
PHYSICAL BEVIEW C VOLUME 9, NUMBER 5

E]astjc e]ectron scattering and the nuclear magnetization distribution

J. F. Prewitt
Dikemood CorPoration, A/buquerque, Nese Mexico 87106

L. E. Wright
Ohio Un& ersity, Athens, Ohio 45701

(Beceived 21 December 1973}

An analysis of e1,astic electron scattering from the nuclear charge and magnetization dis-
tributions is carried out with phase-shift analysis and distorted-wave Born approximation,
respectively. We find that magnetic electron scattering should be measurable from medium

and heavy odd-A nuclei at normal scattering angles in addition to 180'. In particular, the
scattering from the maximally aHowed magnetic multipole distribution shouM be easHy ob-
served.

NUCLEAB BEACTIONS VA1, ~ V, Bi e18stic e scattering from magnetic mo-
ments odd-A nuclei calculated (phase shift and D%BA}.

INTRODUCTION

The interaction involved in the scattering of elec-
trons from nuclei is electromagnetic in nature and
thus only those aspects of nuclear structure con-
tributing to the role of the nucleus as a source of
the electromagnetic field are amenable to mea-
surement by electron scattering. On the other
hand, the electromagnetic interaction is well
understood theoretically and thus permits the un-

ambiguous examination of the nuclear charge and
current distributions. Furthermore, if we re-
strict our attention to elastic electron scattering,
the nucleus can be characterized by static electric
and magnetic moment distributions since no energy
is emitted or absorbed by the nucleus and the
spatial dependence of these distributions can be
extracted by analysis of electron scattering. Sin-
gle-particle models of the nucleus predict rela-
tively small nuclear magnetic multipole moments
due to the pairing of the nucleon spins, thus pre-
dicting that magnetic moments are essentially due
to single unpaired nucleons. This minimization of
the number of nucleons contributing to the mag-
netic moments together with the fact that all the
charge in the nucleus is positive (and a scalar),
result in the domination of the electron-nucleus
interaction by the electron-charge interaction.
This result has been used extensively to study
the nuclear ground-state charge distribution with-
out being concerned with the nuclear magnetization
distribution and consequently the nuclear charge
distribution is much better known than the mag-
netization distribution. In this paper, we will be
concerned with methods of extracting the nuclear
magnetization distribution from elastic electron-

nuclear scattering, particularly for the heavier
nuclei.

In some ways, the nuclear magnetization distri-
bution is more interesting than the nuclear charge
distribution. By inverting the argument presented
above, one sees that within a single-particle model
the magnetization distribution arises from a sin-
gle nucleon in the nucleus rather than a sum over
all the protons, thus containing considerably more
detail about the structure of the nucleus. Further-
more, the single nucleon can be a neutron which
contributes little if anything to charge scattering
and whose distribution in the nucleus is not well
known experimentally and is of considerable in-
terest theoretically. The magnetization distribu-
tion of isobars with either a single neutron or a
single proton outside spin-zero cores should be
quite interesting and may shed additional light on
the question of the relative size of neutron and
proton radii of nuclei.

The analysis of elastic electron scattering from
the nuclear charge and current distributions is
straightforward in the plane-wave Born approxima-
tion (PWBA), and has been successfully used to
extract magnetic dipole, and in some cases, oeto-
pole moments in light odd-A nuclei" and to in-
vestigate the information obtainable from magnetic
scattering. ' A rather complete discussion of the
investigation of magnetic properties of the nucleus
using the Born approximation is given by Uberall. 4

As is well known, however, the plane-wave Born
approximation fails for heavier nuclei, but since
the PNBA does furnish a qualitative guide of what
to expect experimentally and is a useful pedagogic
framework we will include the PWBA results in
our discussion. We only note here that most elec-
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tron scattering experiments done to extract mag-
netic properties of nuclei have been done at 180'
using the technique developed by Peterson and
Barber. '

In order to obtain quantitative results from elas-
tic electron scattering from medium and heavy
nuclei, it is necessary to include the Coulomb
distortion arising from the nuclear charge distri-
bution in the incoming and outgoing electron wave
functions. This can be done by solving the Pirac
equation in the presence of a spherically sym-
metric Coulomb potential arising from the spheri-
cally symmetric portion of the nuclear charge
distribution by phase-shift analysis. The re-
mainder of the electron-nucleus interaction (i.e.,
the scattering of the electrons by the higher elec-
tric and the magnetic multipole moments) can be
treated to first order in n, the fine-structure
constant, by perturbation theory. One can visual-
ize this as a Coulomb-distorted electron wave
exchanging one virtual photon (which for elastic
scattering has zero energy, but carries momen-
tum) with the electric and magnetic multipole
moment distributions of the nucleus. For the case
of inelastic electron scattering we would refer to
this by the term distorted-wave Born approxima-
tion (DWBA). We expect first-order perturbation
theory to be quite accurate for the scattering
from the electric and magnetic multipole moments
since the interaction falls off as 1/r ' or greater
and only few nucleons contribute to the higher
electric and magnetic multipole moments.

