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A first-order pion-nucleus optical potential which is convenient for the analysis of pion-
nucleus data is presented. This configuration-space potential incorporates a number of im-
portant theoretical features. A Lorentz transformation of the pion-nucleon interaction from
the pion-nucleon to the pion-nucleus center-of-mass system is shown to yield a first-order
potential which is almost local in coordinate space, and which differs from the originally pro-
posed gradient potential, by containing an additional term proportional to the Laplacian of
the density. We then show how this form is modified by off-shell and high-energy considera-
tions. It is emphasized that proper off-shell and threshold behavior can be included and that
energy and momentum variables must be treated carefully in deriving the optical potential.
Typical numerical results are given and the new potential is shown to yield significant build-
up of large-angle cross sections.
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I. INTRODUCTION

It has long been recognized that the scattering of
pions by nuclei can very likely be understood in
terms of the basic pion-nucleon interaction and
multiple-scattering theory. Numerous fits to ex-
perimental data in the past few years are most
encouraging. In relating pion-nucleus elastic scat-
tering to pion-nucleon dynamics it is useful to ob-
tain an optical potential; and for the treatment of
inelastic scattering and reactions, an accurate op-
tical potential is essential. In view of the forth-
coming precision experiments to be performed at
meson factories, it is timely to improve the opti-
cal-model description.

The basic theoretical framework for the deriva-
tion of an optical potential as a multiple-scattering
expansion is well established,® and various series
expansions are possible.? However, in carrying
out this expansion there are a number of important
theoretical questions. Most of the basic theoreti-
cal problems involve the first-order potential. Our
objective in the present work is to obtain a first-
order potential which is convenient to use for the
analysis of data, and is accurate to the same order
as the contributions of the higher-order terms.

The fundamental theoretical problem is that the
expansion occurs in terms of a “bound ¢{ matrix, !
the scattering of a pion from a nucleon bound in

the nucleus. There are several important ques-
tions involved in attempting to relate this to the
scattering of pions by free nucleons. These include
the relation of the basic interaction in the nucleus
to the free two-body interaction, the questions of
the state dependence of the ¢ matrix, many-body
operators, and so forth. We are concerned with
intermediate (or high) energies, where the impulse
approximation is adequate to give at least a start-
ing point. The optical potential is thereby repre-
sented in terms of a two-body scattering matrix.
The many-body interactions will mainly contribute
to the absorptive part of the potential, and must be
treated separately.

Within the framework of the impulse approxima-
tion, the fundamental problem reduces to deter-
mining the effective pion-nucleon scattering ma-
trix as a function of the variables and quantum
numbers. Essentially, this means determining the
off-shell ¢ matrix in the pion-nucleus center-of-
mass system. Recently there has been a consider-
able interest and progress in this program.®~® In
the present work, we make use of the recent work
of Landau, Phatak and Tabakin, where a solution
to the inverse problem for 7m-nucleon scattering
was carried out with a separable form for the
interaction. This gives a scattering matrix as a
function of the initial and final relative momenta
and scattering energy which should be adequate for
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the nuclear problem, where many-body dynamics
inhibit far off-shell scatterings.

We are led to consider first the effect of the
Lorentz transformation from the pion-nucleon to
the pion-nucleus center-of-mass system ( an effect
which has been considered by a number of work-
ers®~%f), keeping the proper threshold behavior in
each partial wave, and then the proper form of the
potential which results from the consideration of
the off-shell and high-energy behavior. Our first
conclusion is that from the Lorentz transformation
we obtain for the first-order potential one which
is almost local in coordinate space, and which dif-
fers from the gradient potential which was origi-
nally proposed’ by containing an additional term
proportional to the Laplacian of the density. We
then see how this form is modified by off-shell and
high-energy considerations. Typical numerical re-
sults are given and discussed. A series of appen-
dices give full details to assist in the application of
our results for the analysis cf experimental data.

II. DERIVATION OF THE OPTICAL POTENTIAL

A. General considerations

We shall proceed in coordinate space. Although
in general the pion-nucleus potential is nonlocal,
as will be discussed in some detail below, it turns
out that our new form is “almost local, ” and has
a convenient coordinate-space representation. This
not only allows physical insight, but it is quite
practical in allowing Coulomb effects to be accura-
tely and conveniently included. Making use of the
impulse approximation and assuming state indepen-
dence of the scattering (i.e., assuming that the
scattering depends only on the relative momenta, as
well as spin and isospin quantities), one can ex-
press the first-order optical potential as

(FIVIz')=[A/(21)] fd%d%'d%(k"lt(E)lE)

x eii’-(?-?)e-i?G'-;)p(z)’ 1)

where p(z) is the nuclear single-particle density
normalized to one, [d3zp(z)=1, Ais the number of
nucleons, (K’|t(£)|k) is the collision matrix (aver-
aged over nucleons in the nucleus) as a function of
relative momenta, k and k’ and energy E evaluated
in the pion-nucleus center-of-mass system. Here
E is the total pion-nucleon energy equal to E, +Ey
= (P 2+ KOV + (Py2 +mP) V2~ E, +m, where | and
m are the pion and nucleon masses, respectively.

