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Triton binding energies with two-body radial-distortion unitary transforms
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We determine the triton binding energies for a class of potentials that arise from radial-
distortion unitary transformations These potentials are phase-shift equivalent to a two-
term Yukawa potential, which represents an. average of the S& and So nucleon-nucleon po-
tentials. We solve an angular-momentum-decomposed version of the Fadaeev-Lovelace e-
quations that we have developed, in order to obtain the three-body binding energy &z. We
observe that' Ez varies slightly with these potentials and we find that they yield similar
deuteron wave functions in accord with the results reported by Haftel. We discuss some
evidence on the sensitivity of nuclear matter and three-body calculations to off-shell varia-
tions of the two-body t matrices.

NUC LEAR STRUCTURE 3H; calculated binding energy. Solved Faddeev- Love-
lace equations, al~ulav-momentum decomposed. Deduced deuteron form factors.

I. INTRODUCTION

Recently there has been a great deal of interest
in explorations of the arbitrariness of the off-ener-
gy-shell nucleon-nucleon scattering amplitude.
These t matrices are at present only specified on
the energy shell by the two-nucleon phase shifts.
Many-body calculations require t matrices at vari-
ous momenta and energies and offer, in principle,
some hope of determining this off-shell nucleon-
nucleon amplitude. Such a determination may
come about when such calculations yield either a
highly nonphysical result or a wide spread in the
theoretical predictions for an experimentally deter-
mined quantity. Then the off-shell t matrices are
examined and if the cause of the discrepancy can.
be isolated, some insight into the off-shell nucleon-
nucleon interaction results. A difficulty with this
approach is that many approximations are usually
necessary before a many-body quantity is comput-
ed. Hence, any discrepancy may be due ta an ap-
proximation and attempts to untangle such affairs
are fraught with difficulty.

There is also the question of how to go from on-
shell t matrices to off-shell t matrices. The sim-
plest solution is to assume a potential and then
solve the resulting Lippmann-Schwinger equation.
Various alternative proposals have been advanced, ' '
and while work continues on these approaches none
of them is fully operational as yet. Hence we as-
sume a potential that fits certain two-nucleon on-

shell data. Off-shell variations are introduced by
generating phase-shift equivalent potentials. The
various methods for doing this are reviewed in
Bahethi and Fuda, ' which contains an excellent set
of references to previous work.

We use unitary transforms which are sufficiently
short ranged to preserve the two-body phase shifts.
Such transforms are generally either of finite rank
or of the radial distortion variety. ' The finite-rank
transforms are easier to apply and they appear in
calculations for finite nuclei, ' electron-deuteron
scattering, ' deuteron photodisintegration, ' muon
capture by deuterons, "pion production, "nuclear
matter, "'"and the triton. "" Several references
to the applications of radial distortion transforms
are given in Ref. 6. In addition, such transforms
are found in calculations for the two-body pro-

— blem, "deuteron photodisintegration, ~ and nuclear
matter. "

We address ourselves here to a study of the
three-body problem with potentials arising from
the application of radial-distortion unitary trans-
forms to a two-term Yukawa potential. We choose
to investigate this problem since the Faddeev-Love-
lace equations"' "provide a complete nonrelativis-
tic theory for such systems. This is in contrast
to the situation which exists for finite nuclei or for
nuclear matter where higher-order terms are re-
quired and are only poorly known. We hope, there-
fore, that any possible conclusions on off-shell ef-
fects the three-body problem supplies will be free
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II ~ EQUATIONS AND DEFINITIONS

A. Three-body equations

The Faddeev-Lovelace formulation of the three-
body problem is based on two-body scattering
amplitudes, and these are obtained from a partial-
wave Lippmann-Schwinger equation

t (p p, ) „(p p,),d ((p q)t((q p

The two-body energy w= 5'q„'/(2m) MeV, while
the ~& and the &, have units of femtometers. The
Faddeev-Lovelace equations are"

~ s(S)= g l's(S)+ g Ty(S)GO(S)~js(S) (2)

t/q and T& are the two-body potential operator and
the two-body scattering operator in the three-
body space, G,(S} is the free three-particle Green
function, and S is the total three-particle energy.
The subscripts in Eq. (2) run from 0 to 3 and rep-
resent the various three-body channels.