In the theory section we give the details of the
phase-shift analysis, which is quite standard ex-
cept we do not make the so-called high-energy
approximation (m, /E -0) since it is not valid at
180'. We also give the details of the DWBA cal-
culation as applied to elastic scattering, and show
that for the special case of elastic scattering one
of the major problems of DWBA calculations, the
numerical evaluation of radial matrix elements
over a large range, can be avoided. This is an
important point for computational considerations
since in DWBA, unlike the PWBA case, the ex-
perimentally measured form factors cannot be
inverted to obtain the charge and current distri-
butions, thereby requiring a parametrization of
the charge and current distributions and doing
repeated DWBA analysis with different values of
the parameters. Furthermore, extended numerical
integration leads to lack of precision due to cumu-
lative round-off errors.

Finally, using simple parametrizations and
models for the charge and current distributions we
examine the possibility of extracting the mag-
netization distribution of medium and heavy nuclei
from elastic electron scattering.

THEORY

Phase-shif t analysis

As noted in the Introduction, the spherically
symmetric Coulomb potential V(r) is included in
the unperturbed Hamiltonian describing the elec-
tron. Thus we must solve the Dirac equation for
electrons of energy E in the presence of the Cou-
lomb field. In polar form the Dirac-Coulomb
equation is

where K is the eigenvalue of the operator X and j
is the total angular momentum and l is the orbital
angular momentum corresponding to the Kth partial
wave. They are given explicitly by

The wave functions are normalized in a large
volume V which will henceforth be set to 1. The
four-component functions g"„(r) can be separated
into radial and spin-angle parts by writing

where

The radial functions f„(r) and g„(r) satisfy the fol-
lowing coupled first-order differential equations:

d (f„(r)l
~Z„(r)~ ([E+m, —V(r)] 0

ff (r) ) I. (~-1 0 l (f.(r))

(4)

where the Dirac operator K is given by K—= P(o L+ 1)
and m is electron spin projection. It is con-
venient to expand p (r) in free-particle spinors
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where p is the magnitude of the electron momen-
tum.

The elastic scattering amplitude for an electron
with initial spin nz is given in terms of the phase
shifts 6„appearing in Eq. (2) by~

beyond some radius R}, the Coulomb potential
becomes V(r) = -aZ/r and thus the radial func-
tions f„(r) and g„(r) can be expressed as linear
combinations of the point regular and irregular
Coulomb wave functions

a (r)= Q(e ' "-1)c„'~' 'RY", (p))X"(r), f„(r)=A jcR(r)+EJ cl(r)

g„(r) =A„gc (r)+B„gP(r),
r&R. (8)

where p, is the direction of the incident electron
momentum and r" is the direction of the outgoing
scattered electron. Choosing p, to be the z axis
and using the explicit form of X"„(r) from Eq. (3)
we can write the scattering amplitude as

a (r)=f(8)X„+2mg(8)e' 'eX „, m=a-,', (6)

where the non-spin-flip amplitude f(8) is given by

f(8}= . g z[e" KP„(cos8)+e ' -~P„,(cos8)]=1
&0

and the spin-flip amplitude g(8) is given by

g(8) = . Q [e"'KP„'(cos8) e"'-~-P„,'( cos8)].
K&0

For convenience we introduce b,„=—5, —O„and
use the relations

P„,'(cos8) =-~[P„(cos8}-cos8P„,(cos8}]/sin8

and

P„'(cos8) = e[cos8P„(-cos8)—P„,(cos8)]/sin8

to write

f(8) =2. g ee" K[P„(cos8)+e" KP„,(cos8)],
1

2t
K&0

g(8}= . . ee"4(1+e" ~}
1 1

sin8 2'
x [P„(cos8) +P„,(cos 8)]-(1+cos 8)f(8)

The superscript C denotes point Coulomb, while
8 and I refer to the regular and irregular solu-
tions, respectively. Analytic expressions for and
asymptotic forms of these point Coulomb functions
are given in the Appendix.

The normalized asymptotic forms of f„(r) and
g„(r) are

sin[pr+y ln2pr --,'(1+1)s+6„]
pt'

cos[pr+yln2pr ,'(t+-1-)v+6„]
(gKR ) pr

where y =nZE/p and 6„are the phase shifts ap-
pearing in Eqs. (7) and (8) for the scattering ampli-
tudes. It is useful to write 5, =5„"+O„where 5"„
are the phase shifts of the regular point Coulomb
wave functions and 6„are the additional phases
arising from the finite extent of the nuclear charge
distribution, and thus contain all the information
about the spherically symmetric charge distribu-
tion.

Using the asymptotic forms of the point solutions
given in the Appendix and Eq. (10) above we find

Sin 6)„5„=arctan
K/ K +COS

where 8„—= 6K' -6"„. The regular and irregular Cou-
lomb phase shifts are given explicitly by

m (1+S„), y(e+ym JE}

Note that the spin-flip amplitude g(8) vanishes at
8 = 180'. Furthermore, if the high-energy limit
is taken (mJE -0), it can be shown that 6„=6 „
and f(8) also vanishes at 180'. The physical
reason for this is that in the high-energy limit
the electron helicity a p is a good quantum num-
ber and exact 180' scattering would require a
spin-flip amplitude which charge scattering can-
not furnish.

