$^{26}Mg(t, ^{3}He)$ reaction and a spherical-shell-model description of $^{26}Na^{\dagger}$

E. R. Flynn

Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 87544

J. D. Garrett

Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 87544 Brookhaven National Laboratory,* Upton, New York 11973

(Received 19 September 1973)

The ${}^{26}Mg(t, {}^{3}He)$ reaction at an incident energy of 23.5 MeV has been used to measure the ground-state mass and the energies of the excited states of ²⁶Na. The measured mass excess $(-6.903 \pm 0.020$ MeV) is in agreement with that measured using the 26 Mg(⁷Li, ⁷Be) reaction and with the most recent β -decay end-point measurement. The spectrum of low-lying levels together with a recent assignment of 3^+ for the ground-state spin are not consistent with a rotational interpretation for ²⁶Na. These data, however, can be explained in terms of the spherical shell model.

NUCLEAR REACTIONS ²⁶Mg(t, ³He) E = 23.5 MeV measured Q value, ²⁶Al levels.

I. INTRODUCTION

Neutron-rich s-d-shell nuclei are the subject of several recent experimental studies.¹ Measurements of masses and experimental level schemes for these nuclei permit a test of the systematics of mass relationships and theoretical level schemes in the region away from stability. Nuclear reactions are particularly well suited for the study of such nuclei, as they are capable of mass measurements of the order of tens of keV, and data on excited states are obtained simultaneously. The $(t, {}^{3}\text{He})$ charge-exchange reaction on neutron-rich targets represents an excellent method for the study of such nuclei.²

The low-lying levels of the F to Al nuclei with A = 19 - 27 have been described³⁻⁸ with considerable success in terms of the rotational model. Recent calculations⁹ have demonstrated that the rotational aspects of these nuclei are calculable in terms of the spherical shell model with a full *s*-*d*-shell basis. Detailed studies of the T = 0(Ref. 4), T = 1 (Refs. 4 and 5), and T = 2 (Ref. 10) states of the mass-24 nuclei indicate that the spectrum of excited states in these nuclei requires a decrease in the deformation for an increase of T. Similarly measured static guadrupole moments of the first excited states of the even-even Ne and Mg isotopes indicate a ~30% decrease when two neutrons are added to the selfconjugate nuclei.8, 11

The present paper reports a measurement of the ground-state mass and the excitation energies of the levels of ²⁶Na using the ²⁶Mg(t, ³He) reaction. Earlier measurements of the mass excess of the

²⁶Na ground state have differed considerably. A value of -6.853 ± 0.030 MeV was obtained from a study of the ²⁶Mg(⁷Li, ⁷Be) reaction¹²; whereas, values of -7.70 ± 0.30 and -7.20 ± 0.50 MeV had been obtained from β -decay end-point measurements.^{13, 14} The low-lying level scheme for ²⁶Na is discussed and is compared with the levels of ²⁴Na (a known rotational nucleus^{4, 5}) populated by the ${}^{24}Mg(t, {}^{3}He)$ reaction.

II. EXPERIMENTAL PROCEDURE

The ${}^{26}Mg(t, {}^{3}He){}^{26}Na$ reaction was studied using the 23.5-MeV triton beam of the Los Alamos Van de Graaff facility. The reaction products were measured between 15 and 30° (lab angle) in 5° steps using an $E - \Delta E$ silicon surface-barrier-detector telescope with a 50- μ m-thick ΔE detector. A third detector was placed behind the E detector, and its signal in anticoincidence was used to reduce background in the spectra due to chance coincidences. The masses of the reaction products were identified on line using standard techniques.¹⁵ An experimental resolution of 45 keV full width at half maximum was obtained. Helium-3 energy spectra measured at 25 and 30° in the laboratory are shown in Fig. 1. Data obtained at the most forward angle was of only limited usefulness because of a large broad group resulting from the $p(t, {}^{3}\text{He})n$ reaction. The ground-state Q value for the ${}^{26}Mg(t, {}^{3}He)$ reaction was measured relative to that of the ${}^{16}O(t, {}^{3}He)$ transition to the ground and 297-keV states¹⁶ of ¹⁶N (see Fig. 1).

