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A first-order pion-nucleus optical potential which is convenient for the analysis of pion-
nucleus data is presented. This configuration-space potential incorporates a number of im-
portant theoretical features. A Lorentz transformation of the pion-nucleon interaction from
the pion-nucleon to the pion-nucleus center-of-mass system is shown to yield a first-order
potential which is almost local in coordinate space, and which differs from the originally pro-
posed gradient potential, by containing an additional term proportional to the Laplacian of
the density. %'e then show how this form is modified by off-shell and high-energy considera-
tions. It is emphasized that proper off-shell and threshold behavior can be included and that
energy and momentum variables must be treated carefully in deriving the optical potential.
Typical numerical results are given and the new potential is shown to yield significant build-
up of large-angle cross sections.

NUCLEAR REACTIONS ~'C(n. , x), E =120-280 MeV; calculated o(8): .Optical
potential deduced from multiple-scattering theory.

I. INTRODUCTION

It has long been recognized that the scattering of
pions by nuclei can very likely be understood in
terms of the basic pion-nucleon interaction and
multiple-scattering theory. Numerous fits to ex-
perimental data in the past few years are most
encouraging. In relating pion-nucleus elastic scat-
tering to pion-nucleon dynamics it is useful to ob-
tain an optical potential; and for the treatment of
inelastic scattering and reactions, an accurate op-
tical potential is essential. In view of the forth-
coming precision experiments to be performed at
meson factories, it is timely to improve the opti-
cal-model description.

The basic theoretical framework for the deriva-
tion of an optical potential as a multiple-scattering
expansion is well established, ' and various series
expansions are possible. ' However, in carrying
out this expansion there are a number of important
theoretical questions. Most of the basic theoreti-
cal problems involve the first-order potential. Our
objective in the present work is to obtain a first-
order potential which is convenient to use for the
analysis of data, and is accurate to the same order
as the contributions of the higher-order terms.

The fundamental theoretical problem is that the
expansion occurs in terms of a "bound t matrix, " '
the scattering of a pion from a nucleon bound in

the nucleus. There are several important ques-
tions involved in attempting to relate this to the
scattering of pions by free nucleons. These include
the relation of the basic interaction in the nucleus
to the free two-body interaction, the questions of
the state dependence of the t matrix, many-body
operators, and so forth. %e are concerned with
intermediate (or high) energies, where the impulse
approximation is adequate to give at least a start-
ing point. The optical potential is thereby repre-
sented in terms of a two-body scattering matrix.
The many-body interactions will mainly contribute
to the absorptive part of the potential, and must be
treated separately.

%ithin the framework of the impulse approxima-
tion, the fundamental problem reduces to deter-
mining the effective pion-nucleon scattering ma-
trix as a function of the variables and quantum
numbers. Essentially, this means determining the
off-shell t matrix in the pion-nucleus center-of-
mass system. Recently there has been a consider-
able interest and progress in this program. ' ' In
the present work, we make use of the recent work
of Landau, Phatak and Tabakin, where a solution
to the inverse problem for m-nucleon scattering
was carried out with a separable form for the
interaction. This gives a scattering matrix as a
function of the initial and final relative momenta
and scattering energy which should be adequate for
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the nuclear problem, where many-body dynamics
inhibit far off-sheB scatterings.

%e are led to consider first the effect of the
Lorentz txansformation fx'om the pion-nucleon to
the pion-nucleus center-of-mass system ( an effect
which has been considered by a number of work-
ers' "), keeping the proper threshold behavior in
each partial wave, and then the proper form of the
potential which results from the consideration of
the off-shell and high-energy behavior. Our first
conclusion is that from the Lorentz transformation
we obtain for the first-order potential one which
is almost local in coordinate space, and which dif-
fers fxom the gradient potentia1 which was origi-
nRlly pl oposed by contRlnlng Rn RdditionRl term
proportional to the Laplacian of the density. %e
then see how this form is modified by off-shell and
high-energy considerations. Typical numerical re-
sults are given and discussed. A series of appen-
dices give full details to assist in the application of
our results for the analysis cf experimental data.

(x i V i x') = b(x -x') V, p(x), (2b)

a local potential proporti. onal to the density. This
is the usual low-energy assumption.