For values of the electron coordinate r outside
the nuclear charge distribution (taken to be zero

g l+1——y- argr(y+ iy)+ e,

where „S= «/K Ily = (2 —n'Z'), and 6„' = 6„"(-y).
Using these expressions we obtain

8„=-R(lz I-y) —arctan (cothwy

x [tane(l &I-y)]) + Rv

which is valid in general and not only in the high-
energy limit as implied in Ref. 4.
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The calculational procedure is to integrate nu-
merically the radial equations [Eq. (4)] from the
origin to the nuclear cutoff radius R and compare
the values of f„(r) and g„(r) to the point Coulomb
wave functions and extract the phase shifts as out-
lined above. The phases are inserted into Eqs. (7)
and (8) and the series reduction method of Yennie,
Ravenhall, and Wilson' is used to speed con-
vergence of the partial-wave series for the ampli-
tudes. This procedure works quite well and en-
ables us to calculate charge scattering all the way
to 180'. We note the obvious point that all the
charge scattering information is contained in the
values of the electron wave functions at the nuclear
cutoff radius R.

Distorted-wave Born approximation

The interaction Hamiltonian for the electron in
the presence of the static nuclear charge [excluding
p, (r)], current, and magnetization densities may
be written to first order in n in the Coulomb gauge
as

II f -n p' r, , r„Jp r r„

fining jr(r„}=j,(r„)+VX ]L(r„) and using vector
identities to write

H. f=-n p'r„, r, —j~ r, A r, d7.„, 1V

where we have used the fact that the surface term
vanishes at the origin and at infinity.

A multipole expansion of the scalar and vector
potentials can be obtained by expanding 1/fr„-r, I

and 1/I r„r, I
-in scalar and vector spherical har-

monics, respectively:

L, N

(18)

4~ L -L 1 N ~ N*
1r, r, Y (r,)Y (r"„).

n e ELN

Furthermore, due to parity conservation and time-
reversal invariance only even electric multipoles
and odd magnetic multipoles can contribute to
elastic electron scattering, 4 and we can write

P,(t„)= P p
. ( f r r, 'P(P)Y"(P)dr, , ,

L, N

(14)

where the scalar and vector potentials at the field
point r„due to the passing electron are given by

xl'f (y„),

A,(r ) P„f=r, r, 'j(r, ) Y" (r,)dr,
L, N

p.(r.)y,(.) = L =odd

X YL L(~„).

and

(18)

The magnetic field B,(r„)= V x A (r„), and the elec-
tron charge and current densities are given by

p,(r.) =
& 0 I p,"I yP = y,'(r, )y, (r.),

j,(r,) = &(j)y I
jo~

I (j) t&
= tj)z~(r, )t]( j((r),),

Consequently, the static nuclear charge and cur-
rent distributions can be expanded as

1 L-tt
P'(r„}= g C dt. ~PL(r„)E'L(f„),J

L=even gag

(20)

j(r.) = Q - C,~j L, L(r.)YL, L(~„),L J
L, N

L = odd

where the g's are initial and final electron wave
functions in the presence of the Coulomb field and
are given explicitly in Eq. (2). The derivation of
the scattering amplitude can be simplified by de-

where (J,Mt) and (J,Mt) are the initial and final
nuclear spine and projections, and J = (28+ 1)'t'.
Similar considerations permit the intrinsic mag-

netization p, to be expanded as

P( ) rQ C-dt At( dig [] L, L+1(+ )YL, +1(+L) p'L, L-1(+ )YL, L-1(r )]
L, N

L= odd

Choosing the initial electron momentum p, =p,z to define the z axis, and substituting all the multipole
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and partial wave expansions above into Eq. (17) and performing the angular integrals over the nuclear and

electron coordinates, the matrix elements of Hh„between initial and final spin states are given by

(m'Myi Hm, imM,.)i~=8m' n -- C ~ ~, s
2E+ mo (-1) c z /

xp (-1)/ +i+'+*(21+1)(2j +1)'/'e" K' ('i' ' C,' ' / C +Jt i i +&C // +&

KK

I

Ctoo W(j l J'l 2L')R (K L /(' )+
[ ( )]y/2 Co 0 0 W(j l jl~ gL)R (K L K ) Yg

+
(p/)

(22)

Where the radial integrals in this expression are defined by

R (g, L, g'} = [f„(r,)f„i(r,)+g„(r,}g„(r,)]r,r, 'pz(r„)r, „'r,'dr, dr„,
0 0

(23)

p Ecl oo

R (g, L, g') = [f„(r,)g„.(r,)+g„(r,)f„(r,)]r,r, 'ji z(r„)r„r,'dr, dr„.
Jp p

(24)