The objective of the present work can now be
clearly stated. It is to use the best present infor-
mation on the collision matrix (k'|¢ (E)|k) to derive
a convenient optical potential in coordinate space

from the expression (1). There are some qualita-
tive observations that one can make about the
potential (1), for typical dependence of (k’|¢(E)|k)
on the variables.

(i) For s-wave two-body scattering the scatter-
ing matrix has the form

(K| t(E)|K) =a(E, B, k).

If the scattering matrix depends only on the ener-
gy,

(&' t(E)|K) =a(E), (2a)
then
(x| VIX") = 6(x = X') Vo p(¥), (2b)

a local potential proportional to the density. This
is the usual low-energy assumption.

(ii) If the scattering matrix depends only on the
magnitude of the momentum transfer and the ener-
gy

(k'|t(£) k) = (B, [k’ - K]), (2c)
then the optical potential is also local, i.e.,
(XIVIX') = 6" -R)V(x). (2d)
(iii) For
(&'lt (B)|K) = a(B) +b(E)K' K, (2e)
then
(x| VIx"y =8(x - x")[ap(x) +8V - pV]. (2f)

This form (2e), which was assumed in Ref. 7,
gives an “almost local” potential of the gradient
form (2f). The p-wave part, b(E)'k, is approx-
imately of correct form on shell, if T:,T{’, and E
are the pion-nucleon c.m. variables, due to the
angular dependence &k’ and the p-wave threshold
behavior kZ'.

(iv) Generally, if the amplitude depends upon %*
and k& separately, even for s-wave two-body scat-
tering one can expect a nonlocal potential.

We now turn to the general treatment of the
T-nucleon collision matrix needed in (1). It is
important to realize that the pion-nucleon collision
matrix in (1) is defined in the pion-nucleus center-
of-mass system, which we approximate as the
pion-nucleon laboratory frame. To relate ¢(E) to
the corresponding operator {(w) defined in the
pion-nucleon c.m. system, a transformation to
the pion-nucleon c.m. system is required. That
transformation is defined by

(K |tENK)=y&' |t ()R, ®3)

where &, X’ denote momenta in the pion-nucleon
c.m. system. The transformed collision energy is
w= (P + 12+ (PP +m?)M?=w, +wy=Vs, The fac-
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tor v is determined using the Lorentz invariance
fo probability to be

[ Ex(K)E, (k" )Ey(K)En(x")

Va2 WqWy
L [E,(kw, (k") Ey(ky)Ey (k%) ]

T Em ° @)

The approximation given in (4) in which v is a
function only of the scattering energy is most use-
ful in what follows. It has been verified in the
numerical work of Ref. 5. The transformation (3)
is completely specified by the states |k ), |k’), |%),
and |K’). Consistent with the concept of potential
scatterings, we define these as on-mass shell mo-
mentum states. This uniquely determines the
transformation. The momentum (k, k') in the pion-
nucleon c.m. are related to the pion-nucleon lab-
oratory momenta (%, 2’) in the standard way, «

= (m/Vs)k; here we make use of the approximate
equivalence of the pion-nucleus laboratory (and
c.m.) system to the pion-nucleon laboratory sys-
tem at low and medium energy.

We must now write the function (%'| { (w)|%) in
terms of the variables &, ', and E, taking care
to distinguish energy and momentum variables.

In doing this we shall use a functional form ap-
proximating the results of Ref. 5, but the main
conclusions of the present work will only make use
of the qualitative features of this form, not on the
details.

To carry out the transformation (3), it is impor-
tant to recognize that in addition to changing the
wave numbers, a change in angles results from
transforming from the pion-nucleon laboratory to
c.m. systems. The angles k-2’ in the laboratory
and K-k’ (the caret is used to designate unit vec-
tors) in the c.m. for the pion-nucleon system are
related by

-~ ry ’
Py =C‘)Jrclk_k,gE,,(K)E,r(K ) ’E,(k)E,,(k )

KK
kR s o,

o kR, (5)
The above relation, although derived using the in-
variance of the four-vector product ¢ = (¢’ —k)?, is
not a purely relativistic effect. It is well known
that for any speed an isotropic term (C,) occurs
when transforming a ¢c.m. p wave to the laboratory
system. An important point of this paper is to
correctly include the “isotropic p wave” term (C,)
along with proper “threshold” behavior of ¢ (see
later).