(ii) If the scattering matrix depends only on the
magnitude of the momentum transfer and the ener-
gy

{k'[t(E)]k)=f(E, [k'-k]), (2c)

from the expression (1). There are some qualita-
tive observations that one can make about the
potential (1), for typical dependence of (k'~t(E)~ k)
on the variables.

(i) For s-wave two-body scattering the scatter-
ing matrix has the form

(k'if(E)ik) =a(E, b', k' ).
If the scattering matrix depends only on the enex-
gyi

{k'i t(E)ik) =a(E),

II. DERIVATION OF THE OPTICAL POTENTIAL

A. General considerations

then the optical potential is also local, i.e.,
(@V i

x') = 5 (x ' —x)V(x). (2d)

We shaB proceed in coordinate space. Although
in genex'Rl the pion-nucleus potentiRl is nonlocRl,
as will be discussed in some detail. below, it turns
out that our new form is "almost local, " and has
a convenient coordinate-space representation. This
not only allows physical insight, but it is quite
practical in allowing Coulomb effects to be accura-
tely and conveniently included. Making use of the
impulse approximation and assuming state indepen-
dence of the scattering (i.e., assuming that the
scattering depends only on the relative momenta, as
wall as spin and isospin quantities), one can ex-
press the first-order optical potential as

where p(s} is the nuclear single-particle density
normalized to one, Jd'zp(z) = 1, A. is the number of
nucleons, (R'~ t(E)(k) is the collision matrix (aver-
aged over nucleons in the nucleus) as a function of
relative momenta, k and k' and energy I' evaluated
in the pion-nucleus center-of-mass system. Here
E is the total pion-nucleon energy equal to E„+E~
= (p„,'+(i')"'+(pi '+i'')"'=E, +m, where ii, and
m are the pion and nucleon masses, respectively.

The objective of the present work can now be
clearly stated. It is to use the best present infor-
mation on the collision matrix {k'~t (E) ~ k) to derive
a. convenient optical potential in coordinate space

(111) For

(k'if (E) i k) = s(E)+b(E)k'k,

(x~ V~x') = 5(x —x')[ap(x)+PV pv]. (2f)

This form (2e), which was assumed in Ref. 7,
gives an "almost local" potential of the gradient
form (2f). The p-wave part, b(E)k'k, is approx-
imately of correct form on shell, if k, k', and E
are the pion-nucleon e.m. vax'iables, due to the
angular dependence k k' and the P-wave threshold
behRviox' (II|'~ .

(iv) Generally, if the amplitude depends upon k'
and 4' separately, even for s-wave two-body scat-
tering one can expect a nonloeal potential.

%e now turn to the general treatment of the
&(-nucleon collision matrix needed in (1). It is
important to realize that the pion-nucleon collision
matrix in (1) is defined in the pion-nucleus center-
of-mass system, which we approximate as the
pion-nucleon laboratory frame. To relate t(E}to
the corresponding operator t(&u) defined in the
pi, on-nucleon e.m. system, a transformation to
the pion-nucleon c.m. system is required. That
transformation is defined by

(k' ) t (E) ] k ) = y (K' [ t («&) [ K),

where a, 7' denote momenta in the pion-nucleon
c.m. syst: em. The transformed collision energy is
«& = (p'+ p')"'+(px+&n')"'= e, + ~„=Ms. The fac-
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tor y is determined using the Lorentz invariance
fo probability to be

The collision matrix can now be extended off shell
using the simple model

Ev(K)EV(K')E»((t)E»(K' } ui (9) v(d)»

E,{k)E„(k')E„(k»)E„(k„') E„m (4} (») It
I (~) I )

1 Ws Rgi(%) g)t (K )g)i (K}
4)t (d „(9)» K [g)t ((d)]

The approximation given in (4) in which y is a
function only of the scattering energy is most use-
ful in what follows. It has been verified in the
numerical work of Ref. 5. The transformation (3)
is completely specified by the states I k), Ik'), I7t),
and I pT'). Consistent with the concept of potential
scatterings, we define these as on-mass shell mo-
mentum states. This uniquely determines the
transformation. The momentum (», «') in the pion-
nucleon c.m. are related to the pion-nucleon lab-
oratory momenta (k, k') in the standard way, ((

= (m/Ws)k; here we make use of the approximate
equivalence of the pion-nucleus laboratory (and
c.m. ) system to the pion-nucleon laboratory sys-
tem at low and medium energy.