The symbol l appearing in the magnetic contribution is to be interpreted as l —= l(-v) .
The magnetic radial integral of Eq. (24) can also be expressed in terms of the radial distributions of the

orbital current and the spin magnetization distributions. Using jr(r) = j,(r)+ v x p(r) we obtain

ji.i(r) = jz„s(r)+(2L iix/2dr [~LPLL+1( ')r , +( L+ )1OI., L 1'(r)]

+ [Wi(L+ 2-)p, ,+,(r) (i+ 1)'"—(i -1)p„,(r)] .1
(26)

Substituting this expression in Eq. (24) and integrating the integral over the nuclear coordinate by parts
the magnetic radial integral can be expressed as,

R "(x,L, v') = [f„(r,)g„(r,)+g, (r,)f„.(r,)]
0

oo

i;, joI, i(r„)r„'dr„+ i(2L+1)'"
0 y

i+1 1/2 CO

e

Note that only the Yi i, component of the spin
magnetization p, contributes to the scattering when

r, ) r„and that only the Y»+, component con-
tributes when r, & r„. Thus nonpenetrating orbits
only scatter from the Yg g g component of the spin
magnetization.

Averaging the amplitude squared over initial
spin states, summing over final spin states, multi-
plying by the density of final states, and dividing
by the incident flux the contribution to the differen-
tial scattering cross section due to the scattering
from a multipole moment of order L is

der(6) E' ~ 1 2

an, =4 ' ~, (2Z+1)(2L+1)i(fi -'i')'"i '

(26)

The differential elastic scattering cross section
from all electric and magnetic multipoles is

dv(e) p(du(e))
L

where all cross terms [including those with the
spherically symmetric charge scattering arnpli-
tude of Eq. (6)] vanish due to the orthogonality of
the vector coupling coefficients. The matrix ele-
ment (fiH, ii)i„ in Eq. (26) is related to the one
of Eq. (22) by

(m', M/iH. , i m, M, )z// — C» //—( 1) 5 J J

x &fIH. , ll&,„.
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In order to characterize the magnitude of the
electron scattering from the nuclear moments,
we define the electric and magnetic multipole mo-
ments in the stretched configuration as

where

and

i/2
e =

(2 1
r ) (r)4(r)dr

4~L I /2
L 0+M=' Y "j d

(27)

(28)

and

(
f„(r.) . g„(r,)

4K e) (E m )2/2 (E+m )Li&

Recalling that jr(r) =j,(r) + V x p(r), . the magnetic
moments can be written as a sum of orbital and
intrinsic magnetization terms:

For r, )R, the (j)„satisfy the Dirac-Coulomb
radial equations

g

M (44L)' '
([=(L 1)(2L 1)]

+ J' YL L y I dYL-1 0+
~ (29)

(31)

e KK('+gK K' d&e
rn

xji i(r„)r„'dr„.

The integration over the electron coordinate r,
inside the nucleus must be done numerically since
the electron wave functions f, and g„depend on
the details of the nuclear charge distribution p,(r)
and are in fact generated numerically. However,
for values of ~, )A, where 8 is the nuclear cutoff
radius, the electron wave functions are linear
combinations of regular and irregular point Cou-
lomb wave functions which are known analytically.
With this point in mind, consider the integrals

26

(R) =Ri
R e

(30)

where as noted above only the YL L y component of
p contributes to the magnetic multipole moment.

As noted in the Introduction, the difficulty with
calculating the scattering amplitude in distorted-
wave Born approximation is the evaluation of the
radial integrals which occur in the scattering
amplitude. Consider the magnetic radial integral
of Eq. (25) as an example. We can write it as

OO y

R "(», L, »'') = r„' r, "(f„g„+g„f„r)dr, +r„
0 - 0

and

fKf. +gKgK d,
g L -1 e

R e

i e Re[mph L(R)+Eiz, 2 (R)].gL -2

Integrating the integrals IL, by parts and using
Eq. (31) to eliminate the derivatives of the wave
functions we obtain the following matrix equations:

I', ,(R) = [S' .(R)+ DI,'—,(R)],

where the 2x 2 matrices B,CL, and D are given
by

f»'-iP»+ip i
(»-ip»'+ip j

(» +ip»+ ip

(» ip) -(»' -ip))--

where p =o.Zmo/p and y =c(ZE/p. The integrals of
interest are given in terms of IL, by

f Kg'K'+gKf '
dr P Im(I (R)]

R +e

CL =

/2 2 2

(L+ 1+2iy) +

-2(» —fP)(» -2P)
L+1

2(»+ iP)(»'+ iP)
L+1

L+1
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We have expressed the desired integrals in terms of surface terms and an integral of the same form but
with a larger power of r in the denominator which should converge more rapidly than the original integral
as r -~. Repeating the above procedure n times we obtain the following asymptotic series for I~,(R):

Il (R) 1+ I. + L L+1+. . . + l l+1 I+n-2 c $1 (R)
2ipR (2ipR) (2ipR)" ~ 2ipR

1 C~ CqC~+~ C~+„2 B
S (RL+ 1 (L+ 2)(2ipR) (L+ n)(2ipR)" ' 2ipR

~
~ ~

~ ~

~

1
+ („.. )„C~C~+,+ Ct + „~I~,„~(R) .