Our next step is to partial wave decompose ¢ in
the pion-nucleon c.m. system and to introduce
simple off-shell models with correct low momenta
behavior. We have for each isospin /

@l @IF = j;m(j L1’ @)]K) B (R"R).
' (6)

The collision matrix can now be extended off shell
using the simple model

, _ 1 Vs of(w) &l (k)eg; ()
a2 o8

(7

where o], (w)= etsli@ sindj; (w) is the pion-nucleon
partial wave amplitude. Equation (7) includes the
relativistic density of states. The functions g, (x)
can be obtained for each state from Ref. 5. The
main qualitative feature is that these g;; (k) serve
as form factors which provide an off-shell extra-
polation based on our knowledge of pion-nucleon
dynamics and which cut off the interaction at high
momentum in a theoretically sound manner. This
is discussed in detail by Landau and Tabakin, Ref.
5. A study of the results of Ref. 5 led us to the
form

1 -al.fzk2
g, (K)=xle . @®)

The «* give the threshold behavior and the a,; can
be roughly determined numerically from Ref. 5.
Note that in addition to defining the off-shell be-
havior, the high-energy behavior is also strongly
modified by the a,;. Let us refer to the parameters
a,; as the form-factor parameters. Substituting
(3)~(8) into (1) results in a nonlocal potential of the
form

VIR e pi®, ) +;dji-p,<i§'>v,, )
i

Important details of the derivation of this potential
and an explicit form are given in Appendix B. This
potential is being studied and will be reported on
later.

B. Limit of vanishing form-factor parameters

In this paper we wish to make use of the observa-
tion that the form-factor parameters a,; are quite
small, a fraction of a Fermi for the s and p waves.
We therefore wishtolook inthelimitasa,;; - 0. InAp-
pendix C thelimit for smalle,; is derived, from which
the results of this section canbe obtained. Restrict-
ing ourselves to s and p waves and using Egs. (6), (7),
and (5), one observes (See Appendix A) that

(&' |t (w)] &) =a(w) +b(w)k- k' +Cob(w), (10)
where
a(w) = = bo(w)p,, %/ [2E,(21)],

b("-’) = - bl(w)Pz/[ ZEW(ZH)SPE],

with b,(w) and b, (w) being the parameters of Auer-
bach and Sternheim.® Substituting (10) into (1)
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gives potential. Other authors have considered the
ZVIRS =V 4V, +V transformation effect, but the threshold effect was
EIVIX' ) =Vot Vit Voo not previously treated correctly.
_ 2A bo(@)p, 2P(x) - by(w)V - pV The new term has a relatively small coefficient
E, \ and because of its surface-peaked nature, we antic-
%( _s";z_ - 1),,1(“,) [Vap(x)]}a(;_;,). (12) ipate that the new term will mainly affect the
large-angle scattering. It is interesting to note
Equation (12) is the potential which arises from our that with both the off-shell extrapolations
observation that the nonlocality of the pion-nucleus -, N .
potential is small. Thus it should contain much of (®[t (@)[7) =7(w) + s(@)K"X,
the physics of Ref. 5, even though it is of incredi- leading to the gradient potential, and
bly simple form. One should note that although the , - w12
term V,, arises from the isotropic p-wave poten- W[t @) x) =u@) +v@)k-7’|%,

IR

tial, V) of Appendix B, it is only part of that leading to a potential of the form ap+8V2p, one
term. The remainder of that term in the a0 obtains the identical extra isotropic p-wave term
limit removes a factor of s/m? from the gradient from the Lorentz transformation. This also sug-
term. See Egs. (C3), (C5), and (C7) for greater gests that the result is not critically dependent
details concerning the origin of the form (12). upon the off-shell extrapolation.

The potential given in Eq. (12) is the major re- Numerical results with this potential will be giv-
sult of this paper. The new feature of this portion en in Sec. III.

of our work is the existence of the term V,, in

Eq. (12). These results show that the main effect
of transforming the collision matrix from the lab-
oratory to the center-of-mass system, while keep-
ing track of the threshold factor !, is to add a Let us return to the expression for (k’|# (w)|k).
term z(1 — s/m?)b,(V3) to the usual Kisslinger Using Eqgs. (3)-(8) one can write [see Egs. (3)-(8)

C. Lorentz transformation dropping
mass-shell conditions

and the definitions in Appendix B]
(k| £ (B)| k) = a(w) e2 8P =205+ k)1 b (w) @298 p% o) 24 kD4 kD) B (4)E, (k') = E, (R)E, (k) +E-K']. (13)

Recall that the quantities E,(k), E,(k’), E,(k), and the derivation of Eq. (14), for it shows how care-
E (k') are the energies associated with the three- fully one must keep track of the variables to avoid
vectors «, k’,k, and k', respectively. Since the error in relating the many-body problem to the
pion is assumed to be on the mass shell throughout two-body problem.

the scattering process, the relationship E*(x)

=K%+ u? etc., must be retained. This we have done D. Form-factor correction

in the preceding discussion. Let us, however,
now arbitrarily take a different (and incorrect)
ansatz. Let us assume that E,(k)=w=E, (k') and
E.(k)=E,=E.(k'); i.e., that these quantities are
the center-of-mass and, laboratory scattering ener-
gies, respectively.

Then,using the methods of Appendix C and the
previous section, it is simple to show that in the
limit of a;; -0

Returning to Eqgs. (1), (B2), and (B3) we observe
that the integrations over K and § cover quite dif-
ferent ranges. Because nuclei are weakly bound
systems, the range of § is restricted by p(q) to
quite small values. Thus the magnitudes of a.q
and a,q are small. We thus can safely drop the
factors e %°® and e™*?, However, the values
as2K? and a,%K? are not small for important parts
A of the integrals involved in obtaining the potentials.