We must now write the function (7(' I t (&u) ITc} in
terms of the variables k, k', and E, taking care
to distinguish energy and momentum variables.
In doing this we shall use a functional form ap-
proximating the results of Ref. 5, but the main
conclusions of the present work will only make use
of the qualitative features of this form, not on the
details.

To carry out the transformation (3), it is impor-
tant to recognize that in addition to changing the
wave numbers, a change in angles results from
transforming from the pion-nucleon laboratory to
c.m. systems The a. ngles k k' in the laboratory
and )( )t' (the caret is used to designate unit vec-
tors} in the c.m. for the pion-nucleon system are
related by

E„((t)Ev(»' ) —E„(k)E„(k')
KK

kk'- -,
+ —,kk'. (5)

KK

The above relation, although derived using the in-
variance of the four vector product t = (k' -k)', is
not a purely relativistic effect. It is well known

that for any speed an isotropic term (G,) occurs
when transforming a c.m. p wave to the laboratory
system. An important point of this paper is to
correctly include the "isotropic p wave" term (C,)
along with proper "threshold" behavior of t (see
later).

Our next step is to partial wave decompose t in
the pion-nucleon c.m. system and to introduce
simple off-shell models with correct low momenta
behavior. We have for each isospin I

(» '14(&) I «& = 2 (j + l) &K'I t,', (~) IK) +j(« 'K).
1,4=14 1/2

(6}

where a„((d)=e "( ~ sinb„(~) is the pion-nucleon
partial wave amplitude. Equation (7) includes the
relativistic density of states. The functions g, ~ ((t)
can be obtained for each state from Ref. 5. The
main qualitative feature is that these g„(») serve
as form factors which provide an off-shell extra-
polation based on our knowledge of pion-nucleon
dynamics and which cut off the interaction at high
momentum in a theoretically sound manner. This
is discussed in detail by Landau and Tabakin, Ref.
5. A study of the results of Ref. 5 led us to the
form

0
g„(»)= «'e (8)

The K' give the threshold behavior and the a» can
be roughly determined numerically from Ref. 5.
Note that in addition to defining the off-shell be-
havior, the high-energy behavior is also strongly
modified by the a». Let us refer to the parameters
a» as the farm-factor parameters. Substituting
(3)-(8) into (1) results in a nonlocal potential of the
form

(i l lVi)')P P P(ii') +Pd; V' , gP(x, x') ,V. (9)

Important details of the derivation of this potential
and an explicit form are given in Appendix B. This
potential is being studied and will be reported on
later.

B. Limit of vanishing form-factor parameters

(&' It ((u) I T() = a((d) + b(~)k k' + Cob((d),

where

(10)

s((d) = —b,((o)p„,'/[2E„(2v)*],

b ((d) = —b, ((o)p'/[2E, (2)t)'p'],

with b, ((d) and b, (&o) being the parameters of Auer-
bach and Sternheim. ' Substituting (10) into (1)

In this paper we wish to make use of the observa-
tion that the form-factor parameters a» are quite
small, a fraction of a Fermi for the s and P waves.
We therefore wishto look inthe limit as a» -0. In Ap-
pendix C thelimit for smally» isderived, from which
the results of this section can be obtained. Restrict-
ing ourselves to s andP waves and using Eqs. (6), ( 1),
and(5}, one observes (See Appendix A) that
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gives

(xi V i
x' ) = Vo+ V, + V, o

+——-1 b~ m Vapx 5 -x' . (12)

Equation (12) is the potential which arises from our
observation that the nonlocality of the pion-nucleus
potential is small. Thus it should contain much of
the physics of Ref. 5, even though it is of incredi-
bly simple form. One should note that although the
term V,o arises from the isotropic P-wave poten-
tial, V~t, &

of Appendix B, it is only part of that
term. The remainder of that term in the a-0
limit removes a factor of s/m' from the gradient
term. See Eqs. (CS), (C5), and (C7) for greater
details concerning the origin of the form (12).

