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We report a detailed calculation of the angular distribution and polarization of the photo-
neutrons from 180 in the giant dipole region. The electric dipole (E1) amplitudes are ob-
tained from a continuum shell-model calculation which reproduces the intermediate structure
in the total cross section. A consistent interpretation of the angular distribution and polari-
zation may be obtained either by (i) assuming a phenomenological giant quadrupole (E2) res-
onance, or (ii) by modifying the phase difference between the E1 amplitudes. In case (ii), we
do not require any E2 resonance to fit the data, or, alternatively, the magnitudes of the E2
amplitudes used can be taken to be in reasonable agreement with those extracted from the
polarized-proton capture experiment. As we show in case (i), there is a theoretical possibil-
ity for an E2 resonance. On the other hand, the present experimental results indicate the
absence of such a resonance in the dipole region; this possibility is studied in case (ii).

NUCLEAR REACTIONS ¢0, ng); giant dipole resonance; angular distribution
and polarization of photoneutrons. Giant E2 resonance in 0.

I. INTRODUCTION

We have previously studied the nuclear com-
pound states responsible for generating the inter-
mediate structure in the photonuclear cross sec-
tion of '*0.! We have shown, in a doorway-state
formalism, that the intermediate resonances in
the giant dipole region could be due to coupling of
three-particle-three-hole (secondary doorway)
states to the one-particle—one-hole giant dipole
(doorway) states. Such configuration mixing re-
distributes the strength of the dipole transition
and thus modifies the energy variation of the photo-
disintegration amplitudes. For detailed theoreti-
cal formalism and comparison to the experimental
data, we refer to Ref. 1. However, this calcula-
tion investigated only the energy dependence of
the magnitudes of the scattering’amplitudes. In
this work, we shall extend the investigation to the
interference of these amplitudes.

The interference appears in angular correla-

" tion measurements: angular distribution and
polarization of the photoneutrons. In a prelimin-
ary letter,? we reported such a calculation and
concluded with evidence for a giant quadrupole
resonance in the dipole region. Here we would
like to give the detailed results and show some
alternative interpretations of the data.

|©

We would first like to mention that there are
coupled-channel formulations by Weiss,® Buck
and Hill,* and Sarius and Marangoni.® These
authors, however, were only interested in the
gross structure of the angular correlations.

Experimentally, the differential (y, n,) cross
section was obtained by Jury, Hewitt, and McNeill®
and recently by Syme and Crawford.” The (y, n,)
polarization was first measured by Hanser® and
then, with better resolution, by Cole, Firk, and
Phillips,® and by Nath et al.!® We shall try mainly
to interpret these data.

There are several other closely related experi-
ments. The '*O(y, p,)'°N angular distribution mea-
surements were performed by Baglin and Thomp-
son,'* and Stewart, Morrison, and Frederick.?
The inverse processes (proton capture and polar-
ized proton capture) have been reported by Earle
and Tanner,' and Hanna ef al.’* In Refs. 11, 12,
and 14, an attempt has been made to extract the
quadrupole amplitudes in the dipole region. We
shall return to the question of whether there is a
giant quadrupole resonance later in our discussion.

In Sec. II, we review the general formulation of
the angular distribution and polarization. It is
then simplified for our application to include the
electric dipole (E1) and electric quadrupole (E2)
amplitudes. A possible quadrupole resonance is
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parametrized in Sec. III. The effects of the E2
amplitudes are studied in Sec. IV, where nu-
merical results are presented. Our conclusions
are presented in Sec. V.

II. BASIC FORMULATION

In the giant dipole region, the most important
photodisintegration amplitudes are the E1 ampli-
tudes. For '°0, these amplitudes have been cal-
culated in Ref. 1; they contain rather complicated
energy dependence, which may be represented
by the following T matrix (see Ref. 1)

7= 1, 0)
W3 |H pa | §4) (D |Hy |0)
"2 ETE, —a, o@D

where |0) is the '°0O ground state, and H, the
photonuclear interaction. The doorways |¢,) are
the usual 1p-1h (Tamm-Dancoff) dipole states at
E;=22.3 and 24.3 MeV. The mixing of 3p-3h
secondary-doorway states (with the dipole states)
causes the shift and width, A; and I'y, to have
rapid energy dependence which gives rise to inter-
mediate resonances in the T matrix. The shift
A, and width I', are parameters whose physical
significance is discussed in Ref. 1. The channel
wave functions |y{”) included s,,, and d,,, con-
tinuum neutrons coupled to a p,,, hole state in
the case of the ground-state cross section '°O-
()’, no)lso-