__ 4 2_ (¢S _ Thus we are led to consider the potential derived
Vi) =- 2E [{b(’(w)g“b (mz Do) in Appendix C in the limit of vanishing nonlocality
and nonvanishing product ¢, K. It was shown there

S - -
“m? by(@)V-pV]. (14) [Eq. (C13)] that one can expect the form
.l 1w A
This is the form assumed by Fildt, and used to (Xlvixy= "'if;—"{ao(w)pm 2p(x) - za,(w)[V ?p(x)]
compare two different off-shell assumptions. How-
ever, as will be evident in Sec. @I, this form is ~[a,(w) +a2(w)]_§-p3}6(§-§’) ,

not at all equivalent to the one obtained keeping the
mass-shell condition. We would like to emphasize (15)
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with a,(w)=by(w) - (D, @) (s/m* - 1) b,(w), a,(w)

=3(1 - s/m?) b,(w), and @,(w) +a,(w)= - (s/m*)b,(w).

It should be emphasized that the derivation of Eq.
(15) is not entirely satisfactory. However, we
suggest that it could be considered as a phenome-
nological form, with guidance for the theoretical
parameters. When compared to Eq. (12), it sug-
gests that the major improvement to account for
the high-energy behavior of the pion-nucleon am-
plitude might be to modify the term proportional
to the density as indicated by (C13), i.e., an ex-
cellent phenomenological form might be obtained
by adding a potential

VA (x) = a(E)(s/m? - 1)b,(w)p(x) (16)
to the potential given in Eq. (12). We do not con-

sider the form (15) in the discussion of the nu-
merical results which follow.
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10 =
E [ experiMenTAL 3
10 -
3 F ]
s T ]
b'q L ]
v|o 7
I \ —
£ E
: 3
- ~
0" 3
L \/ .
= v _1
] | ] | | I
0 20 40 60 80 100 120 140

8 (deg)

FIG. 1. The differential cross sections for pion-12C
elastic scattering at 120-MeV laboratory kinetic energy.
The experimental points are the Binon et al. (Ref. 8)
data. Results are shown for the old (Ref. 7) gradient poten-
tial and for the new potential [Eq. (12)] using the Fermi-
averaged Sternheim-Auerbach parameters (Ref. 6).
Calculations were performed on the corrected version
of ABACUS-M., The new potential tends to build up
backward-angle cross sections and to move the minima
to smaller angles, which agrees with the corresponding
momentum space calculation Ref, 5). Also shown are
the results obtained using the (incorrect) off-mass-
shell [E = (% +u?)!/?] assumptions:

|©

III. RESULTS AND DISCUSSION

It has been shown that the first-order pion-nucle-
us optical potential, including off-shell and high-
energy behavior derived from a solution to the in-
verse pion-nucleon scattering problem, is of the
nonlocal form (9), given in detail by expression
(B11). The explicit form (B11) is expected to be
approximately equivalent to the potential in mo-
mentum space given in Ref. 5. However, the non-
locality is of short range, and nonlocal corrections
also arise from corrections to the impulse approx-
imation and from higher-order terms which seem
to be of the same order as these corrections to a
local potential. Thus we expect that one can use
an almost local potential in the first order and be
consistent with multiple- scattering expansion. Our
main result [Eq. (12)] is that this is possible and
that it is realized by adding a potential propor-
tional to the Laplacian of the density to the gradient
potential of Ref. 7.

Numerical results for pion-'?C scattering are
presented in Figs. 1-7 along with the experimental
data of Binon ef al.® Our object is not, in fact, de-
tailed comparison with experiment, but is to study
the accomplishment of the theoretical modifications

10— T | T l I
E E, =150 MeV 3
CN ——— GRADIENT POTENTIAL (OLD) ]
i —— NEW POTENTIAL 4
107 3
= { EXPERIMENTAL 3
i 4
10 = Kol]
3 F .
s f ]
- L 1
(Y(=] L .
wlo
= = Kelo]]
- P
L i 1
IO_’ = \ { =
. \ .
C \ .
1

8 (deg)

FIG. 2. The differential cross sections for pion-12C
elastic scattering at 150-MeV laboratory kinetic energy.
See Fig. 1 for other details.
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being considered. In the figures are shown the re-

sults with the form (12) and also with the usual gra-

dient form (A3). The Fermi-averaged theoretical
parameters of Sternheim and Auerbach® are used.
Let us first observe that the main feature for
which we have worked has been accomplished, that
with the new potential the large-angle scattering
has been increased to be of the order of the expe-

rimental data where measured. In comparison with

the old gradient potential, the new potential gives
a large enhancement for the scattering in the back-
wards hemisphere by 1 or 2 orders of magnitude
or more for the higher energies considered.
Moreover, a comparison with the results of