2gpg
(32)

A suitable choice of n results in a negligible con-
tribution of the last term in the above equation
except for cases of large angular momentum par-
tial waves for which the electron wave functions
do not penetrate the nucleus appreciably. In these
cases, however, the analytic expressions for the
point radial integrals given by Reynolds, Onley,
and Biedenharn' can be used. Thus, by using the
asymptotic series given above, we can confine all
numerical integration to the nuclear interior and
the remaining contributions from R to ~ are given
in terms of the electron wave functions at the
nuclear surface just as in the case for spherically
symmetric charge scattering. Note that the re-
cursion relation we are using here is a special
case of a more general relationship involving
relativistic Coulomb radial integrals with energy
transfer to the nucleus. '

Plane-wave Born approximation

The PWBA as applied to elastic electron scat-
tering is discussed extensively in many sources
(see Ref. 4, for example) and here we will only
state the results in terms of our notation so that
comparison of results between DWBA and PWBA
will be facilitated. In PWBA, the elastic electron
scattering cross section from a fixed target can
be written as

dc(e),
ZZ 1 g IF,'(q) I'V, (e)

+ Q IF'"(q) I'v (8) (»)
L= odd

where

2p'
V~(8) =, [p'(1+cose)+2m, '],

Vr(8) = —,(3 —cos8),
P'

and the momentum transfer q =2psin-,'e. The form
factors are defined in terms of the charge and

current distribution as

and

Fi~(q) = pc('r)j r, (qr) r'dr
0

FI,"(q) = j z„c~&&jc(qr) &dr ~

0

L =even

IF (q) I'+(-,'+ tan'-,'e)

x P IF,'"(q)
L =odd

(34)

Charge and current distributions

In order to investigate the nuclear magnetiza-
tion distribution it is in general necessary to sub-
tract the charge scattering, thus requiring a
parametrization of the nuclear charge distribution.
We are primarily interested in nearly spherical
medium and heavy nuclei and the ground-state
charge distribution of such nuclei is well de-
scribed (up to some maximum moment transfer)
by a Fermi distribution. Thus we choose

po(~ = Po
1+exp[(r —c)/(t/4 ln3)] ' (35)

where the half-density radius c and skin thickness
t are fitted to forward-angle elastic electron scat-
tering where magnetic scattering contributions
are negligible. Our formalism given above in-
cludes the possibility of calculating the higher
electric multipole scattering, but as we have not

From the above we can immediately see that as
8-180' that V~/Vr =m, '/p' and that magnetic scat-
tering for high-energy electrons should dominate
at backward angles. Also if we take the so-called
high-energy limit, mo'/p' -0, we can rewrite Eq.
(33) in a more familiar form:

do(8) 4wa'cos' ,'8-
dQ, ~ 0 E'(2J+ 1)sin' —,'8
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yet included this in our computer codes, we re-
strict our attention in this paper to nearly spheri-
cal nuclei where the higher electric multipole
contributions ean be neglected.

It is also necessary to parametrize the mag-
netization distribution and since only unpaired
nucleons (viewed if you wish as quasiparticles}
can contribute to the magnetization distribution,
we will use the single-particle model for that
purpose. The operators for the orbital current
and spin magnetization distribution due to a single
unpaired nucleon are

j0~ 2Iif Z»[~(r r j)vr ]»~

&s =2~ &«(r

~g
ys. x»i'&» =2/if &&~(r r&}+1.s. »x 'o»

where in E|l. (36), 1 = ir-x v and we have used
the fact that symmetrization only produces a fac-
tor of 2. Using the reduced matrix elements of
Y~ I, 1 and Y~ L „0between single-particle
states as given by %illey" we obtain:

j ' (r) = ~ (-1)' '"g,(2L+ 1)(2/+ 1}(2j+ 1)
l.

(2L -1)/(/+ 1)(2/+ 1)
4s(X, + 1) &j «i

(I-» &'} (/ I;1/)
xl

/ //~o o 0)

I1proton g I
2.V9 proton

8'g =. Vg

I0 neutron I —1.91 neutron

and M is the nucleon mass.
The single-particle wave function is given

explicitly by

u &,& (r) = 2~ (-1)'(2/+1)(2j+1)
l L'

X
6(2Z, +1)(u,'+1) '", ,

2

»» ~)
f/ z, ' /)

x
l

Ij//„, '(~) .
, (0 0 oj

(39)

y „„(r)=I/„, (r) P C.' .& .' r, » (~)Xi .

For simplicity we use harmonic-oscillator wave
functions for //„, (r) which are given by

2r(n+/+3/2) '"
r(/+3/2) T

x,E,( s, /+-,'; r'//»2),

where the range parameter h = (g/Me)'" is chosen
to agree with the experimentally determined rms
charge radius of the nucleus.