The potential given in Eq. (12) is the major re-
sult of this paper. The new feature of this portion
of our work is the existence of the term V„ in
Eq. (12). These results show that the main effect
of transforming the collision matrix fxom the lab-
oratory to the center-of-mass system, while keep-
ing track of the threshold factor I(."', is to add a
term —,(1 —s/m )k, (VIp) to the usual Kisslinger

potential. Other authors have considered the
transformation effect, but the threshold effect was
not previously treated correctly.

The new term has a relatively small coefficient
and because of its surface-peaked nature, we antic-
ipate that the new term will mainly affect the
large-angle scattering. It is interesting to note
that with both the off- shell extrapolations

(7('it (ar)i T&) =r(&o)+ s((u)7(' 2

leading to the gradient potential, and

(~'i t((u)i ~} =u((o)+u((u)i' —Tc'i',

leading to a potential of the form ep+PV'p, one
obtains the identical extra isotropic P-wave term
from the Lorentz transformation. This also sug-
gests that the result is not critically dependent
upon the off-shell extrapolation.

Numerical results with this potential will be giv-
en in See. III.

C. Lorentz transformation dropping

mass-shell conditions

Let us return to the expression for (k'it (~)i k).
Using Eqs. (3)-(8) one can write [see Eqs. (3)-(8)

and the definitions in Appendix 8]
(k'if (E)i k) =u(~)~"'"~ """"'""+&(»e"&"e'~"""'""""""[E(a)E (K') E,(k)E,-(k)+k k'].

Recall that the quantities E„(a), E„(a'),E, (k), and

E,(k') are the energies associated with the three-
vectors I(., ~', k, and k', respectively. Since the
pion is assumed to be on the mass shell throughout
the' scattering process, the relationship E,'(tc)
= x'+ p' etc., must be retained. This we have done
in the preceding discussion. Let us, however,
now arbitrarily take a different (and incorrect)
ansatz. Let us assume that E,(x) = &u =E,(z') and

E,(k) = E„=E,(k'); i.e., that these quantities are
the center-of-mass and, laboratory scattering ener-
gies, respectively.

Then, using the methods of Appendix C and the
previous seetlon, it is simple to show that in the
limit of a~) ~ 0

V(x) = — [(k,(~)g,* —(—,—1)&,(~)jP

k (&o)v pv).

the derivation of Eq. (14), for it shows how care-
fully one must keep track of the variables to avoid
error in relating the many-body problem to the
two-body problem.

D. Form-factor correction

Returning to Eqs. (1), (82), and (I) we observe
that the integrations over K and q cover quite dif-
ferent ranges. Because nuclei are weakly bound
systems, the range of q is restricted by p(q) to
quite small values. Thus the magnitudes of a,q
and a~@ are small. %e thus can safely drop the
factors e "~ and e '~" . However, the values
a, 'K' and a~'K' are not small for important parts
of the integrals involved in obtaining the potentials.
Thus we are led to consider the potential derived
in Appendix C in the limit of vanishing nonlocality
and nonvanishing product a~@. It was shown there
[Eq. (C13)] that one can expect the form

This is the form assumed by Faldt, and used to
compare two different off-shell assumptions. How-

ever, as will be evident in See. III, this form is
not at all equivalent to the one obtained keeping the
mass-shell condition. %e would like to emphasize

(xl VI x') = — [u,(~)p»'p(x) —ku. (~)[V'p(~)]

—[a,((u) +a, ((u)] v pv)5(x x'), -
(15)
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lO
I

E~ = l20 Meg

2
IO

with a,((u) = b,(~) ——,'(p„,a,) ' (s/m' —1) b,(~), s, (~)
= ~(1 —s/m') b, (&o), and a, (e)+a, (&u) = —(s/m')b, (ar).
It should be emphasimed that the derivation of Eq.
(15) is not entirely satisfactory. However, we

suggest that it could be considered as a phenome-
nological form, with guidance for the theoretical
parameters. When compared to Eq. (12), it sug-
gests that the major improvement to account for
the high-energy behavior of the pion-nucleon am-
plitude might be to modify the term proportional
to the density as indicated by (C13), i.e., an ex-
cellent phenomenological form might be obtained
by adding a potential

V"(x) = u(E)(s/m2-1)f, (~)P(x)

to the potential given in Eq. (12). We do not con-
sider the form (15) in the discussion of the nu-
merical results vrhich follow.