If we neglect continuum-continuum coupling, we
may write the T matrix for each partial wave
(denoted by [, j) as

T, (E)=€'%1i ® D, (E) +R,;(E)], (2)

where the potential scattering phase shift 6,,(E)
is due to the real optical potential for the continu-
um waves. We have denoted the divect and the
resonant amplitudes by D,;(E) and R;;(E), respec-
tively. We may further write Eq. (2) as

T,;(E)=Cy;(E)e’ *1%) (3)

where C,;(E) is real and positive and &,;(E) is
the total phase of the amplitude T,;. The total
phase is the sum of two phases:

@,,(E)=5,1(E) +elj(E)y (4)

where the resonant phase ©,,(E) is defined by

(5)

0,;(E)=tan™! {Im[DU(E) +Ry;(E)] } '

Re[D,;(E) +R,,(E)]

From Eqs. (4) and (5), we expect the total phase
to vary on approximately the same energy scale
as the intermediate structure, due to the rapid

energy variation of ©,,(E).
The total (y, n,) cross section is given by

0(B)=2Y [cu @), ®)
Y 1

where k., is the incident photon wave number. This
expression contains only the squared amplitudes
and thus does not depend on the relative phases of
various terms. To study the interference effects,
we turn to the angular distribution and the polar-
ization. We usually expand these quantities in
terms of angular functions (for details, see Firk,"
for example). The angular distribution is

do 1
o (g;:)Z A, P,(cos®), )

where P, are the Legendre polynomials. Also the
differential polarization is

dP 1 S
- <EI;> Z,,: B, PX(cos¥), (8)

where P} are the associated Legendre polynomi-
als. The polarization direction is perpendicular
to the scattering plane. The general expressions
for A, and B, may be found, for example, in Ref.
15. We shall restrict ourselves to the neutron
channels with channel spin 1 for a target with
zero spin, I=0. Such channels include E1 and
E2 transitions to a final nuclear state with I=3".
The unitary transformation of the formulas from
the channel-spin formalism to the jj coupling
used in our calculation may be easily carried out.
We have found that the transformation in the E1
channels of our interest does not change the ex-
pressions. We have, for electric multipole tran-
sitions, the angular coefficients

A,=(2n+1))_C{,Cl; cosa, [J[a7] (1] [1])2

L lUn J J'n 1 J1
(oo T rat @

000/\-110/WJUmn
where [J]=2J+1 etc., the round brackets are the
Wigner 3-j symbols and the curly bracket the
usual 6-j symbol.'® The amplitudes C{; are now
in the jj representation. The summations are
over [, I', J, and J’. The superscripts (J or J’)
indicate the multipolarity of the transitions. The
amplitudes may be indicated only by the orbital
angular momentum [/ of the emitted particle, since,
in our case, there is always only one unique value

of j associated with each I. The phase difference
A+ is defined as

By =@y =9 . (10)
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Similarly we have the polarization coefficients
B

n»y

B,=V3 (2n+1) ) C{,C{’;: sina, (=1) !

x[J][a’] ([z][l]),,,,,(z l n)(d J’ n>
ooo0/\-110

J 11
x <J U157 (11)

nnl

where the large curly bracket indicates a 9-j sym-
bol.’® For our reference, the values of [ and [’
may be 0, 1, 2, or 3 for s, p, d, f waves and J
and J’ may be 1 or 2 for E1 or E2 transitions.
We note that n < (2J, 2I, 20’), i.e.,, n<4 in our
applications.

The above expressions may be further simplified
for specific cases. In the E1 approximation, the
differential cross section is'®

d
dT‘;=[1%k,-2]{2(a,2+ad2)

+[2V2 ag a4 cosA 4, —a,?] P,(coso)},

(12)
and the differential polarization
dP [0.207 3
E=[—}}y—2]asad sinA 4, Py(cosé), (13)

where s and d stand for s,,, and d,,, partial waves,

respectively. The amplitudes a’s are related to
-J

from the angular distribution:

the C’s of Eq. (3), by a simple factor:

8mky 712
a,,(E)=[(7}+L1)} Cy(E); J=1. (14)

Equations (12) and (13), together with the mea-
surements of (do/dQ}) and (dP/dS2), may be used
to obtain the relative amplitudes (a, /a,) and the
phase difference A;;. Such extraction from ex-
perimental data is, howeéver, only valid for di-
pole transitions.

