'R(k k') in the argument of jq(KR), one ob-
tains for even l' the result

jq KR Y,*. ~ k' dQ„.= 4''jz 2kR j,. 2k'R,

(A4)

Here

2K =k+k',

(Al)

(A2)

valid for l' even and 2kR» X. For l' odd a similar
expression involving cos(2kR ——,Xv) instead of
sin(2kR —2&v) is obtained. Inserting the above ap-
proximation into Eq. (Al), one obtains the result

(a b c
C„,= [(2a+ 1)(2b + 1)(2c + I)/4v] "'i

(0 o o

(A3)

V)"(i(k, k', R) = 4v 'kk' (2l(. + I )' i " '

x v„"(2k)ji(2kR)j, (2k'R), (A5)

the jz's are spherical Bessel functions, and the
quantities (;,';) are Wigner coefficient;s. "

The above equation is derived by considering the
integral

x Y*„„(R)dQ,, dg, dgzd'r

and evaluating it by two different methods. The
first consists in substituting for V„ the expansion
in terms of the vz's given by Eq. (18), expanding
the exponentials in terms of spherical Bessel func-
tions and spherical harmonics, and carrying out

the integrals over the argument of the products of

two or three spherical harmonics, thus obtaining
an expression containing the V,", (k, k', R}. The oth-
er method consists in replacing V„(R, r) by the
sum of the nucleon-nucleus optical potentials, Eq.
(10), expressing each optical potential in terms of

Fourier integrals and then carrying out the inte-
grations over d'r, thereby obtaining Dirac 6 func-
tions in —,K+ (k+k'), and achieving the result on

the right-hand side of Eq. (Al).
In the integral on the right-hand side of Eq. (Al)

the magnitude of K ranges from 2 i(k —k')i to
2(k+k'). This follows in view of Eq. (A2), if one

thinks of first holding the direction of one of the
momenta (for example k) fixed and integrates over
the other (k'}. The above remark suggests how to
obtain an approximation to Eq. (Al) when one of
the momenta, k' for example, is very small com-
pared to the other. Then for a fixed direction k,
the direction and magnitude of K changes very lit-
tle as k' ranges over all directions, and the quan-
tities v)(((K)Y&„(K) can be considered independent
of k' during the integration over dQ„, provided
that v„(K) varies sufficiently little as K changes
between its upper and lower limits. However,

which could be considered as the leading term in
a Taylor series expansion of V,",.(k, k', R} about

V„(k,k, R). When not only 2kR» & but also 2k'R
» l', then the result becomes proportional to
vN(2k)R sin(2kR —~)(.v) sin(2k'R —~Xv} which indi-
cates that the k dependence of the magnitude of

V,",. is then mainly given by v„(2k). This is a re-
sult made use of in Sec. IIIA.

APPENDIX B. BOUND-TO-CONTINUUM

TRANSITION POTENTIALS

In the considerations below, the functions u&(k, r}
and u, (r) are given by Eqs. (25) and (26), respec-
tively. By considerations similar tn those which

led to Eq. (Al}, one obtains in this case

V,', (b, k, R) = k(2/v)" j,(KR}v„'(K)H,(k, iK)K'dK,
0

(Bl)

where v„'(K) is defined in Eq. (32b}. The function

H, (k, —,'K) arises from the expansion of the Fourier
component Q(,(z) of the bound-state wave function
r 'u, (r),

~ ', tr) = J (,( )e"'d',

in spherical harmonics of the directions of k and

K ( =k+ —K)

(b(,(i k+2K') = Q 4w(2&+I) ' (-)"Hg(k, 2K)
Xi p

x Y),p (k)Yi~ (K) . (a3)

Using now for u, (r) the expression of Eq. (26), one

obtains for Hq the result

Hi(k, ~K} = (2w) 4vM[k~(b& k, 2K) -h g(b', k, 2K)]

(B4)
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Explicit evaluation of hq shows that"

hq(b, k, 2K} =(2A. +1)' '(kK) 'Q (p)

where

P =(k +~K +b')/(kK)

(B6)

(BV)

and where Qq is the Legendre function of the sec-
ond kind. "

In contrast to the result (Al}, the integral ex-
pression given by Eq. (Bl) involves values of the
Fourier transform of the optical potentials for the
whole range from 0 to of Fourier momenta.
Further, the integrand contains branch points in
the complex K plane, due to the singularities of
Q&. As long as K stays on the real axis, Q, never
becomes singular since the argument of Q, always
stays larger than unity, its smallest value being
equal to (1+b k )' . This value of the argument
is attained for —,'K = (k'+ b')"'.

The integral representation given by Eq. (Bl}
can be of practical value when the singularities
of the Fourier transforms v„'(K} in the complex K

where hq(b, k, —',K) is defined in the expansion

[b +(k —2K) ] '= Q (2K+I) hy(b, k, 2K)Py(k'K)

(Bs)

plane are in the form of poles, as is the case for
the exponential example given by Eq. (23}, or for
a Coulomb potential which arises from a charge
distribution whose Fourier transform has no singu-
larities other than poles. In these cases the inte-
gral in Eq. (Bl) can be carried out by contour inte-
gration provided that a cut is made between the
branch points of Q, (P), and the integral around the
latter is evaluated numerically. For a point Cou-
lomb case the contribution from the residues is
proportional to

MZe'I! (2I+I) "'([kR '/(b'+k')]"' —[b- b']),
(B6)

where Z is the charge of the (point) nucleus, while
rough estimates" of the integral around the cut
yield a function which oscillates like sin(2kR) and
which appears to decrease exponentially with R.
For the exponential case, Eq. (23), the contribu-
tion from the residues is proportional to

e "([,Bk)/(b' ——,'B' +k'—)]' "—[b- b']}.

It is tempting to identify this result with the first
term of Eq. (30), while the contribution from the
cut appears to be related to the second term in
Eq. (30).
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