The radial parts of the nuclear current and spin
magnetization densities of Eqs. (21) and (22) are
given by

j~, i(~) =- &«jll&i, i /'0 lls/j&df/

pz„r, i(&)»= J( («jll&s, . z, x'p

llew/j)did

where we use the reduced matrix element con-
vention of Edmonds. ' The operators Y~~ j,'» and

I +&e p ean be Written

ie 2f, +1 '" 6(r-r, ) -„
LL jo ~ L+y gg y L, J-J,

Before applying the formalism developed above
to some particular examples let us examine some
general properties of magnetic multipole moments
in a single-particle model. A nucleus with spin J
can have magnetic moments Ml, M3, ... MI where
L=2J. We can see immediately from Eq. (38}that
for j= l+ —,

' orbitals, the orbital current for I.= 2j
vanishes due to the 6j symbol

j-2 j 2

Of course, the orbital current vanishes for all I.
for neutron orbitals. Thus, in both of these eases,
the single-particle model predicts that only the
intrinsic magnetization contributes to the mag-
netic scattering of electrons. As noted by Donnelly
and Waleeka, ' another case of great interest is
orbitals with the highest-j values in an oscillator
shell. The 1p-1h mixtures into such an orbital
cannot contribute to the L =2j magnetization dis-
tribution, and 2p-2h admixtures should be small
since 2p-2h states are far away in energy; thus
such orbitals should be quite we11 described by
the single-particle model.

RESULTS

We have used the formalism given above to
analyze elastic electron scattering over a range
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of energies from various nuclei. As there are not
very many data available on the medium and heavy
nuclei, me have primarily undertaken the task of
examining the possibilities of using electron scat-
tering to measure the magnetization distribution
in medium and heavy nuclei. In those cases where
experimental data are available, we have anaylzed
it in terms of our model.

Since these calculations involve extensive nu-
merical computation it is important to compare
the results in certain limits with analytic results.
%e do this by setting Zo. in our computer codes to
a small value (Ze =10 ') and then performing the
complete distorted-wave calculation. This es-
sentially turns off the static Coulomb potential and
hence results in no distortion of the electron wave
functions. The results obtained this way agree
vnth the plane-wave Born approximation over the
complete angular range to within 1% except at the
Born zeros. This result in addition to numerous
internal checks on series conversion provides an
exceQent check on the over-a11 calculational pro-
cedure.

Before discussing the size of the magnetic con-
tributions to elastic electron scattering in a few
explicit cases we shouM examine other possible
contributions. Charge scattering from the spheri-
caQy symmetric part of the nuclear charge dis-
tribution must of course be included, but as noted
previously, charge elastic scattering can also oc-
cur from electric quadrupole and higher even
multipole moments. . We have not included such
contributions in our computer codes and as long
as we avoid the strongly deformed nuclei ere ex-
pect small contributions from the higher electric

co
8~ Bi (-', ) E = ~So Mev

IO

40

multipole moments. This is based on our exper-
ience with 200-MeV electron scattering from
' 'Ho which over a wIde angular range contains
roughly equal contributions from charge and elec-
tric quadrupole scattering. " The nucleus '6'Ho is
strongly deformed ($0=8 b), and since nearly
spherical nuclei have quadrupole moments almost
an order of magnitude less, we expect quadrupole
scattering to be negligible.

As an example of elastic electron scattering
from a heavy nucleus ere choose '~ai w'hich con-
sists of an h, ~, proton outside a '~pb core. The
charge distribution of '~Bi is described by a
Fermi distribution with half-density radius c = 6.73
fm and skin thickness t=2.12 fm. The h, ~, proton
is described by a harmonic-osciQator radial wave
function with range parameter 5 =2.33 fm which
in a single- particle shell model wouM predict the
experimentally determined rms radius of '~Bi.

Figure 1 displays the radial dependence of the
orbital current distribution and the magnetization
distribution divided by r arising from this single-
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FIG. 1. The radial dependence of the orbital current
densi g (r) and the magnetization density p (r) lr due to
the I(( 2 j proton of 20 Bi.

FIG. 2. The differential elastic scattering cross sec-
tion of 250-MeV electrons from 209Bi calculated in plane-
vrave Born approximation (P%HA) and distorted-vrave
Born approximation g)WBA) as a function of scattering
angle 9. The I.abel. s CO, M9, and MV refer to charge
scattering and scattering from the I = 9 magnetic multi-
pole and L= 7 magnetic multipole, respectively.
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particle orbital. Note that all multipole com-
ponents of the orbital distribution and the mag-
netization distribution divided by r have the same
radial dependence. The radial dependence of the
total current jr(r) = j,(r)+ V x p is however not
given by this curve as may be seen from Eq. (25).