The angular distribution measurements have
indicated admixture of other multipoles in the
giant dipole region of *0. They could be E2 or
M1, or both. To simplify our discussion, we
shall consider only the E2 amplitudes. In the
case of °0, the M1 amplitudes are probably small
since the M1 excitations involve spin-flips which
are forbidden for closed-shell nuclei, without
ground-state correlations. In the following dis-
cussion, we should, however, bear in mind that
no M1 amplitudes are considered. In this case,
our channel wave function |¢{™) in Eq. (1) also
includes the p, , and f;,, continuum waves. In case
of a quadrupole resonance, the “E2 doorway states”
may be included as |¢,) in Eq. (1). The E2 ampli-
tudes are then also denoted in the form of Eq. (3).

The effects of the E2 amplitudes on the angular
distribution and the polarization are generally
quite complicated. It is therefore useful to have a

.systematic way to ameliorate the situation. To be-

gin our discussion, we assume that the E1 ampli-
tudes are completely determined from our previ-
ous study. We then have four parameters (two E2
amplitudes a, and a, and their phases ¢, and ¢,,
respectively) to be determined from the data.

We shall begin with the following two quantities

A, {[-0.5+1.41a, cos(ds)] +0.733a,% +0.953a,% — 0.58a, a, cos(fp)}
Ay, {[1+a,2]+1.667(a,2 +a,)}

and

4.67a,a, cos(fp) - 0.952a,°

1+a3,2+1.667(a,% +a,%) ’ (16)

Ag
Ao

where we have defined @, =a, /a, and cos(ds)
=cos(A4, ) etc. The quantities shown within the
square brackets are the known E1 contributions.
It is experimentally observed that A,/A, is very
small in the energy region of our interest. From
Eq. (16), A,=0, if

cos(A,,)=[f§ gf;} . 1)

Equation (17) gives a restriction on our parame-
ters. A more important consequence of Eq. (17)

(15)

r

is the simplification in our search procedure. If
we substitute Eq. (17) for cos(fp) in Eq. (15), we
immediately find that the A,/A, ratio does not
depend on the E2 phases; moreover, it depends
nearly only on the total sum of the squared E2
amplitudes (a,? +a,?). This observation isolates
the effects of the total E2 strength on a single
experimental quantity. That is, we may deter-
mine the total E2 strength from the A,/A, ratio,
regardless of their phases. (Note that this is so
only in the absence of M1 amplitudes.)
Effectively, we have now reduced the number
of undefined parameters to two; we have to deter-
mine (1) the E2 relative amplitude as /a, or their
phase difference A, and (2) any E1-E2 phase dif-
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ference such as A;;. For this purpose, we may
choose the remaining two experimental constraints:
the A, and A, coefficients. We note that these two
quantities contain only E1-E2 interferences and
therefore serve as a very sensitive criterion for
the E2 amplitudes and phases. We remark at this

point that the E2 amplitudes could be determined
by the angular distribution alone.

For a further test of such amplitudes, we may
turn to the polarization calculation. We are par-
ticularly interested in the polarizations at 45 and
90°, where there are data available. The 45° po-
larization could be dominated by E1 contributions,
while the 90° polarization contains only E1-E2
interference. Experimentally the 90° polarization
is very small; this could be due to either small
E2 amplitudes or cancellation of the E1-E2 inter-
ference.

In the following we shall speculate on the possi-
bility of the presence of a quadrupole resonance,
since there is such evidence in our calculation if
we assume our E1 amplitudes are correctly re-
produced. We shall discuss the details in the next
section.

The existence of giant-quadrupole resonance in
nuclei seems to be observed in proton inelastic
scattering'” and in electron scattering.!® For the
nucleus in question here, there has been evidence
for a goint-quadrupole (E2) resonance in the angu-
lar distribution measurement of '®O(y, p,)'°N, as
first analyzed by Stewart, Morrison, and Fred-
erick.'> The data of '*O(y, n,)'°0 of Jury, Hewitt,
and McNeill® and Syme and Crawford’ also show
evidence for strong E2 interference in the giant-
dipole region. However, the extraction of the E2
amplitudes directly from the experimental data is
quite uncertain without a priori knowledge of the
dominant E1 components. Since we have a com-
plete theoretical prediction of the E1 amplitudes,
it becomes much easier to determine the E2
amplitudes.