Spectra of the ${}^{24}Mg(t, {}^{3}He)$ reaction populating states of ²⁴Na also were measured at the same

9

FIG. 1. Helium-3 energy spectra corresponding to the reaction ${}^{26}Mg(t, {}^{3}He){}^{26}Na$ measured at an incident triton energy of 23.5 MeV and at laboratory angles of 25° (top) and 30° (bottom). Excitation energies corresponding to the numbered groups are given in Table II. Groups corresponding to transitions on C and O impurities are labeled by the levels of the corresponding final nucleus.

incident energy and using similar experimental techniques. The population of the excited states of ²⁴Na using this reaction are compared with the ²⁶Mg(t, ³He) results in Sec. IV. A complete analysis of the ²⁴Mg(t, ³He)²⁴Na study will be published separately.¹⁷

III. GROUND-STATE MASS OF ²⁶Na

A Q value of -9.292 ± 0.020 MeV was measured for the ²⁶Mg(t, ³He) transition to the ground state¹⁸ of ²⁶Na. This value corresponds to a mass excess of -6.903 ± 0.020 MeV for the ²⁶Na ground state. and it is compared to earlier ground-state massexcess measurements for ²⁶Na in Table I. The results of a more recent β -decay measurement¹⁹ of the ²⁶Na mass also are shown. The present value is within the error of two of the β -decay end-point measurements,^{14, 19} however, it differs considerably from another value obtained from a third β -decay end-point measurement.¹³ It also differs by 50 keV from the mass excess determined from the ²⁶Mg(⁷Li, ⁷Be)²⁶Na reaction.¹² This discrepancy is probably the result of an excited state of ²⁶Na observed at an excitation of 88 keV (see Table II). This state would not have been resolved from the ground state in the $(^{7}Li, ^{7}Be)$ study. Its presence would shift the centroid of the unresolved states toward a more negative Q value, thus accounting for the more positive mass excess measured in the (⁷Li, ⁷Be) study (see Table I).

Mass excesses predicted using the mass relations of Garvey *et al.*^{20, 21} and recent compiled masses²² are given for comparison in the bottom portion of Table I. Predictions using the mass formula of Zeldes, Grill, and Simievic²³ also are tabulated. The mass excesses calculated using the different mass relations of Garvey and Kelson differ considerably, and only one value is in reasonable agreement with the measured mass excess. Possible reasons for such discrepancies are discussed in Sec. V.

IV. EXCITED-STATE SPECTRUM OF ²⁶Na

Transitions also were observed populating several excited states of ²⁶Na (see Fig. 1). The excitation energies and the relative $(t, {}^{3}\text{He})$ cross sections at 25 and 30° (laboratory angles) are

Mass excess (MeV)	Method	Reference		
Present work				
-6.903 ± 0.020	± 0.020 (t, ³ He) reaction			
Other measurements				
-6.853 ± 0.030	$(^{7}\text{Li}, ^{7}\text{Be})$ reaction			
-7.70 ± 0.30	β -decay end point	13		
-7.20 ± 0.50	β -decay end point	14		
-7.00 ± 0.20	β -decay end point	19		
Predicted values				
	Garvey-Kelson mass relations	20,21		
-5.763	T relation			
-6.795	L relation ^a			
-7.586	L relation ^b			
-6.799	Zeldes, Grill, and Simievic mass formula	23		

TA	BL	E 1	Ι.	Mass	excess	of	the	²⁶ Na	ground	state.
----	----	-----	----	------	--------	----	-----	------------------	--------	--------

^a Calculated using the masses of ²⁵Na, ^{26,28}Mg, and ^{28,29}Al.

^b Calculated using the masses of ^{23,24}Ne, ²⁴Na, and ^{26,27}Mg.

given in Table II. Excited states at 0.21 ± 0.04 , 2.21 ± 0.04 , and 4.91 ± 0.04 MeV and a possible state at 0.84 ± 0.04 MeV were reported from the ²⁶Na(⁷Li, ⁷Be) study.¹² The superior resolution and better statistics of the present study and only one particle group per excited state²⁴ allow more detail in the identification of excited states. The state populated in the (⁷Li, ⁷Be) reaction at 0.21 MeV probably corresponds to the level observed at 241 keV (state No. 2) in the present study. Similarly the 2.21 ± 0.04 -MeV level [from (⁷Li, ⁷Be)] would correspond to the summed strength of levels observed at 2186 and 2290 keV (levels Nos. 6 and 7) in the present study. These states, 241, 2186, and 2290 keV, together with the ground state and a state at 420 keV, contain the largest observed ²⁶Mg(t, ³He) cross sections. The 420-keV state in the (⁷Li, ⁷Be) spectrum would not be distinguished from the transition leaving ²⁶Na in its ground state and ⁷Be in its 431-keV first excited state.²⁴ It, therefore, appears as if the $(t, {}^{3}\text{He})$ and (⁷Li, ⁷Be) charge-exchange reactions on ²⁶Mg probably select the same final states in ²⁶Na.