Landau, Phatak, and Tabakin shows that the gener-

al shape of the cross section is in good agreement
and for the most part the magnitude. At all ener-
gies, all of the qualitative features of the differen-
tial cross section of Ref. 5 (see Fig. 6 in that re-
ference) are reproduced. The major discrepancies
are that the new potential has deeper diffraction
minima and that the large-angle scattering some-
what less than in Ref. 5 (the largest difference in
the large-angle scattering being at 150 MeV). The
Coulomb interference, which was neglected in
Ref. 5, could account for this. Note also that the

3
0 e T T I | 3
E Eqr =180 MeV 3
B ——— GRADIENT POTENTIAL (OLD) ]
L ——— NEW POTENTIAL 4
10? | -
E [ ExPERIMENTAL 3
0 E
3 ]
E L
b,c‘, - 1
Ol
[ =t -
0" E
| |
0 20 40 60 80 100 120 140

6 (degq)

FIG. 3. The differential cross sections for pion-1C
elastic scattering at 180-MeV laboratory kinetic energy.
See Fig. 1 for other details.

potential (14) derived with an off-mass-shell as-
sumption gives quite different results (see Figs.
1, 4, and 6 for sample comparisons with the cor-
rect form).

There are many corrections which must be con-
sidered, many of which have been discussed in the
literature. One point of theory which can be made
concerns one general discrepancy between the the-
oretical results obtained with the potential (12) de-
rived here and the experimental cross sections, the
fact that the theoretical shape tends to be peaked
toward smaller angles. This probably can be ac-
counted for by many-body corrections. Thisisper-
haps most easily seen in the doorway isobar mod-
el which has been recently proposed.® In that work
it was observed that a difference between the bind-
ing energy of the A(1236) isobar and a nucleon in
the nucleus corresponding to a weaker interaction
for the isobar tends to produce just such a change
in the theoretical cross section.

Other results obtained in the paper are relevant
to the phenomenological use of our “almost local”
potential. It is suggested that the addition of a
term proportional to the density, given in Eq. (16)
with parameters guided by considerations in Ap-
pendix C, might account for important features of

O T T u l
E E_7 200 Mev 3
C N ——— GRADIENT POTENTIAL (OLD) ]
L —— NEW POTENTIAL d
I N OFF MASS-SHELL
0 e | experiMENTAL 3
C ]
10 & =
3 F ]
E f—~ -
ola | )
©o|o
| = —
10"
0

6 (deg)

FIG. 4. The differential cross sections for pion-12C
elastic scattering at 200-MeV laboratory kinetic energy.
See Fig. 1 for other details.
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FIG. 5. The differential cross sections for pion-12C
elastic scattering at 230-MeV laboratory kinetic energy.
See Fig. 1 for other details.
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FIG. 6. The differential cross sections for pion—”C
elastic scattering at 260-MeV laboratory kinetic energy.
See Fig. 1 for other details.

the pion-nucleon form factor not included in Eq.
(12). Another approach is to use the improved
potential defined by (C3), (C5), and (C7), which is
derived by an expansion in the form-factor parame-
ters. The local momentum approximation could
be used for the higher derivatives, giving a prac-
tical potential.

A theoretical point of great importance should be
stressed here. Our work has been guided by the
solution for the off-shell { matrix by Landau and
Tabakin.® Yet our “almost local” potential, which

represents all of the qualitative and most of the
quantitative features of the momentum-space cal-

culation corresponding to the nonlocal potential
(B13), makes use only of the general structure of
that two-body amplitude. This is most encourag-
ing. It leads us first to have strong hope that the
nuclear potential is weakly enough dependent upon
the off-shell behavior so that it might be possible
to explore nuclear correlations with a careful the-
oretical and experimental study of elastic scatter-
ing. Secondly, it now seems more likely that with
a convenient, “almost local” coordinate-space po-
tential one can calculate accurate pion wave func-
tions to use in inelastic scattering and reaction
studies. One must remember, however, that some
of the basic theoretical problems associated with
the treatment of the scattering of pions in a nuclear

10— T T T T T E
E E,;ZGOMeV i
[ ——— GRADIENT POTENTIAL (OLD)
i ——— NEW POTENTIAL |
o E | exeermenTaL E
E \ 3
10 J_.on
E E
e F 1
= \ ]
oiT \
1 ‘E— \\ —é 001
L \ ]
- ] \ - 4
10" 1 / \\‘;
3 \ 3
r \ ]
- \ -
- \ -
1 ] ] ) ] I
[0} 20 40 60 80 100 120 140

8 (deg)

FIG. 7. The differential cross sections for pion-12C
elastic scattering at 280-MeV laboratory kinetic energy.
See Fig. 1 for other details.
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medium by a bound nucleon might give important
modifications. Thus, even if the suggested poten-
tial is correct in form, the magnitude and energy
dependence of the parameters can be expected to
differ from the theoretical values. We have not
attempted here to review the work which has been
done in estimating such corrections.