The choice of E2 amplitudes will strongly affect
the values of A,, A;, and A,, which contain purely
E1-E2 interferences. Their effects on polariza-
tion are more complicated. Lacking a more com-
plete theory for the E2 amplitudes, we shall be
content with a simple qualitative parametrization
of these quantities, as discussed in the following
section.

III. QUADRUPOLE RESONANCE

We may parameterize the E2 T matrix as, for
each E2 partial wave (1),

5\ /2 YTy Ty (E2) 1
= 8
T”(Ez) —‘D” + (41rky> E —Eq +ir”/2 ’ ( )

where I}; is the direct amplitude. The E2 reso-
nance is assumed to be at energy E, and have a
total width I,. T, (E2) is the total ground-state
photoabsorption width. For simplicity we take
E, and T, to be constants. The total width of the
E2 resonance may be separated into I',=37,; T,
+T', where I, is the continuum width for neutron
escape from the E2 state. The compound width
T, generally contains all the coupling to more
complicated states and continuum channels other
than the neutron channels. The normalization
factor (5/47k,)'/? in Eq. (15) is so chosen that the
following relation between the total absorption
cross section 0,(E2) and the ground-state radia-
tion width I'y(E2) holds approximately'®:
5n2
f 9 (E2ME =55 T, (E2).. (19)
The magnitudes of E2 amplitudes, for a chosen
E, and I';, would depend only on the product
(T I‘.,). In order to estimate the neutron width,
we have to determine the value of T’y from an
independent consideration, such as the E2 sum
rule.
The energy-weighted sum rule for E2 (AT =0)
multipole is given as, assuming a simple E2 state
2 5h—2A
0> l =gz s

[m),"
(n
(20)

where A is the mass number of the nucleus and M
the nucleon mass. The y absorption width from
the ground state |0) to the state |n) is given as

<n E 72,7, o> ' : (21)

If we choose our E2 state to exhaust the sum rule,
we obtain

r, =[2.37A]k5R2 (22)

Sew =fiw

2 7Yy
i

— 2
T, =4e k.,s

fiw

by assuming a uniform nucleus (72 =3R%?/5. In our
calculation we use R =1.14A"/3,

The above consideration determines the neutron
decay widths and the magnitudes of our E2 ampli~-
tudes. The resonant phases ©,; can be calculated
directly from Eq. (15). However, the calculation
of A,, A, and polarization is very sensitive to
these phases. The E2 phases directly determined
from Eq. (18) are found to be inadequate. We
therefore treat the E2 phases as parameters, to
be determined by fitting the data. The resultant
phases should, of course, retain their resonant
behavior (i.e., changing by 7 through the reso-
nance region).
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IV. NUMERICAL RESULTS

In this section we first present the results of
our calculation with the E1 amplitudes obtained in
Ref. 1. In order to interpret the experimental
data, we need to introduce an E2 resonance in the
dipole region. The E2 amplitudes found are much
larger than those found in polarized-proton capture
of Hanna ef al.* We shall finally show that our E2
amplitudes could be a factor of 5 smaller if our
E1 phases are modified. The evidence for an E2
resonance is, however, still indicative, although
not conclusive; the fact is that any large E2 ampli-
tudes must have their phases change by 7 in the
dipole region.

We shall call the first part of our study as case
I, where we assume that the E1 quantities as cal-
culated in Ref. 1 are accurate representations of
the '°0 photodisintegration and we shall use them
without any modification.

The complete E1 T matrices for s,,, and d;,,
partial waves are shown in Fig. 1, where we can
clearly see the resonance behavior of each partial
wave as represented by the rapidly varying ampli-
tudes along the circular trajectories in the com-
plex plane as the energy increases through the
resonance energies. The phase difference A, is
approximately constant and equal to about —150°,
The E1 total phases, as defined in Eq. (4), are
shown in Fig. 2, which exhibits rather strong
energy dependence due to the intermediate reso-
nances. For zero-energy neutrons, the potential
phase shifts are 7 and 27 for d;,, and s, , waves.
The value of 7 for the d;,, wave is due to the pro-
jection procedure discussed in detail in Refs. 1
and 20. The d,,, total phase has been slightly
adjusted to give a positive polarization at 45°, as
to be discussed later.