The observed spectrum of excited states for 26 Na is an interesting contrast to other mid *s*-*d*-shell odd-odd nuclei.^{4-7,25} Four states are identified below an excitation of 420 keV and no states are observed²⁶ between 420 and 1996 keV. In fact, the level structure is reminiscent of 16 N (see Ref. 16 and Fig. 1). Of course, states of 26 Na could

TABLE II. ²⁶Mg(t, ³He) relative cross sections for the states of ²⁶Na.

T 13		1 - /	1C	T	r b	1-1	J C
Level "	Ex	<i>aσ/c</i>	ω	Level -	E _x	a0/0	τω -
No.	(keV)	25°	30°	No.	(KeV)	25°	30°
0	0	100	66	12	3123	9	12
1	88	34	22	(13)	3232	16	7
2	241	31	20	14	3310	11	17
3	420	36	21	15	3400	13	9
(4)	1996*	20	d	16	3618	32	29
5	2048	16	14	17	3814	11	10
6	2186	24	31	18	3966	11	9
7	2290	45	40	19	4083	5	10
8	2456	6	14	20 ^e	4190	21	13
9	2697	7	7	21	4440	31	35
10	2815	11	12	22 ^e	4702	7	16
11	2933	14	17				

^a Level number in parentheses indicates that there may be some uncertainty in the existence of this level.

^b The estimated uncertainty in the excitation energy is ± 15 keV except for those states marked by an asterisk where the expected energy error is ± 30 keV.

^c The center-of-mass cross sections are expressed in relative units.

^d Level covered by an impurity group.

^e Probable doublet.

exist in the 420- to 1996-keV excitation region that have remained undetected because they are weakly populated in the charge-exchange reactions. Additional levels below 420 keV also could remain undetected because of their weak population in these reactions or if they were not resolved from the more strongly populated levels.

To further study the spectrum of states of oddodd nuclei in this mass region as populated by the charge-exchange reaction, the levels of ²⁴Na have been excited using the ²⁴Mg(t, ³He) reaction. Spectra of ²⁴Na and ²⁶Na at 25° lab angle populated using the (t, ³He) reaction at the same incident (23.5-MeV) energy are compared in Fig. 2. The spins, parities, and assumed rotational-model configurations of the low-lying levels of ²⁴Na are summarized^{4, 5} in Table III.

The low-lying levels of ²²Na (Refs. 6 and 7) and ²⁴Na (Refs. 4 and 5) have been described, with considerable success, in terms of the rotational model. This model describes the low-lying configurations of ²⁶Na as an unpaired proton in the $\frac{3}{2}^{+}$ [211] Nilsson level (see Fig. 3) coupled to an unpaired neutron in either the $\frac{1}{2}^{+}[211]$ Nilsson level for small deformations or the $\frac{5^+}{2}$ [202] level for large deformations. (These configurations are shown diagramatically in the upper portion of Fig. 4.) The $\pi \frac{3^+}{2} [211] \otimes \nu \frac{1}{2}^+ [211]$ configuration would predict low-lying $K^{\Pi} = 1^+$ and 2^+ rotational bands, and the $\pi \frac{3}{2}$ [211] $\otimes \nu \frac{5}{2}$ [202] configuration would predict low-lying $K^{\Pi} = 1^+$ and 4^+ bands. Bands thought to be based on both these two configurations^{4, 5} are observed to be populated in ²⁴Na by the ${}^{24}Mg(t, {}^{3}He)$ reaction (see Fig. 2 and Table III). Either configuration (assuming spacing and population similar to ²⁴Na) would give a very different low-lying spectrum than that observed for ²⁶Na. Additional evidence against a rotational interpretation for ²⁶Na is the recent assignment^{19, 27} of $J^{\Pi} = 3^+$ to its ground state based on the observed β^- branches to the 2⁺ and 4⁺ levels of ²⁶Mg. In terms of the rotational model the ground state should be the lowest level in one of the rotational bands: however, none of the predicted bands have a 3^+ band head.