Let the mass and the momentum of each particle
I

of conflicting interpretations. For simplicity we
shall deal with an average of the central Sp and Sy

potentials. The results of Ref. 18 (see their Table
II) indicate that our qualitative conclusions will not
be affected by this approximation. We find that
there are only slight variations in the three-body
binding energy E~ in contrast with the differences
of several MeV in the binding energy per particle
that are found in current nuclear matter approach-
es with radial-distortion transforms. ' "

In Sec. II we discuss the form of the three-body
equations that we solve, since we utilize a differ-
ent form than that normally encountered. The de-
tails of the transformed potential and our numeri-
cal procedures are also given in this section,
while Sec. III contains our results. In Sec. IV, we
briefly discuss our findings and some related in-
vestigations in an effort to understand our results
and those from nuclear matter.

be m and K, respectively, and let M=m, +m,
+m, . We work in the total center-of-momentum
frame

3

g K. =O, (3
&=1

and we define the spatial dependence of a three-
body state by two momentum vectors, for exam-
ple,

p = (m, K, —m, K,)/[2m, m, (m, +m, )]' 2,

q, = [m, (K, +K, ) —(m, + m, )K, ] /[2m, (m, +m, )M ]' '

(4)

p, is the relative momentum of particles 2 and 3,
while q, is the relative momentum of particle 1
with respect to the 2-3 pair. Any two of the six
vectors (p„p„p„q„q„q,j may be used to define
a basis and we denote the linear transformations
between two such sets by

pa =~asps+&asqs ~

qn =f+ sp s+g~sq s .

The two chosen momentum vectors are combined
with six spin coordinates and six isospin coordin-
ates for a complete specification of a three-body
state. A subscript on a bra or a ket labels the
choice of basis.

We reduce Eq. (2} to manageable form through
an angular-momentum decomposition which starts
by sandwiching Eq. (2) between an „&

~
state and a

~&s state. The decomposition of the integral term
of Eq. (2) proceeds in a manner similar to the de-
tailed decompositions of the analogous terms in
Refs. 24 and 25. Qur approach differs somewhat
from these in that they work with the Faddeev
equations and transform &) T (S)~&z into &~ T (S)[&„
while we transform „& ) Tz(S))&r into z&) Tz(S) I(&z.

A complete discussion of the latter approach is
contained in Ref. 26. Qur immediate concern is
with the case in which only two-body s-wave inter-
actions and relative s states are allowed and we
give the reduced form of Eq. (2) for this case
when the three particles are identical spinless

bosons without isospin. We let U=- U88+2U ~ and

U

U(p„q„p, q, S) =(Inhomog. termj+2 dp,
'

dq2f, (p„q„p'„qm)f,(p, p,', S —(q,')')[S —(p', )' —(q,')'] '
p L

x U(p,', q,', p„q„S) . (6)

Here

f( ep„'., )')=q)(v(i( lf.2,z., l e(), )*=~-+s,'-(q')*, ~I=(fla+pq*, +2)f )(„l),a)'*.
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We do not specify the exact form of the inhomoge-
neous term (Inhomog. term) since the method
we use to solve Eq. (6) does not require it. A
distinguishing feature of Eq. (6} is that the limits
of integration are independent of the integration
variables. A formulation of the three-body break-
up problem which takes advantage of this situation
is presented in Ref. 26.

B. Method for locating bound states

We find the three-body bound state through Eq.
(6) with a modification of the method used by Mal-
fliet and Tjon." They locate the bound-state pole
with the iterated Faddeev equations by looking at
the successive terms that contribute to a selected
matrix element. The ground-state energy is the
energy at which the ratio of successive terms tends
to one. In this approach any initial term except
one which is orthogonal to the eigenvector asso-
ciated with the ground state may be used to start
the iteration.

We found that the ratio method led to oscillations
and that the successive ratios did not converge for
the transformed potentials we consider here. We
overcome this obstacle by calculating the three-
body matrix element through diagonal Pade approx-
imants, "which are based on the terms that give
the ratios. A bound state is indicated by a pole in
this matrix element, so we find where the matrix
element changes sign and increases in magnitude.
Convergence is generally achieved by the seventh
approximant and all of the series terms except the
first are used. Both the ratio and the Pads meth-
ods give the same three-body results when they
are both applicable. Haftel" has also used this
Pade approach to three-body bound states.