.Figure 2 showers the elastic electron scattering
cross section of 250-MeV electrons from the
charge distribution and the I.='l and 9 magnetiza-
tion distributions for '~Bi. The dashed and solid
curves are the P%'BA and DNBA magnetic scat-
tering cross sections, respectively. Clearly the
magnetization cross section is affected appre-
ciably by Coulomb distortion for such a heavy
nucleus. The magnitudes of the magnetic multi-
pole scattering cross sections are taken to be
those predicted by our extreme single-particle
model. Since the h, » orbital is a j= /--, proton
orbital, the contributions to the MV and M9 mo-
ments from the orbital and spin magnetization
currents enter with opposite sign. Quenching of
the orbital contribution mould tend to increase the
magnetic scattering cross section, so these' curves
may mell be lower bounds on the magnetization
contr ibution. The dominant magnetic contr ibution

is M9 and is clearly measurable near 180', and
furthermore should be observable around 130 to
240' for 250-MeV electron scattering.

Figure 3 shows the charge and magnetic scat-
tering of 183-MeV electrons calculated in P%'BA

and 0%'BA from "V. %'e describe the spherically
symmetric charge distribution of "V by a Fermi
distribution with half-density radius c =8.95 fm
and skin thickness t=2.24 fm. The nucleus "V
can be described in a simple shell model as three
f,» protons outside a 'Ca core. We attribute all
the magnetic properties of "V to a single unpaired
proton orbital described by a harmonic-oscillator
wave function with range parameter b =2.01 fm.
Again, as in the case of '~81, the highest allowed
magnetic multipole is dominant and according to
the extreme single-particle model exceeds charge
scattering from approximately 130 on back to
180'. Note that distortion even here is appreciable
except for near a diffraction maxima where a
shift in angle has minimal effect. The typical
marching pattern of the various multipoles can
be seen in this figure.

Figure 4 shows the elastic scattering of 200-MeV
electrons from '~Bi where again the magnetic

»V2 (, ) E = Ie~ MeV-

—OWBA
--- PISA

Io

209
8& Bi (~) E = 2oo MeV

Co
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FIG. 3. The differential elastic scattering cross sec-
tion of 183-MeV electrons from 'V in PWBA and DWBA
as a function of scattering angle &. The l.abels Co and
Ml-M7 refer to charge and magnetic multipole scatter-
ing, respectively.

FIG. 4. The differential charge and magnetic multi-
pol, e elastic scattering cross sections of 200-MeV elec-
trons from 209Bi as a function of scattering angle ~.
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terms are those predicted by the extreme single-
particle model which for magnetic dipole (Ml)
are referred to by the term Schmidt value. Again
the highest multipole dominates, but is only easily
observable according to the single-particle model
at extreme backward angles. This figure also
displays the dramatic minimum of charge scat-
tering at 180'. By increasing the electron energy
to 300 MeV the charge and ~9 scattering can be
shifted relative to each other and we obtain the
results shown in Fig. 5. Note that at this energy
we are near a minimum in the M9 scattering at
backward angles, but it should be possible to
measure the M9 scattering from 100 to 110 and

from 130 to 140'.
The above results indicate that magnetic scat-

tering, primarily from the maximally allowed

multipole, should be easily measured as a function
of energy E and hence momentum transfer at 180'.
Furthermore, if the single-particle model pre-
dicts the correct magnitude of the magnetization
current, magnetic scattering can be observed at
normal angles with judicious choices of the inci-

3.OO
I

dent electron energies.
A recent experiment performed at Tohoku by

Peterson et a/. " indicated the presence of trans-
verse terms at 90 in the elastic cross section of
250-MeV electrons on "V. We calculated the
charge and magnetic scattering of 250-MeV elec-
trons from "V using the parameters given above
and we find the fit to experimental data shown in

Fig. 6. In order to fit the data point at 90' we

need to reduce the magnetic scattering due to the
MV distribution (the lower moments have negli-
gible contribution in this region) by a factor of
0.40. Based on this one data point, we estimate
the MV moment of "V to be (-23b') p, „as com-
pared to (-3Vb') y, „predicted by the single-par-
ticle model. This value is not unreasonable con-
sidering that there are three protons outside the
"Ca core. We would strongly encourage additional
experiments on "V at larger angles and other
energies in order to extract the radial shape and

magnitude of the M7 magnetization distribution.
Another nucleus for which extensive investiga-

tions of magnetic electron scattering have been
carried out is "Al. Unfortunately the charge dis-
tribution has not been adequately examined. The
rms rad1us of Al was determined by a 10%-g
experiment some years ago to be 3.01 fm." We
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FIG. 5. The differential charge and L = 9 magnetic
multipole elastic scattering cross sections of 300-MeV
electrons from 209Bi as a function of scattering angle ~

and momentum transfer q.