In summary, the potential of Eq. (12) is presented
as being a first-order potential which incorporates
a number of important theoretical features. Its
form is that of a correct Lorentz transformation
on the gradient potential of Ref. 7. However, it
takes into consideration not only the correct Lorentz
transformation, but also the proper threshold be-
havior of the individual partial waves and the gen-
eral features of the solution of the off-shell form
of the pion-nucleon scattering matrix derived from
a separable potential. It is suggested that our new
form is a satisfactory first-order potential, and
that for theoretical improvements a great number
of many-body effects should be incorporated.
(However, improved phenomenological forms are
also suggested.) This is an important program in
which we, as well as a number of others, are in-
volved.

For fruitful discussions and assistance in the
numerical work we would like to acknowledge Dr.
R. A. Eisenstein, Dr. G. Miller, Dr. W. Wang, and
S. Phatak. We also wish to thank the Los Alamos
Scientific Laboratory, where this work was initiat-
ed, for their hospitality.

APPENDIX A. KINEMATICS AND DEFINITIONS

In the body of the paper two amplitudes are de-
fined, &’|¢/(E)|K) and (x'|t(w)|k), the off-shell
scattering matrices in the pion-nucleus and pion-
nucleon center-of-mass systems, respectively.
Associated with these there are 12 momentum
four-vectors, which are now defined. For the pion
and nucleon in the states [x), [k’), |k), and [k’)

en by

the pion has three-momenta &, K/, Kk, and K’, re-

spectively ; while inthese states the nucleon has mo-
menta - %, - &, Ky, andk}, respectively. Sincewe
deal here entirely with mass-shell quantities, we can
define the eight momentum four-vectors

E.K), %), (Eyk),-7),

(E, ('), &), (Exlk'), -%"), (A1)
(E.(R),K),  (Ey(ky), ky),

(E,(0),K), (Ey(}), k),

where E (k) = (k* + 1?)"2 etc., and Ey(k)= (k% + p2)/?
etc. The units Z=c =1 are used throughout. In the
pion-nucleon center-of-mass system the pion and
nucleon have three-momenta p, -p, respectively,
while in the pion-nucleus center-of-mass system
they have momenta j, and Py, respectively. We
thereby define the momentum four-vectors for the
pion and the nucleon in the center-of-mass and
laboratory systems as

(wm 5); (wlﬁ "5);
(Em ﬁL)’ (ENy ﬁN)

The invariant variable s= (w, +wy)?= (w)?.

Working at low and intermediate energies one can
take advantage of the large mass of the nucleus and
the nucleon and approximately equate the pion-nu-
cleon laboratory and the pion-nucleus center-of-
mass systems. This is done in the numerical cal-
culations presented here.

A small correction could be made to account for
the transformation from the pion-nucleus laborato-
ry to the pion-nucleus center-of-mass systems.
This effect can be included approximately in Eq.
(12) by introducing a factor {(w)=p,,/P.m., Which is
the ratio of the pion momentum in the pion-nucleus
laboratory system ( B,p) to the pion momentum inthe
pion-nucleus center-of-mass system (f., ). The
optical potential including this transformation is giv-

(A2)

FIVIZ) = - gt M 2000) - 550017 +-;-[%§‘1(w)—l]b,(w)(vzp(x))}é(i-i').

Since £=~1 at the energies considered in this paper,
we do not include this correction. Note also that in
the present work we use Ey~ m; however, this
does not restrict the nuclear Fourier components,
which appear in nuclear form factors.

Here we consider scattering only from spin-zero
systems, although the work can easily be extended
to the general case. This results in the optical po-
tential depending only upon the two parameters in-

troduced in Ref. 7. All of the results of the present
work are expressed in terms of the familiar pa-
rametrization of Auerbach and Sternheim, in sucha
manner that the widely distributed computer code
ABACUS-M'° can readily be used. The Auerbach-
Sternheim parameters are defined by the gradient
potential

2E, V(x)= -A bo(w)B,, 2P(x) +A b, (w) T - p(x)¥ , (A3)
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where for a spinless nucleus with Z protons and
N=A - Z neutrons

Abg(w)p,, 2= (41r/31q£\,;)(s/rrr"‘)[Z(Zcu1 +a,) +3Na,],
Aby(w)=4n/3p,, *Ns/m?)Z (2055 + g, +4a,y5 +20,))
+3N (204, +a,,)].  (A4)

The conventional notation is used for the s- and
p-wave phase shifts with 6, and b, the /=% and 3 I
=0 phase shifts, and for /=1, the phase shifts are
labeled by 5(21)(2.” .

As a consequence of the theory presented here,
it is shown that the “almost local” form of the
first-order optical potential should be of the form

[Eq. (12)]
2E, V(x) = - Alagh,, *p(x) - 3a,V2p(x)~(a, +a,)V-p(x)¥].
(A5)

The form of “Klass 3” in the ABACUS-M code has
been used with a,, a,, a, being used instead of b,
by, b, in Ref. 10 to try to minimize confusion.

with

(ilVJi/) =Ae+2653%b2a(w)(2")-3/2fdakdsklei(i:'.;-.\:-;')p(l I‘E_E,I )e .,182(,,2+k,2) ,

APPENDIX B. GENERAL FORM FOR THE FIRST-ORDER
OPTICAL POTENTIAL

In this Appendix we derive the first-order optical
potential corresponding to the m-nucleon off-shell
t matrix given by Egs. (3)-(8). Only s and p waves
are considered for the two-body scattering. Fur-
+her, we make use of the numerical results of

lef. 5 to recognize that the two s-state form-fac-

or parameters are almost equal, and that the

our p-state form factors are also approximately

he same. Thus Eq. (8) can safely be replaced by

e 120

&1j () e (B1)
Note also that the form factor parameters which
appear in (B1) are a,;*m?/s, which are approxi-
mately constant.