The double integral of Eq. (6) is replaced by a
double sum through Gaussian integration rules.
We let N& and N, be the number of sample points
for the p,' and the q,

' integrations, respectively. The
needed parts of the integrand at the required mo-
menta and energy values are obtained by interpo-
lation on the set of terms from the previous itera-
tion of the Faddeev-Lovelace equation. The nec-
essary two-body scattering amplitudes are found

by interpolation on a previously calculated grid,
which wa. s constructed by solving Eq. (1) at 30 en-
ergies. All the interpolations are done with quad-
ratic polynomials.

UrHUr 'Urp = H Q
-=(T + V)Q, (10)

and is obtained explicitly by changing the radial
variable from R to r and by applying H to
[p (r)]' 'Q(r). In Eq. (10) T is the kinetic energy
operator and we define V =H —T. We use only
s-wave potentials so

+ V(R(r)),

and we require the s-wave projections of the po-
tential V in momentum space for Eq. (1). These
are

OQ

v, (p, p') = (2/v) dr rj,(pr)(V(r)) rj, (p'r)
~Ip

= (1/ pp')
~

dr» pr[[u(r) —1 o](p'+p")
+p

+—,+ [I/8g (r}] —+2V(R (r))j sinp'r,1 d'p.
2dy dy

(12)

where j,(x) =(sinx)/x. For the cases considered
here p, (r) & 0 for all r At lar. ge r, R(r) is re-
quired to go to r and this forces p, (r) to 1, dp /dr
to 0, and d'p, /dr' to 0 for large r. Hence the
radial integration is finite and the integral may
be cut off at a finite upper limit.

The integrand of Eq. (12) oscillates too much
for a straightforward application of Simpson's

TABLE I. Three-nucleon binding energies for the
transformed potentials based upon Eqs. (13) and (14).
S = 0.0 represents the untransformed potential. The
binding energies are in MeV.

for all y, and g -y goes to zero for large y. The
transformed two-body radial wave function is re-
lated to the untransformed by

P(r) =U P =[g(v)] ' '&f&(R(r)).

The phase shifts are the same if P and P have the
same asymptotic behavior, and this occurs if R -y
-0 faster thany ' for large y.

The transformed two-body Hamiltonian H is
defined by

C. Radia14istortion unitary transformations
Transform parameters

(S ~, P)

Number of sample points for
each integration variable

dR —[ P)]-1/2 ) 0
dy

(8)

We base our discussion on Coester, Cohen, Day,
and Vincent' and we let R be a function of y such
that

(0.2, 0.5, 0.05)
(0.0 —,-)

(—1.0, 0.6, 0.4)
(—0.4, 2.0, 1.4)

10
-7.257
—7.45
—6.71
-7.49

12

—7.57
-8.58
—7.63

14 16
—7.34

-7.52
—7.14 —7.23
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rule, so the sine factors are put into the weights.
The curly-bracketed part of the integrand is fitted
with a parabola for each set of three integration
sample points. For each interval, the analytic
expressions for the three integrals fdr sinpr
xsinp'r, J rdrsinfrrsinp'r, and Jr'drsinprsinp'r,
are carefully evaluated in double precision. For
those situations where a cancellation and a loss
of numerical significance are possible, the ana-
lytic expressions are expanded in series. This
exposes the pieces which cancel and allows us to
circumvent them. Such an approach is used when
(P+P')r is less than 0.1, for example. The radial
integration is generally cut off at 20 fm; and 1999
sample points are used for 0 to 1 fm, while 749

are used for 1 to 20 fm. In the case of the longest
range transform a cut off of 25 fm is used with
949 sample points for 1 to 25 fm. This procedure
gives sufficient accuracy for the present calcula-
tions.

III. RESULTS

We consider a superposition of Yukawa poten-
tials

V(r) = —578.1[exp(-1.552 88r)/r]

+1458.05[e xp(-3.1057r)/r] .

This potential is quite close to Case V of Malfliet
and Tjon" and it is an average potential in MeV

TABLE II. Two-body scattering amplitudes, (P it (w)iP'), for the untransformed (0.0, —,-)
and three transformed potentials (S,n, p). The matrix elements are in fm. p =0.0132 fm

p' (fm i) (0.2, 0.5, 0.05) (0 0 —-) (-1.0, 0.6, 0.4) (—0.4, 2.0, 1.4)