We may now calculate P(6=45°) and A,/A, in the
E1 approximation. The results are shown as the
dashed lines in Figs. 3 and 4. The pure E1 A,/A,
ratio shows a large discrepancy when compared
with the experimental data of Syme and Crawford,”
and also that of Jury, Hewitt, and McNeill.® The
magnitude and the shape of the polarization at 45°
are, however, reasonably reproduced. We recall
that the phase difference A, is close to the value
7 and that the sign of the polarization at 45° there-
fore critically depends on A, being greater or
less than 7. The phase difference A, obtained in
our calculation (from the dashed lines in Fig. 1)
gives negative polarization near 24 MeV. We
have to modify our phase difference A, by chang-
ing ®,,,, as shown in the figure. It is, of course,
also possible to modify further the d,,, phase shift
or Ay, at lower energy (20-23 MeV)to irncrease the

polarization there; this will be shown later. It is
worthwhile to point out that the “intermediate
structure” in P(45°) could be due to the energy
dependence in the E1 amplitudes, with a smooth
phase difference. The coupled-channel calcula-
tion of Buck and Hill* gives a larger polarization;
our gross structure calculation (by neglecting the
3p-3h secondary doorways) would yield a curve
similar to the dashed line in Fig. 4, without its
intermediate-structure oscillations. It is inter-
esting that our polarization is quite similar to the
square-well calculation of Weiss.?

We infer from the above comparisons that the
interference of non-E1 states in the dipole region
may be quite important. This is particularly evi-
dent in the A,/A, ratio, which is also quite in-
sensitive to small changes in the phase difference
Ags. It is clear, from Egs. (15) and (17), that E2
amplitudes always tend to reduce the discrepancy
shown in Fig. 3. It is worthwhile to point out that
one may fit the data with no E2 amplitudes; such
a fit would require an a /a, ratio very much
smaller than that obtained from our theory and
a strongly energy-dependent value of A,,.°

The E2 amplitudes are parameterized in Eq.
(18), where we take E, =23 MeV, I',=4 MeV,
and 2T, (at 23 MeV)=1.4 MeV. The energy de-
pendence in the numerator of Eq. (18) is taken to
be [1.0 +0.1(E, - 23)]2. This slight energy de-
pendence is obtained by a qualitative fit to the
A,/A, ratio, which is shown as the solid line in
Fig. 3. The relative magnitudes of the E2 ampli-
tudes are shown in Fig. 5. We note that the E2
amplitudes are particularly large off the reso-
nances; this is partly due to the fact that our E1
amplitudes, there, are slightly underestimated
as compared to the total cross section as shown
in Ref. 1.

It is also interesting to see that the giant-quad-
rupole resonance as specified by Eq. (18) is in
reasonable agreement with theoretical predictions.
For '*0, a simple harmonic oscillator model due
to Bohr and Mottelson®' predicts E, =24 MeV, and
the sum rule consideration of Satchler' gives E,
=27.5 MeV. The analysis of proton inelastic scat-
tering from '°0O by Geramb, Sprickman, and
Strobel'” also shows a E2 resonance state near
25 MeV. Our calculation is not sensitive to the
position of the resonance, but, from the phases
shown in Fig. 7, the resonance is within the giant
dipole region.

We next have to determine the relative ampli-
tudes a;/a, and the E2 phases, using A, and A,
coefficients as constraints (experimental data are
shown in Fig. 6). The result is not quite sensitive
to the velative amplitude. The value of a;/a, may
be chosen as constant between about 0.5 to about
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FIG. 1. The total T matrix as function of energy,
showing the resonance behavior.
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FIG. 2. Total phases ®;; of E1 amplitudes. The d-
wave phase (the dashed line) is modified to the solid line
which is used in our calculation as explained in the text.
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FIG. 3. Angular distribution coefficient A,/A,. The
dashed line is the E1 approximation. The solid line is
obtained by including a giant E2 resonance. The experi-
mental data are from Syme and Crawford (Ref. 7).
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FIG. 4. Polarization at 6 =45°. The dashed line is the
result of the E1 approximation; the solid line shows the
effect of including the E2 resonance. The dash-dot line
is the result of a coupled-channel calculation of Buck
and Hill (Ref. 4). The data are from Nath ef al. (Ref. 10).
The calculation is carried out at 0.2 MeV intervals.
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FIG. 5. The relative amplitudes (with respect to the
dominant d-wave amplitude). The dashed line is ag /a,
and the solid line is a,/a;. The f-wave amplitude is
chosen to be a;=V2a,.