III. RESULTS AND DISCUSSION

It has been shown that the first-order pion-nucle-
us optical potential, including off-shell and high-
energy behavior derived from a solution to the in-
verse pion-nucleon scattering problem, is of the
nonlocal form (9), given in detail by expression
(B11). The explicit form (B11) is expected to be
approximately equivalent to the potential in mo-
mentum space given in Ref. 5. Hovrever, the non-
locality is of short range, and nonlocal corrections
also arise from corrections to the impulse approx-
imation and from higher-order terms vrhich seem
to be of the same order as these corrections to a
local potential. Thus me expect that one can use
an almost local potential in the first order and be
consistent with multiple- scattering expansion. O r
main result [Eq. (12)I is that this is possible and
that it is realized by adding a potential propor-
tional to the Laplacian of the density to the gradient
potential of Ref. 7,

Numerical results for pion-"C scattering are
presented in Figs. I-~ along %Nl the experimental
data of Binon et sl,.' Our object is not, in fact, de-
tailed comparison with experiment, but is to study
the accomplishment of the theoretical modifications

IO
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NEW POTENTIAL

EXPERIMENTAL

I
to

IO —.Ol

E

20 40
I I

60 80 l00

8 (deg)

I

I20 i@0

= .Ool

FIG. 1. The differential cross sections for pion-~2C
elastic scattering at 120-MeV laboratory kinetic energy.
The experimental points are the Binon et ul. {Ref. 8)
data. Results are shown for the old {Ref.7) gradient poten-
tial and for the new potential [Eq. (12)J using the Fermi-
averaged Sternheim-Auerbach parameters (Ref. 6).
Calculations were performed on the corrected version
of ABACUS-M. The new potential tends to build up
backward-angle cross sections and to move the minima
to smaller angles, which agrees with the corresponding
momentum space calculation g,ef. 5). Also shown are
the results obtained using the (incorrect) off-mass-
shell (E & ~k2+&2)fg2] assumption

-I
IO

I

20

8 (deg)

IOO l20 l40

FIG. 2. The differential cross sections for pion- 2C

elastic scattering at 150-MeV laboratory kinetic energy.
See Fig. 1 for other details.
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medium by a bound nucleon might give important
modifications. Thus, even if the suggested poten-
tial is correct in form, the magnitude and energy
dependence of the parameters can be expected to
differ from the theox'etical values. %e have not
attempted here to review the work which has been
done in estimating such corrections.

In summary, the potential of E(I. (12) is presented
as being a first-order potential which incorporates
a number of important theoretical features. Its
form is that of a corx'ect Lorentz transformation
on the gradient potential of Ref. 7. However, it
takes into consideration not only the correct I.orentz
transformation, but also the proper threshold be-
havior of the individual paxtial waves and the gen-
eral features of the solution of the off-shell form
of the pion-nucleon scattering matrix derived from
a separable potential. It is suggested that our new
form is a satisfactoxy first-order potential, and
that for theoretical improvements a great numbex'
of many-body effects should be incorporated.
(However, improved phenomenological forms are
also suggested. ) This is an important program in
which we, as well as a number of others, are in-
volved.

For fruitful discussions and assistance in the
numerical work we would like to acknowledge Dr.
R. A. Eisenstein, Dr. G. Miller, Dr. %. %'ang, and
8. Phatak. %'e also wish to thank the Los Alamos
Scientific Laboratory, where this work was initiat-
ed, for their hospitality.

APPENDIX A. KINEMATICS AND DEFINITIONS

In the body of the paper two amplitudes are de-
fined, (k'

~
/ (E) ~

k ) and («'
~
t (cv) (7&), the off-shell

scattering matrices in the pion-nucleus and pion-
nucleon center-of-mass systems, respectively.
Associated with these there are 12 momentum
four-vectors, which are now defined. For the pion
and nucleon in the states ( «) ) ((«'} ) ( k), and (k')

the pion has three-momenta K K k and k re-
spectively; while in these states the nucleon has mo-
menta —Tc, —7&', k&, andk&, respectively. Since we
deal here entirely with mass-shell quantities, we can
define the eight momentum four-vectors

Q„(«), «), (Z»(«), —«),

(~.(«'), «'), (&»(«'), —«'),

&E.(&).k), (E»(~»), k»),

(~»(&»), k»),

(Al)

where E„(«)= («'+ i(,')'~' etc., and F»(«) = («2+ ~2)~~~

etc. The units h=c = 1 are used throughout. In the
pion-nucleon center-of-mass system the pion and
nucleon have three-momenta p, —p, respectively,
while in the pion-nucleus center-of-mass system
they have momenta p~ and p&, respectively. %e
thereby define the momentum four-vectors for the
pion and the nucleon in the center-of-mass and
laboratory systems as

(~., p), (~», -p),
(&. p, ), (&», p»).