Inserting Eqs. (3)-(7) and (B1) into (1), one ob-
tains

(XIVIZ) = XIVR) + XIV, [R') +(XV6) X,  (B2)

(B3)

EIV, Ty =Ae* 2 b (w) (2m) "2 f Pra* k' ke F X T 50 p(|§ —kr)e s

&V, |7y =Ae 20 b(0)(20) 72 [ PRARE (WE, (k') = By (RE ()]t FF30p( & - Fr[)e a0 or™)

where o(q)=(2mr) 2] d’ze"'a';p(z) and using the notation of Appendix A

a(w) = = by(w)p,2/[2E,(27)%),

b(w) = — bl(w)<-r%>/[2E,r(2rr)3].

(B4)

In order to give a convenient explicit form for the potential, we express the density as a sum of mod-

ified Gaussians
pla) =oAL, Nz et P,
1,7

which has the Fourier transform

8’ 1 2
_ _ 1) — -q%/4C
p(q)_l'ZJ‘A(I,J)( 1) ac]-’ 2 2013/23 1,

Introducing center-of-mass and relative coordinates

(B5a)

(B5b)



9 PION-NUCLEUS COORDINATE-SPACE POTENTIAL 197

one can immediately evaluate the first two terms in (B2). For the s wave (B3) becomes

(R|V %)=

205 Py

Aa(w) _ (21 )32 fd3Kdaqe‘(i'r*a'E)P(q)e‘“sz(zxz*“z/2’, (B6)

which upon introducing the form (B5b) can easily be shown to be

1

(X[Vi| %) =

-Ab (w)P 2(m/2)*2 J
2B e Pt oy o AN ;

2
[1 +2Ca, a3 e heste

-CiR?/ (1+2Cqas?) ,

(B7)

The second term can also be done trivially, resulting in

Ab,(w)(s/m*)(m/2)*?
2E e-2u Zj:h (2”)3

<§|Vp‘§’> =

The third term in (B3), Vs, which we refer to
as the isotropic p-wave term, is more difficult to
evaluate. We derive a convenient form for this
term making use of an approximation for the factor
[E (K)E (k') = E,(R)E,(k')] which results from two
observations. First, since the nucleus is a loosely
bound system, p(g) is a rapidly decreasing function
of ¢, and large values of IE —E’I do not contribute
much to the momentum integrals defining the opti-
cal potential. It is this observation which forms
much of the basis for the present work, and gives
us confidence that a useful optical potential can be
derived by incorporating the main features of the
off-shell and high-energy m-nucleon behavior into

is
Ab, (@)1 = s/m?)(n/2)
2E e P At (2m)3

<i|Vp($)|x’)z -

Summarizing our results, the optical potential is

1

ZA(I I(-1)!

8’ 2 -
ZA(I NNV 567 7803, T7ays Ve /odemaR 0y, .

(B8)

the many-body formalism without completely re-
producing the details of the off-shell two-body col-
lisions. As a result, for large magnitude of * and
k' in the integral (B3) (i.e., % and %’ > L) one can
use

B, (B, () = By (DE, () =5 (7 ~ )62 + 7).
(®9)

Observing, secondly, that the identical form (B9)
is correct for the low k and &’ parts of the integral,
we make use of the approximation (B9) in evaluat-
ing the isotropic p-wave term in (B3). The result

&lVIz)= -[(A/2E, )8(2n>3f2]ZA(1 I(=1)"=>

X [bo(w)&bze" 2 /B"sze -CIR /( 1+2Cra 2)

Fby(W)(1 = 5/mP)(V, % + 1y g2)e " Phasdy

+b,(w) %3

This potential includes the effect of the Lorentz
transformation and the off-shell and high momen-
tum behavior given in Eqgs. (6)-(8), and thus should
be quite similar to the momentum space formula-
tion of Ref. 5. There is no difficulty including the
Coulomb interaction, which is essential especially
for higher-mass nuclei.

2 2
-Cr R [(1+2Crag?)

5C; O 9,2+ Ve egarasiern® | (B10)
1
aC; 7 [1+2C,a,2]%%a
(B11)

2
”2/Bﬂp2e'C[R /(1+201a_,2)'§ ]
o

r

Although these nonlocal potentials involve a
lengthier calculation than the “almost local” poten-
tials now being used, there is no real difficulty in
principle or practice in using the potential (B11).
Moreover, the higher-order terms in the multiple-
scattering formulation of the optical potential in-
volve nonlocal potentials. Thus, if one is to study



198 L. S. KISSLINGER AND F. TABAKIN 9

particle correlations, which are introduced by the
higher-order terms, it is essential to use a proper
nonlocal potential for the first-order potential. In
particular, it is the large-angle scattering from
which one hopes to learn about particle correla-
tions. Since the nonlocality plays a specially
important role for large-angle scattering, it is
essential to include these corrections to the first-
order potential in any program which studies cor-
relations. We suggest that the potential (B11)
should be an adequate starting point.