1. We would like to point out that the assumption
a; =0 (or a,=0) could not give a consistent result
for A,, A, and the polarization at 90° these quan-
tities are very sensitive to the cancellation of the
E1-E2 interferences. We choose a, /a, =V and
the E2 phases shown in Fig. 7. The fit to the ex-
perimental A, and A, coefficients is shown in Fig.
6. These coefficients are small, in this case,
only due to cancellation of E1-E2 interferences.
We note again that the E2 phases change by 7
through the resonance region, as is assumed in
Eq. (18). It is, however, important to note that
the P(90°) can be made arbitrarily small due to
the cancellation of two E1-E2 interference terms.
The strong oscillations in Fig. 7 should not be

T T T T T T
A i Syme and Crowford

et
i

sl i
l 4

L | 1 1 1 1 1 L 1 L 1

21 22 23 24 25 26
Photon energy ( MeV)

FIG. 6. Angular distribution coefficients A;/A, and
A3/A. The data are from Syme and Crawford (Ref. 7).
The dashed line is obtained in case I where our E1 phase
difference A4 is not modified. The solid line shows the
result in case II, where Ays is modified, as discussed
in the text. (See Fig. 8.)

Neutron Energy(MeV)
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T T T T T

n
B
T
©

E2 Phase (rad)
3
'I_L
L)

0 | 1 | | 1
21 22 23 24 25 26

E, (MeV)

FIG. 7. The extracted E2 phases. The p-wave phase
shows a clear resonance behavior through the dipole re-
gion. In the calculation, we find at least one of the E2
amplitudes has to show a resonance behavior, the other
one is less certain.

taken seriously.

Here we conclude the first phase of our investi-
gation. We have assumed that our E1 amplitudes
are accurately reproduced in the calculation of
Ref. 1. We, however, immediately notice the
large discrepancy of our E2 amplitudes as com-
pared to those extracted from polarized-proton
capture of Hanna et al.’* This leads to the follow-
ing alternative interpretation of the data. We shall
call the following investigation as our case II study.

To allow modifications, we first notice that the
E1 phase differences may not be accurately re- °
produced in our calculation. The phase difference
requires great accuracy in our E1 phases. There-
fore we assume that it is not unreasonable to modi-

T T T T T T
Ags Modified
b4
o 2 [ — —— Theory (Ref. 1) -1
(%)
o
3T ]
S_x|
> 4
1]
3 ———————maeTNG —~ -—
s L PRl ~ |
a
3m
7 ] 1 1 1 1 1
21 22 23 24 25 26

Photon energy (MeV)

FIG. 8. The E1 phase difference A;;. The dashed line
is the result from Ref. 1, with phases shown in Fig. 2.
The solid line is extracted from a fit to the A,/A ratio
allowing for small E2 amplitudes.
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fy the calculated quantities somewhat. There are

many ways to choose the modified phase difference.

We begin with the observation that the polariza-
tion at 45° will be enhanced by reducing the magni-
tude of A4, and the A,/A, ratio will also be re-
duced in magnitude. In order to fit the P(45°) as
measured by photon end-point energy E, =30 MeV,
we find a simple choice of A, =-130° to be suf-
ficient. The A,/A, ratio, however, is not properly
reproduced; we note that this ratio A,/A, has been
quite well determined. If we next try to remedy
the discrepancy in A,/A, ratio by adding the E2
amplitudes as shown in Eq. (15), the E2 strength
will be about three times or more larger than
allowed from the analysis of polarized-proton
capture.