An alternate description of the low-lying spectrum of states of ²⁶Na is the spherical shell model. Such a description is perhaps reasonable, since it is necessary to assume a considerably smaller deformation to describe the low-lying levels of ²⁴Na (Refs. 4 and 5) than for either ²²Na (Refs. 6 and 7) or ²⁴Mg (Ref. 4). Nearly spherical configurations also have been suggested for the lowlying levels of ²⁴Ne (Ref. 10) and for ²⁵Na (Ref. 28). In terms of the shell model the low-lying levels of ²⁶Na would be described as an unpaired $d_{5/2}$ proton coupled to an unpaired $s_{1/2}$ neutron (see

FIG. 2. Comparison of spectra for the reactions ${}^{26}Mg(t, {}^{3}He){}^{26}Na$ (top) and ${}^{24}Mg(t, {}^{3}He){}^{24}Na$ (bottom) measured at identical incident energies (23.5 MeV) and laboratory angles (25°). Excitation energies corresponding to the numbered groups in the ${}^{26}Na$ spectrum are contained in Table II. The suggested rotational-model configurations corresponding to the low-lying labeled states in the ${}^{24}Na$ spectra are contained in Table III.

Excitation energy ^a	J	ш		
(MeV)	Assigned ^b	Suggested ^b	К ^{П b}	Configuration ^b
0.0	4+	4+	4+	$\frac{3}{2}^{+}[211] \otimes \frac{5}{2}^{+}[202]$
0.472	1+	1+	1+	$\frac{3}{2}^{+}[211]\otimes \frac{5}{2}^{+}[202]$
0.563	(2+)	2+	1+	$\frac{3}{2}^{+}[211]\otimes \frac{5}{2}^{+}[202]$
1.341		3+	1+	$\frac{3}{2}^{+}[211]\otimes \frac{5}{2}^{+}[202]$
1.347	1+	1+	1*	$\frac{3}{2}^{+}[211]\otimes \frac{1}{2}^{+}[211]$
1.511	(0,,5)+	5+	4+	$\frac{3}{2}^{+}[211]\otimes \frac{5}{2}^{+}[202]$
1.846	$(1,2)^+$	2+	1*	$\frac{3}{2}^{+}[211]\otimes \frac{1}{2}^{+}[211]$
1.885	(0,,5)+	4+	1+	$\frac{3}{2}^{+}[211]\otimes \frac{5}{2}^{+}[202]$

TABLE III. Summary of configurations of states of ²⁴Na.

^a Reference 25.

 $^{\rm b}$ Reference 5; see also Ref. 4 for a discussion of the analog of these states in $^{24}{\rm Mg}.$

FIG. 3. Binding energies of deformed neutron (solid curves) and proton (dashed curves) states as calculated in a Woods-Saxon potential. Particulars of the calculation are contained in Ref. 6. The abscissa is the ellipsoidal deformation δ .

lower-left diagram of Fig. 4). Such a configuration, $\pi d_{5/2} \otimes \nu s_{1/2}$, would produce a 2⁺ and a 3⁺ state. Other low-lying spherical-shell-model states in ²⁶Na would be obtained by promoting an unpaired proton from the $d_{5/2}$ to the $s_{1/2}$ orbit (see lower-right portion of Fig. 4). States of $J^{II} = 0^+$ and 1⁺ then are obtained by the couplings of an unpaired proton and neutron in the $s_{1/2}$ orbit. States in ²⁶Na of a pure $\pi s_{1/2} \otimes \nu s_{1/2}$ configuration would not be populated in the ${}^{26}Mg(t, {}^{3}He)$ reaction if the proton configuration of ²⁶Mg is pure $(d_{5/2})^4$. It is known, however, from a study of the ²⁶Mg- $(d, {}^{3}\text{He})^{25}$ Na proton-pickup reaction²⁹ that there is sizable $s_{1/2}$ proton strength (~15% of the $d_{5/2}$ proton strength) in the ²⁶Mg ground state. States of the $\pi s_{1/2} \otimes \nu s_{1/2}$ configuration in ²⁶Na could be populated through the $\pi s_{1/2}$ components in the

FIG. 4. Rotational-model (top) and spherical-shellmodel (bottom) configurations for the low-lying levels of 26 Na. See text for a discussion of 26 Na in terms of these configurations.

²⁶Mg ground state or by mixing with other configurations in ²⁶Na, e.g. $\pi d_{5/2} \otimes d_{3/2}$ which would give states having $J^{\pi} = 1^+$, 2^+ , 3^+ , and 4^+ .