0.0132
0.191
0.395
0.741
1.350
2.530
5.238

13.822

0.0132
0.191
0.395
0.741
1.350
2.530
5.238

13.822

0.0132
0.191
0.395
0 ~ 741
1.350
2.530
5.238

13.822

0.0132
0.191
0.395
0.741
1.350
2.530
5.238

13.822

-5.87
-5.74
-5.31
—4.12
—1.76

0.526
0.219

-0.055

—3.07
-2.99
-2.76
—2.12
—0.888

0.263
0.108

—0.027

—2.02
-1.96
-1.80
—1.36
—0.543

0.159
0.064

-0.016

-1.72
—1.67
-1.52
-1.13
-0.436

0.131
0.053

-0.013

w= —2.59 MeV

-6.14
-6.00
-5.56
-4.33
-1.82

0.792
0.689
0.041

w= —9.71 MeV

-3.14
-3.06
-2.82
-2 ~ 17
-0.890

0.389
0.333
0.020

w =-45.97 MeV

—2.04
-1.98
-1.81
-1.37
—0.53

0.238
0.197
0.012

w =-177.09 MeV

-1.72
—1.67
-1.52
-1.13
-0.412

0.204
0.165
0.011

—6.11
—5.97
-5.53
—4.26
-1.46

1.71
0.710

-0.040

—3.13
-3.06
-2.82
-2.14
-0.706

0.840
0.346

-0.019

-2.03
-1.98
-1.81
—1.34
—0.397

0.517
0.216

-0.011

-1.68
-1.63
-1.47
-1.06
—0.258

0.450
0.215

—0.086

-6.51
-6.36
-5.88
-4.49
-1.69

1.10
0.673
0 ~ 028

-3.26
-3.18
-2.92
-2.19
-0.812

0.524
0.318
0.013

-2.13
-2.07
-1.87
—1.37
—0.480

0.317
0.190
0.008

-1.80
-1.75
-1.57
-1.12
-0.361

0.270
0.166
0.008
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for the 'S, and 'S, nucleon-nucleon states. With
these parameters the deuteron is bound at 0.356
MeV. The radial distortion we use is the same as
one used by Coester, Cohen, Day, and Vincent'
in nuclear matter:

momentum space g(P) from

q(q)=-(q. * q')- f edq (q, q)q(qi
0

(15)

R =r +S[exp(-r/o. ) —exp( r-/P) j . (14)

0 4 I I I I I I I I I J I I I I I I I I I I I ~ I I

8 greater than zero and S less than zero are re-
ferred to as the positive and negative transforma-
tions, respectively. The positive transform is a
radial expansion, while the negative transform is
a radial compression. Our transform parameters
are given in Table I. We choose S = —1.0 fm,
instead of S = —1.2 fm, ' so that p(0) w0 but is
greater than zero. The two-body t matrices as-
sociated with these potentials are shown in Table
II at selected momenta for four energies. The
table illustrates the type of variation these trans-
forms induce in the negative-energy t-matrix
elements.

Table I also gives the three-body binding ener-
gies Eq. (8) yields for these transformed poten-
tials and for the untransformed potential. All
the three-body ground states have quite similar
energies, and the differences between them are
within the numerical uncertainty of such a cal-
culation. This table also shows that it is impor-
tant to check whether large apparent variations
are in fact due to nonconvergence. In all of our
cases the convergence was adequate for our pur-
poses. In an effort to explain this lack of sensi-
tivity, we follow a suggestion of Haftel" and ex-
amine the deuteron wave functions and form fac-
tors for these potentials.

We first obtain the deuteron wave function in

(R)=(2/ )'r'J qdq si sq))q(q).
0

(18)

Once we have u(R), Eq. (9) provides the trans-
formed wave function u and an inverse Fourier
transform gives

il(q)=(I/ )' 'q ' J drsi qrd)(r),
0

(17)

the transformed-momentum-space wave function.
The Fourier transforms are done by Simpson's

rule and the sine factor is taken into the weights.
The accuracy is helped considerably by taking ad-
vantage of the fact that both u and u approach an
exponential at large r. Generally 201 or 401 sam-
ple points are used for each interval of length 2~.
When necessary we increased this number of sam-
ple points until the result was stable to at least
three figures. We used a sixth-order Lagrange
interpolation formula to do the required interpola-
tions.