For a more probable choice of the phase differ-
ence A,,, we shall restrict ourselves to the ob-
servation of Hanna et al.'* that the E2 amplitudes
are small; i.e., A;/A;<0.15andA,/A,<0.08 at
21.7 MeV. Such E2 amplitudes could correspond
to our choice of our T(E2), as specified by Eq.
(18), reduced by a factor of 5. The width and the
position of the resonance are kept the same. If
we assume this new “resonance” also exhausts
the sum rule, then the total neutron width would
be about 0.67 MeV. We would like to point out that
this interpretation also depends on the choice of
the width and energy of the resonance. We have
apparently assumed a broad E2 state, with its
strength determined at only one energy. However,
with this choice of the E2 amplitude, we proceed
to modify our phase difference A;,. For a crite-
rion, we choose the A,/A, ratio, which has been
quite consistently measured.®” (On the contrary,
the polarization at 45° is more complicated for

04T T T T T T T T T T T T
A
Ao $ Syme and Crawford
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FIG. 9. The A,/A, ratio. The dashed line is obtained
by assuming no E2 contribution, but with a modification
of the E1 phase difference A;; as shown in Fig., 8. The
solid line shows the contribution of adding some small
E2 amplitudes, consistent with polarized-proton capture
measurements of Hanna et al. (Ref. 14). The data are
the same as in Fig. 3.

analysis and the experimental result is not yet
very definite.)

If we modify our A,;; as shown in Fig. 8, the fit
to the A,/A, ratio, shown in Fig. 9, is excellent,
even without any E2 amplitude. It is interesting
that the change in A, is simply a uniform shift;
the wiggles still remain. This energy-independent
modification may be simply due to an error in the
determination of the potential phases. We then
follow the procedure described earlier to search
for the E2 phases. The fit to A, and A, is shown
as the solid lines in Fig. 6, where we find the
magnitude is well reproduced; the discrepancy
off the resonance peaks is probably more due to
our underestimated E1 strength than to the over-
estimate of the E2 strength. The polarization at
45 and 90° are in reasonable agreement with the
experiments, as shown in Figs. 10 and 11.

It is appropriate to make some comment on the
“quadrupole resonance” postulated here. The
magnitudes of the E2 amplitudes have been greatly
reduced in our case II. We, therefore, gain more

} Nath et al.
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FIG. 10. Polarization at # =90°. The data are from
Nath et al. (Ref. 10). The thin solid line is the result
using the search procedure described in the text, assum-
ing that our E1 quantities are accurately reproduced
from Ref. 1; the heavy solid line is that obtained by mod-
ifying the phase difference A45 as shown in Fig. 9 (see
the text). The difference between these two results are
not significant, it is sensitive to the particular set of the
E2 phases.



Do
—
(o))
Do

@
o

T T T !
¢ End point E, =30 MeV
Nath elal-l End point E,= 64 MeV .

g =as5°

w N wm [&)] ~
8 @] (o] o o (@]
T T

|

Neutron polarization from 'O (7, ng) 50 (%)

o

1 1 | |
2l 22 23 24 25 26

0 ] l

Photon energy ( MeV)

FIG. 11. The polarization at 45°. The dashed line is
obtained by modifying the E1 phase difference A4g as
shown in Fig. 8, assuming no E2 amplitudes. The solid
line shows the effect of E2 amplitudes in the same cal-
culation with modified Ag4q.

freedom in searching for appropriate E2 phases
to fit the A,, A,, and P(90°) data. We have found
that, for E2 amplitudes as large as in case II, we
need to require the E2 phases to follow quite
closely the resonance pattern as shown in Fig. 7.
This signature of a resonance remains rather
clear. It is, however, also obvious that in case
II, we do not need any appreciable E2 amplitude
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to improve the agreement with the experimental
data.

We would therefore maintain that the E1 ampli-
tudes, without E2 amplitudes and with the phase
modification as described, have reproduced the
angular distribution rather well and predicted
larger polarizations at §=45° (compared to the
data of Nath et al.’°) below 24 MeV. Our predic-
tion of P(45°) is in good agreement with the earlier
data of Hanser.® The E1-E2 interferences shown
in coefficients A,, A;, and A, may be reasonably
reproduced by considering only the direct ampli-
tudes, with smooth E2 phases.?? [We note, how-
ever, that these coefficients for (y, p) measure-
ments are much larger.!! 13]

V. CONCLUSION

We have shown that the E1 photodisintegration
amplitudes obtained in the doorway-state formal-
ism are adequate to interpret the experimental
data, provided that we modify our E1 phase dif-
ferences. Such smooth modification on the phase
differences may be simply due to the inaccuracy
in the potential scattering phase shifts. Further
investigation of the various approximations in the
reaction formalism should be useful. The con-
jecture of an E2 resonance in the dipole region
remains as a possibility, but not with very strong
evidence; a more definite answer would require
more experimental and theoretical investigations.
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