V. CONCLUSIONS

The mass excess of ²⁶Na has been measured and the low-lying states of ²⁶Na have been studied using the ²⁶Mg(t, ³He) reaction. The measured Qvalue is consistent with the ²⁶Na mass excess obtained from the ²⁶Mg(⁷Li, ⁷Be) reaction¹² and with some of the β -decay end-point measurements^{14, 19} (see Table I).

The 3⁺ ground-state spin and parity^{19, 27} and the spectra of low-lying levels (at least four levels below an excitation of 420 keV and a large gap between 420 and 1996 keV with no observed states²⁶) of ²⁶Na cannot be understood in terms of the rotational model which has been successful explaining the level structure of the lighter evenmass Na isotopes.⁴⁻⁷ The spherical shell model is consistent with the spin of 3^+ for the ground state of ²⁶Na (Refs. 19 and 27), and it also is possible to explain the observed level structure of ²⁶Na in terms of this model. To explain the population of four low-lying states of ²⁶Na in the $(t, {}^{3}\text{He})$ reaction, however, requires either sizable $s_{1/2}$ strength in the ²⁶Mg ground state, considerable mixing among the final shell-model configuration in ²⁶Na, or processes other than simple one-step direct transfer in the mechanism of the $(t, {}^{3}\text{He})$ reaction.

Such a rapid change of the coupling scheme from deformed to spherical could account for the gross discrepancy between the observed mass and that predicted using certain mass relations (see Table

9

I). For example, the T relation of Garvey et al.²⁰ uses masses of predominately deformed nuclei to predict the ground-state mass of ²⁶Na. The L relations, however, use masses of nuclei with larger neutron excesses to predict the mass of ²⁶Na, and increased binding is predicted. Similar large discrepancies between observed and predicted masses are observed for other neutron-rich nuclei in this mass region.¹⁹

The mechanism of the $(t, {}^{3}\text{He})$ reaction at present is not sufficiently understood to interpret angular distributions corresponding to the various transitions. More definitive experimental data on ²⁶Na, therefore, awaits a better understanding of the charge-exchange reaction or studies of ²⁶Na utilizing other reactions to populate ²⁶Na.

ACKNOWLEDGMENTS

We wish to thank the authors of Ref. 19 for communicating their results prior to publication. The assistance of S. Orbesen and P. M. Kurjan in obtaining and analyzing the data is gratefully acknowledged.

Work performed under the auspices of the U.S. Atomic Energy Commission.

*Present address.

9

- ¹See, e.g., D. R. Goosman, D. E. Alburger, and J. C. Hardy, Phys. Rev. C <u>7</u>, 1133 (1973); K. H. Wilcox, N. A. Jelley, G. J. Wozniak, R. B. Weisenmiller, H. L. Harney, and J. Cerny, Phys. Rev. Lett. <u>30</u>, 866 (1973); references found in these articles.
- ²R. H. Stokes and P. G. Young, Phys. Rev. <u>178</u>, 1789 (1969); E. R. Flynn and J. D. Garrett, Phys. Lett. <u>42B</u>, 49 (1972).
- ³See, e.g., J. D. Garrett and O. Hansen, Nucl. Phys. <u>A188</u>, 139 (1972); H. T. Fortune, ORNL Report No. CONF-720669, 1972 (unpublished), p.353; P. Neogy, W. Scholz, and R. Middleton, Phys. Rev. C <u>6</u>, 893 (1972); J. R. Powers, H. T. Fortune, R. Middleton, and O. Hansen, *ibid.* <u>4</u>, 2030 (1971); R. R. Betts and H. T. Fortune, *ibid.* <u>7</u>, 1257 (1973); R. A. Lindgren, R. G. Hirko, J. G. Pronko, A. J. Howard, M. W. Sachs, and D. A. Bromley, Nucl. Phys. <u>A180</u>, 1 (1970); J. G. Pronko, C. Rabbs, and H. J. Maier, Phys. Rev. <u>186</u>, 1174 (1969).
- ⁴J. D. Garrett, H. T. Fortune, R. Middleton, and W. Scholtz, to be published.
- ⁵C. Daum, Nucl. Phys. <u>45</u>, 273 (1963); E. Krämer, G. Mairle, and G. Kaschl, Nucl. Phys. <u>A165</u>, 353 (1971).
- ⁶J. D. Garrett, R. Middleton, D. J. Pullen, S. A. Anderson, O. Nathan, and O. Hansen, Nucl. Phys. <u>A164</u>, 449 (1971).
- ⁷E. K. Warburton, A. R. Poletti, and J. W. Olness, Phys. Rev. <u>168</u>, 1232 (1960); J. W. Olness, W. R. Harris, P. Paul, and E. K. Warburton, Phys. Rev. C <u>1</u>, 958 (1970); J. D. Garrett, H. T. Fortune, and R. Middleton, *ibid.* <u>4</u>, 1138 (1971); J. N. Hallock, H. A. Enge, A. Sperduto, R. Middleton, J. D. Garrett, and H. T. Fortune, *ibid.* <u>6</u>, 2148 (1972); references found in these articles.
- ⁸D. Schwalm, A. Bamberger, P. G. Bizzeti, B. Povh, G. A. P. Engelbertink, and E. K. Warburton, Nucl. Phys. <u>A192</u>, 449 (1972).
- ⁹B. M. Preedom and B. H. Wildenthal, Phys. Rev. C <u>6</u>, 1633 (1972); E. C. Halbert, J. B. McGrory, B. H. Wildenthal, and S. P. Pandya in *Advances in Nuclear Physics*, edited by M. Baranger and E. Vogt (Plenum, New York, 1971), Vol. 4, p. 316.
- ¹⁰J. A. Becker, L. F. Chase, Jr., R. E. McDonald, and E. K. Warburton, Phys. Rev. 176, 1310 (1968); A. J.