In Figs. 1 and 2 we present the deuteron radial
wave functions and the deuteron form factors

g(P) = (P'+ qw)4(P) (18}

The figures show that the transforms defined by
Eq. (14) do not introduce much variation into these
deuteron functions. In particular the form factor

We put in our two-body binding energy of 0.356
MeV and we use 80 Gaussian sample points in the
replacement of the integral. We then apply a
Fourier transform to g(P) to get the deuteron radi-
al wave function u(R} =R)I)(R) and

0.3
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0.0
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06 04
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FIG. 1. The deuteron radial wave functions for the po-
tential given in Eq. (13) and for three potentials which
arise from it with the radial. -distortion unitary trans-
forms of Eq. (14). S= 0.0 represents the untransformed
potential. The deuteron is bound at 0.356 MeV with
these potentials.

0 2 I I

0.0
I I I I I I I I I I I I I I I I I I I I I I

40 50 601.0 2.0 3.0

p (fm )

FIG. 2. The deuteron momentum space form factors
associated with the deuteron radial wave functions of
Fig. 1.
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agrees very well out to 2 fm ', in contrast to those
cases in Ref. 17 for which there are noticeable
changes in E~.

IV. DISCUSSION

Our results are consistent with those of several
recent investigations. Haf tel" has studied finite-
rank unitary transforms of a potential with parame-
ters slightly different from those of Eq. (13). He
finds that for potentials with roughly similar deu-
teron form factors the triton binding energy only
varies by 1 MeV. Fiedeldey and McGurk" and
Afnan and Serduke" find slight variations in E~
for phase-shift equivalent rank-two separable po-
tentials, when the deuteron t)1(P) and E&,„, are
pinned down. In addition, there is evidence that
when the deuteron wave function is severely dis-
torted E~,"'"'"pion production, "and electron-
deuteron scattering results' vary widely. All of
this points to the importance of computing the deu-
teron properties that accompany the generation of
phase-shift equivalent potentials, both to see if the
above picture endures and to determine the pre-
dictive power of deuteron variations.

We have presented the three-body binding ener-
gies that result from the application of the radial-
distortion unitary transforms of Eq. (14) to the po-
tential of Eq. (13). Table I shows that variation of
the binding energy is slight and we have comment-
ed on a possible explanation of this. Transforms
like Eq. (14) were used by Coester, Cohen, Day,
and Vincent in their investigation of nuclear mat-
ter with a potential" similar to that of Eq. (13).
They found variations in the binding energy per
particle of several MeV and changes of several
tenths of an inverse femtometer in the Fermi mo-
mentum at saturation. Their results and those of
the previous section indicate that nuclear matter
is much more sensitive than E~ to off-shell varia-
tions of the t matrix. A similar pattern was ob-
served for finite-rank transforms and the Reid
soft-core potential" by Haftel and Tabakin for nu-
clear matter' and Harper, Kim, and Tubis for
E

Haftel and Tabakin" show that large changes in
the half-shell t matrices for momenta ~6 fm '
lead to large variations in the nuclear matter bind-
ing energy calculated in the ladder approximation.

There are indications that the triton binding ener-
gy is most sensitive to negative-energy t matrices
with momenta of about 2.0 fm ' or less."'" Some
tentative support for this view occurs when the
slight variations in Er (see Table I} are coupled
with our Table II, which shows that &(p, p', w) varies
more at P'&2.0 fm 'thanfor P'&2.0 fm '. The ef-
fects on such negative-energy t-matrices of large
changes in the half-shell t-matrix elements is not
yet known, since the relation between them is quite
involved (see, e.g. , Ref. 5}. In addition, nuclear
matter calculations are performed without higher-
order corrections, while three-body calculations
such as those done here use a complete theory. A
step to close this gap has been taken by Coester,
Day, and Goodman, ' who include some three-body
graphs in a calculation of nuclear matter withfinite-
rank transforms. Their findings suggest there is
little change in the results of Ref. 7 and this is con-
sistent with some earlier work by Ristig" with ra-
dial-distortion transforms. An explanation of the
increased sensitivity of the binding energy per
particle in nuclear matter is very desirable and
would probably require studies like those in Refs.
32 and 33 applied to nuclear matter.

In conclusion, we have shown that radial-distor-
tion unitary transforms lead to off-shell variations
in the two-body t matrices which in turn affect the
three-body binding energy only slightly. We ex-
plain this by noting that our deuteron wave func-
tions are quite similar to the untransformed g(P)
and that our t matrices are similar to each other
at low momenta. Further work is necessary to
clarify the connection between deuteron wave func-
tions, half-shell t matrices, and those t matrices
that enter many-body calculations.
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