The invariant variable s = (&(), + (d»)' = (&o)'.
%orking at low and intermediate energies one can

take advantage of the large mass of the nucleus and
the nucleon and approximately equate the pion-nu-
cleon laboratory and the pion-nucleus center-of-
mass systems. This is done in the numerical cal-
culations presented here.

A small correction could be made to account for
the transformation from the pion-nucleus laborato-
ry to the pion-nucleus center-of-mass systems.
This effect can be included approximately in Eq.
(12) by introducing a factor $((c))=gb/P, , which is
the ratio of the pion momentum in the pion-nucleus
»boratory system (gb) to the pion momentum in the
pion-nucleus center-of-mass system (g ). The
optical potential including this transformation is giv-

en by

(*( lit') = —
cc c (( ) c (c)c, 'c(x) —c,cc(x)c +j —,( '(c) —1 c, ( )ic'c(x))Ic(x-i').

)) c.m. 2 m'

Since E = 1 at the energies considered in this paper,
we do not include this correction. Note also that in
the present work we use E& = m; howevex, this
does not restrict the nuclear Fourier components,
which appear in nuclear form factors.

Here we consider scattering only from spin-zero
systems, although the work can easily be extended
to the general case. This results in the optical po-
tential depending only upon the two parameters in-

troduced in Ref. 7. All of the results of the present
work are expressed in terms of the familiar pa-
rametrization of Auerbach and Sternheim, in such a
manner that the widely distributed computer code
ABACUS-M~o can readily be used. The Auerbach-
Sternheim parameters are defined by the gradient
potential

(As)
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where for a spinless nucleus with Z protons and
X=A. -Z neutrons

Aha((o}P„~' = (4)i/3+~)(z/m')[Z(2n, + n, )+2%a,j,
A b, {(d)= (4)i/SP„, ') (s/m') [Z(2 ().„+a„+4 a„+2 a„)

+3K(2n„+e„)]. Q4)

The conventional notation is used for the s- and
P-wave phase shifts with &, and 6, the I = & and z 1

= 0 phase shifts, and for /= j., the phase shifts are
labeled by &~,&&~,&&.

As a consequence of the theory presented here,
it is shown that the "almost local" form of the
first-order optical potential should be of the form
[Eq. (12)]

2Z„V(x) = -A[aap 'p(z) —2g, p'zp(z)-(g, +sz)v p(x)yj.

The form of "Klass 3" in the ABACUS-'M code has
been used vrith +o~ @z a2 being used instead of &e
b„b, in Hef. 10 to try to minimize confusion. "

APPENDIX 8. GENERAL FORM FOR THE FIRST-ORDER
OPTICAL POTENTIAL

In this Appendix me derive the first-order optical
potential corresponding to the m-nucleon off-shell
t matrix given by E(ls. (2)-(8). Only z and P waves
are considered for the two-body scattering. Fur-
+her, @re make use of the numerical results of

ref. 5 to recognize that the toro s-state form-fac-
ar parameters are almost equal, and that the
aur P-state form factors are also approximately
he same. Thus E(l. (8) can safely be replaced by

Note also that the form factor parameters which

appear in (81) are a»'m'/z, which are approxi-
mately constant.