APPENDIX C. LIMITS FOR SMALL FORM-FACTOR
PARAMETERS

In this Appendix we explore some of the conse-
quences of the observations that the form-factor
parameters a,; are small compared to the nuclear
radius, and that the nonlocality found in the previ-
ous Appendix is small compared to the nuclear
dimensions. Referring to Eqs. (B2), (B3), and

equation. One finds that (C1) becomes

x|V %) =

A - -
—ZE [bo(w)ﬁhbzp(x)+2asz(v -p(’)v +i—v
m

(B6), one sees that the form-factor parameters ap-
pear in the integrals as a factor

e'ﬂz(ﬂ'z* ?/2) .

As has been discussed above, the nuclear form
factor p(g) limits the qzmtegral so that it is safe
to drop the factor e, However, one cannot
use this argument to drop the factor e 2@%)*, we
look at the effect of this factor in two ways.

(1) Limit of a,;, very small. Assuming that the
a,; - 0;we use the expansion e "X +¢*/2)x1_ 242K?2,
Let us look first at the potential V; form (B3).

xI%lx),, -o—Aa(w)(zﬂ)"’zfd’kdsq(l +a,%v, %)

x g ® T3 Bp(g).
(cy)
In carrying out the integrals, which involve deriv-

atives of 0 functions, one must remember that this
is an operator to be used in a Schrédinger-like

P(x)]o(x - x7). (c2)

The meaning of this operator as used in a Schrédinger-like equation is

(RITL10)= =5 bol@Mis(P(3)9(0) + 2a,(F-0(0)F o(x) + [17%0(0)] o(0)}). (c3)

In a similar manner V, has the approximate form

EIVF)= - Ab@)ENT [dRdBP2(1-200,) G 1% G-D. § oo F- Ty,

(cq)
With the same considerations used to obtain (C3), one finds
2
$AA ¢>- b;(w) [V -0V ¢ +2a, {VP VV2¢ + 4V(v?0)- Vo +< 373;‘10( ))(Z rg— )}] ’
(C5)
and finally, for the isotropic p wave
- - A 1
(X| Vo)l X" T (1 - %)bl(w)w f(Vrz +3 VR)P(R)(1 +2a,%v,2)6(r). (cs)
Proceeding as above, one finds
(2] Vysy @) = 3E. (1 - %)bl(w)[ap-% +390)¢+2a,2 {3V (V) ¥ ¢ + 3(v*(v20))p +.... }]. (o)

From (C3), (C5), and (C7), one has the small a,; limit of the potential [see Eq. (12)].



|

(2) Small a,; with high-energy behavior. It is
also interesting to look at the form one obtains
from directly using the approximation

e—a2(21’2+q2/2) g2 2K3 (CS)

3

for simplicity)

EIVIR") =

Looking at the last term we see that the isotropic
P wave becomes in this approximation

CNAB D)

Noticing that

az—nljw—zage"’/“z:;a(r), (c11)

one observes that the first two terms in (C9) go to
the a - 0 terms in (C3) and (C5) for the s and p
wave, respectively. Of course, in this limit the
form (C10) reduces to the a - 0 limit of V,, in Eq.
(C7). This can be seen by evaluating the deriv-
atives of the 6(r), as discussed above.

It is interesting to consider the form (C10) with-
out taking the limit @ - 0. The first term is approx-
imately

(C12)

v =% (1- 5 g rora- %),

.or one half of the a -0 limit of V(. Let us study
the remainder of (C10) without taking the limit as

a -0, The last term in (C10) is small for small a,
but in general this term is not small in the a-0

__bx.grﬂ.( _;> %\,VR p(R)+ [ 3 +4L‘;]P(R)}m .
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discussed above, without letting @ - 0. This incor-
porates the high momentum cutoff of the pion-nu-
cleon form factor into the optical potential. Using
(C8) in (B2), (B3), one finds (let us use a; =a, =a

2%, {o(w)Pm,P bl(w) v, PR)V, —b(w)(l——)(v +4va“)p(R)}We"%“’. (C9)

e~"?/8a?

(C10)

limit. However, in the limit of fixed a, dropping
nonlocality, we would drop this term. In this ap-
proximation

m)[.v’p(x)— 3,p(x)]0(§ x').
(C13)

- -~ A
(X Vs | X" =§-5;<1 -

Combining results, one has the form

+%<;sz. - 1)b1(w)v2p(x) -

V1) = Db, @)o(e)

50,7 -pa}
X6(X -X'). (C14)
Clearly, the potential (C13) does not represent a

well-defined limit, but suggests a form for a local
potential.
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