Howard, R. G. Hirko, D. A. Bromley, K. Bethge, and J. W. Olness, Phys. Rev. C 1, 1446 (1970).

- ¹¹A. Christy and O. Häusser, Nucl. Data <u>A11</u>, 281 (1973).
- ¹²G. C. Ball, W. G. Davis, J. S. Forster, and J. C. Har-
- dy, Phys. Rev. Lett. 28, 1069 (1972). ¹³R. Klapisch, C. Thibault-Philippe, C. Detraz, J. Chaumont, R. Bernas, and E. Beck, Phys. Rev. Lett. 23, 652 (1969).
- ¹⁴E. L. Robinson, B. T. Lucas, and O. E. Johnson, Phys. Rev. 122, 202 (1961).
- ¹⁵D. D. Armstrong, J. G. Beery, E. R. Flynn, W. S. Hall, P. W. Keaton, Jr., and M. P. Kellogg, Nucl. Instrum. Methods <u>70</u>, 69 (1969).
- ¹⁶F. Ajzenberg-Selove, Nucl. Phys. A166, 1 (1971).
- ¹⁷E. R. Flynn, N. Stein, and J. D. Garrett, to be published.
- ¹⁸The $(t, {}^{3}\text{He})$ cross section corresponding to any state having a more positive Q value than that assumed for the ${}^{26}\text{Na}$ ground state is less than 3% of the cross section of the assumed ground state over the measured angular range.
- ¹⁹D. E. Alburger, D. R. Goosman, and C. N. Davids, to be published.
- ²⁰G. T. Garvey, W. J. Gerace, R. L. Jaffe, I. Talmi, and I. Kelson, Rev. Mod. Phys. Suppl. <u>41</u>, 1 (1969).
- ²¹Values are given in Table I corresponding to both the T and L mass relationships—Eqs. (1) and (2), respectively, of Ref. 20.
- ²²A. H. Wapstra and N. B. Gove, Nucl. Data <u>A9</u>, 267 (1971).
- ²³N. Zeldes, A. Grill, and A. Simievic, K. Dan. Vidensk. Selsk. Mat.-Fys. Skr. 3, No. 5 (1967).
- ²⁴The ²⁶Mg(⁷Li, ⁷Be) spectrum (Ref. 12) is complicated by the existence of the groups corresponding to ⁷Be in both its ground and first excited states at 431 keV.
- ²⁵P. M. Endt and C. van der Leun, Nucl. Phys. <u>A105</u>, 1 (1967).
- ²⁶This assumes that the tentative state at 0.84 ± 0.04 MeV in ²⁶Na suggested (Ref. 12) from a possible weak (⁷Li, ⁷Be) transition does not exist. No indication of such a level was observed in the present ²⁶Mg(t, ³He) study.
- ²⁷G. Klotz, J. P. Gonidec, P. Baumann, and G. Walter, Nucl. Phys. A205, 90 (1973).
- ²⁸H. T. Fortune, R. Middleton, J. D. Garrett, and R. M. Driezler, to be published.
- ²⁹E. Krämer, G. Mairle, and G. Kaschl, of Ref. 5.