Inserting Eqs. (8)-{'I)and {81)into (1), one ob-
tains

&xlVI x'&= &xlV, I x'} + &xlV~ lx'& + &xl V„,)l x'&, (M)

(Rl IR}') A~*'"&'-o( )(2~) fd'&d'0 e"" " ''(Plic*-ic''l)e

(xl}}lx')=&~'"~' ~ }(~}(2&)"*jd'ld'Yk &~"~ "('"''g(l&'-&')~' '~" ',

(xl}',(.;[i'}=&e'"'"'5(~)()~)"' jd )da [}:(~')}}(d') —,z.(}).E.(a'))e"""""'*'u(lit-ic'l}e ' "+"'",

where p(q) =(2)i) "'fd'ze ' 'q(pza)nd using the notation of Appendix A

a((u) = —()),((o)Q), '/[2E„(2)i)'],

}(~)= —},4)(—, [RE„((w)').
(E4)

In order to give a convenient explicit form for the potential, we express the density as a sum of mod-
ified Gaussians

-c ga
p{z)=RA(Z, J)z" e~&*,

which has the Fourier transform

(asb)

Introducing center-of-mass and relative coordinates

K = (k+&')/2,

It=(x+x')/2, r=x-x',
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one can immediately evaluate the first two terms in (B2). For the s wave (BS}becomes

(alv, ~a') = (aw}
"f a'aa've'&' '"&«( );"'&**

e-2as phb

which upon introducing the form (B5b) can easily be shown to be

(B6)

The second term can also be done trivially, resulting in

(BV)

(XI VII I x ) 2 -2a 22 2v2 '&3 A(1& &I)( 1) Z ri 2C' 21l3/2 3 Q e " /322 e~& + I ~ Va

(B8)

The third term in (BS}, V2(,), which we refer to
as the isotropic P-wave term, is more difficult to
evaluate. We derive a convenient form for this
term making use of an approximation for the factor
[E (K)E (K ) —E (k)E (k )] which results from two
observations. First, since the nucleus is a loosely
bound system, p(q) is a rapidly decreasing function
of q, and large values of ~k-k'~ do not contribute
much to the momentum integrals defining the opti-
cal potential. It is this observation which forms
much of the basis for the present work, and gives
us confidence that a useful optical potential can be
derived by incorporating the main features of the
off-shell and high-energy ~-nucleon behavior into

I

the many-body formalism without completely re-
producing the details of the off-shell two-body col-
lisions. As a result, for large magnitude of k and
k' in the integral (BS) (i.e., k and k' » ))) one can
use

2

E, (I() E a (((') —E,„(k)E„(k')= 3 (——1)(k ' + k").

(B9)

Observing, secondly, that the identical form (B9)
is correct for the low k and 4' parts of the integral,
we make use of the approximation (B9) in evaluat-
ing the isotropic P-wave term in (BS). The result

is

(x~V ( ) ~

x')= — ~' ' ' " ' ' A(I j)( 1)2' (V 2+ —' g 2)e-v /3222/-c(R /(2+2cga22) (BlO)

Summarizing our results, the optical potential is

gJ
(x I V I x') = —[(A/2E, )8(2v)3/2]g A (I, Z) (- 1)~

()C& [1+2C, a, ']3/2a, '
2 2X [f) (&)g 2e-v /aaa e Cy /(1+2CIaa2)

((d}(1 3/2222)()V& 2 + V 2)R v/3 a e-CV R /(2+2Cg aa )- (Bl1)

2
((d) V .e-v /aa2 28 -CI R /(3+2C gap ) V )

)~2 x x'3 ~

This potential includes the effect of the Lorentz
transformation and the off-shell and high momen-
tum behavior given in E(ls. (6)-(8), and thus should
be quite similar to the momentum space formula-
tion of Ref. 5. There is no difficulty including the
Coulomb interaction, which is essential especially
for higher-mass nuclei.

Although these nonlocal potentials involve a
lengthier calculation than the "almost local" poten-
tials now being used, there is no real difficulty in
principle or practice in using the potential (Bl 1}.
Moreover, the higher-order terms in the multiple-
scattering formulation of the optical potential in-
volve nonlocal potentials. Thus, if one is to study
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particle correlations, which are introduced by the
higher-order terms, it is essential to use a proper
nonlocal potential for the first-order potential. In
particular, it is the large-angle scattering from
which one hopes to learn about particle correla-
tions. Since the nonlocality plays a specially
important role for large-angle scattering, it is
essential. to include these corrections to the first-
order potential in any program which studies cor-
relations. We suggest that the potential (B11)
should be an adequate starting point.