FIG. 6. The differential elastic scattering cross sec-
tion of 250-MeV electrons from ~~V as a function of scat-
tering angle e and momentum transfer q. The experi-
mental points are those of Peterson et al. (Ref. 12).
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attempted to fit the 500-MeV data of Li et al."
by using a Fermi distribution for po(r) with half-
density radius c and akin thickness t chosen to
fit the experimentally determined rms radius.
This, however, leaves considerable latitude in

choosing c and t. We attributed the magnetic
properties of "Al to a d„, hole in a "Si core.
The range parameter for this orbital is 5=1.81 fm

which would reproduce the experimental deter-
mined rms radius in a single-particle model.
Our fit to the data is shown in Fig. 7. We were
unable to obtain a better fit by varying c and t
while keeping the rms radius constant. The mag-
netic contribution seems reasonable in view of the
180' scattering experiment of Lapikas, Dieperink,
and Box' which determined the M5 moment of "Al
to be [(6.4+0.7)b']p, „. We have used the single-
particle value of (10.5b')p„ in this figure. How-

ever, the charge scattering at these angles prob-
ably contains some higher electric multipole con-
tributions since "Al is believed to be rather de-
formed. We recommend some moderate-energy
elastic scattering experiments on "Al at forward
angles in order to determine the charge distribu-
tion more completely. This case illustrates the

tel

difficulty in determining magnetic scattering when

the charge distribution is not well known.

The examples given above indicate that mag-
netic elastic electron scattering should be ob-
servable in the medium and heavy odd-A nuclei
at normal scattering angles at particular values
of the electron energies, and in general at 180'.
The procedure to be followed at normal scattering
angles is to determine the nuclear charge distri-
bution by performing experiments over a wide

range of momentum transfer at forward angles
where magnetic scattering is negligible; then to
do experiments at scattering angles as large as
possible. At these large scattering angles the
charge scattering can be subtracted out by the
phase-shift calculation leaving the magnetic scat-
tering.

In summary, we encourage further elastic elec-
tron scattering experiments at relatively large
angles in addition to 180' experiments with the

goal of extracting the magnetization distribution
of the medium and heavy odd-A nuclei. The L
= 2Jth magnetization distribution should be par-
ticularly easy to determine and within a single-
particle model is in many cases essentially the
(2J- 1)th moment of the square of a single-par-
ticle wave function and may be of considerable
interest for odd neutron nuclei. We also note that
since the orbital and spin terms enter the mag-
netization in quite different ways that elastic elec-
tron scattering with its variable momentum trans-
fer may be capable of investigating quenching of
the magnetic moments and the effects of "exchange
currents" in more detail than other methods.
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APPENDIX

The normalized solutions to the radial Dirac-
Coulomb equations [Eqs. (4) in the text] for the
point. Coulomb potential V(r) = aZ/r a-re

8 (deg)

FIG. 7. The differential elastic scattering cross sec-
tion of 500-MeV electrons from 27Al as a function of
scattering angle 0. The experimental points are taken
from Ref. 14.

where

V (p~) =2e "" ' (2Pr)" '(y+iy), „Ir(y+iy)
I'(2y + 1)

&erin~&» m]~F~(l+y+iy;2-y+1;2iPr).

(A2)
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The phases

(AS)

where ao= lq a|=-ylpi and

(2ya„, + a„,)
n(n+2y-1) '

The asymptotic series for Uz(pr) is

The labels H and I refer to regular and irregular
solutions which are given by the upper and lower
signs of y, respectively. These phases are re-
lated to the point Coulomb phases given in Eq.
(12) by

&„(r)= '9, (v)- 2&r -»g1 (w+ &y) +
2

3+1
(A4)

f.'(r) = S„'( y)-
The asymptotic forms of these functions are

U„(pr) = ~ y (2p )re "',Z, (-y+fy;2y;2' )

(A V)

We calculate U„(pr) by a series expansion about
the origin for pr ~ 15 and an asymptotic expansion
for pr & 15. The power series for U&(pr} about

the origin is

(AS)

t

sin[pr+yin2pr--, '(1+1}v+5„"']
Pr

cos[pJ'+ y ln2pr 2(f + l}w+ S g' ]
pt'

To calculate these functions numerically we
write

~&sI2ei 0„&7)
y( )

8 e

~,f(~'y)U„(p ) 'l~'y lU„„(p )]. (AS)

U (p ) 2 lt I (3 + y)l Ipr e-rl2(y+y)sic jn2pr

r(&+ay)

x Pb„(py) "),

(r —iy)(1- w- fy)
~0 ~» ~1 2i

b„=(y- iy+n- l)(n-y-iy}
gn

The power series of Eq. (AS) converges more
rapidly for large positive val~s of y while the
asymptotic series of Eq. (A9) chnverges more
rapidly for large positive or negative values of
y. The following recursion relation satisfied by
Uz(pr) can be used to choose the value of y to ob-
tain the most rapid convergence of the particular
series being used:

U (pr) = I
I~- l.fy l(~- 2)

x [(y-1)(~-2)-y pr] U„,(pr)
2(r- 2/2)

-~~y-r ~ i'll(y-1)U, ,(Pr)).

(Alo)
The function V &(pr) which is needed for the ir-
regular point Coulomb solution is calculated in a
similar fashion by changing the sign of y every-
where and using the recursion- relation in the op-
posite direction. This calculational method and
the associated computer programs were furnished
to us by Dieter Drechsel.
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