APPENDIX C. LIMITS FOR SMALL FORM-FACTOR
PARAMETERS

In this Appendix we explore some of the conse-
quences of the observations that the form-factor
parameters a„are small compared to the nuclear
radius, and that the nonlocality found in the previ-
ous Appendix is small compared to the nuclear
dimensions. Referring to Eqs. (B2), (B3}, and

(B6), one sees that the form-factor parameters ap-
pear in the integrals as a factor

~2(2~2+ q2/2)

As has been discussed above, the nuclear form
factor p(q) limits the q integral so that it is safe
to drop the factor e ' ' ". However, one cannot
use this argument to drop the factor e ' '~' . We
look at the effect of this factor in two ways.

(f) Limit of a», very small. Assuming that the
0)j 0jwe use the expansion e '+" ' = 1—2a9P.
Let us look first at the potential V, form (B3).

(x{V{x'), =-A (»)(R») "'fd »{»(1'+»''V, ')

i(K r+{& %)P((f)

(Cl)
In carrying out the integrals, which involve deriv-
atives of ~ functions, one must remember that this
is an operator to be used in a Schrddinger-like

equation. One finds that (Cl) becomes

(x ~ V, ~
x') =- — [bo({d)P»'p(x) + 2a, '(v p(, ~

v + —,
' &'p(x}]6(x—x'). (C2)

The meaning of this operator as used in a Schrddinger-like equation is

{&&)&:{(»= —2z», (~)()&'(n(x)(&(») + 2» {»»(x)&&(&(x.') + {'» {&(x&i(&(*))}-' (C3)

In a similar manner Vj, has the approximate form

(ilvlx)—= -x{&{&d)(2») ' f&)')»{')»{'zl(-2(&'»,') &'&, ( &.-.& &&,, ( &'-.&»(, )

With the same considerations used to obtain (C3), one finds

(c4)

S

Cl, l(&—= zz {&,( )—', &»»&(+no. ' &»»(v»&(& )»(&»+'»8
~ )&4) g ~

s' ((&'))I,
5 jj +& +j P, t=Z~XI

(G5)

and finally, for the isotropic P wave

(&&I&;&.&I&&'&-=()-—,)», ( ) ) . j(v, '+!»')»(R){{~ ),'&)'»&{». (C6)

Proceeding as above, one finds

&xlV(.&ly) = 1 ——'. (f~)[V'p V'p+ .v'p)@+2a~'(*0(v p)'&p+-(~ (V p))p+. . .H.m' (cv)

From (C3), (C5), and (C7), one has the small a„ limit of the potential [see Eq. (12)] .
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{C8)

(&) Small a, ~ (()ith high en-ergy behavior. It is
also interesting to look at the form one obtains
from directly using the approximation

-a (2s +)) /2) -2a s

discussed above, without letting a -0. This incor-
porates the high momentum cutoff of the pion-nu-
cleon form factor into the optical potential. Using
(C8) in (B2), (BS), one finds (let us use a, = a(, = a

for simplicity)

Looking at the last term we see that the isotropic
P wave becomes in this approximation

&xlV,(»lx'& =
2Z

1 ——, l&s't)(R)+4,. -8+4,2»} 8 2„)s...s ~ (C10)

Noticing that

(C11)
I 0

one observes that the first two terms in (C9) go to
the a -0 terms in (CS) and (C5) for the s and P
wave, respectively. Of course, in this limit the
form (C10} reduces to the a -0 limit of V),(, ) in E(l.
(C7). This can be seen by evaluating the deriv-
atives of the ()(r), as discussed above.

It is interesting to consider the form (C10) with-
out taking the limit a»0. The first term is approx-
imately

limit. However, in the limit of fixed a, dropping
nonlocality, we would drop this term. In this ap-
proximation

&x~V,(,)~x') = 1 ——,—,'v't)(~)- 4, t)(~) o(x-x').

(Cis)

Combining results, one has the form

&x I V I
x') = —

2 &,(~))()„'—4, —.—1)&,((d) t)(s)
A 2 3 s

L

+ ~ —,—1 b, co V'p x ——2bx ~ & ~
V)(~) =4 1 ——

2 (V P)5(x-x'},(g) 1 s +51(+) 2 ) (C12)
x5(x —x'). (C14)

.or one half of the a -0 limit of V~~, ~. Let us study
the remainder of (C10) without taking the limit as
a -0. The last term in (C10) is small for small a,
but in general this term is not small in the a -0

Clearly, the potential (C13) does not represent a
well-defined limit, but suggests a form for a local
potentia1.
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