# Decay of the 22- $\mu$ s isomeric state of ${}^{38}K^{\dagger}$

S. W. Yates, F. J. Lynch, R. E. Holland, I. Ahmad, and A. M. Friedman

Argonne National Laboratory, Argonne, Illinois 60439

(Received 10 January 1974)

The decay of the 22.5- $\mu$ s isomer of <sup>38</sup>K has been studied by observing the delayed  $\gamma$  rays following the  ${}^{24}Mg({}^{16}O, pn){}^{38}K$  and  ${}^{35}Cl(\alpha, n){}^{38}K$  reactions.  $\gamma$ -ray singles and  $\gamma$ - $\gamma$  coincidence measurements were made and the reaction threshold for production of the isomer was determined for the  $(\alpha, n)$  reaction. The 3458-keV metastable state decays by an apparent E1 transition ( $\alpha_T = 0.58$ ) to a level at 3420 keV and by an 812-keV transition to a level at 2646 keV. The isomerism is understood in terms of the selection rules for the decay of E1 transitions in T = 0 nuclei. A weak-coupling estimate of the excitation energy of the 7<sup>+</sup>  $(1f_{1/2})^2$  state in <sup>38</sup>K yields a value in excellent agreement with that observed for this isomer.

RADIOACTIVITY <sup>38</sup>K (3458-keV level) [from <sup>24</sup>Mg(<sup>16</sup>O,pn), <sup>35</sup>Cl( $\alpha$ ,n)]; measured  $E_{\gamma}$ ,  $I_{\gamma}$ ,  $T_{1/2}$ ,  $\gamma - \gamma$  coin,  $(\alpha, n)$  reaction threshold. Natural targets. Ge, Ge(Li), NaI(Tl) detectors.

#### I. INTRODUCTION

The self-conjugate nucleus <sup>38</sup>K has previously been studied primarily by charged-particle reaction spectroscopy.<sup>1-3</sup> These measurements have yielded spectroscopic factors and l values for several low-lying states but have provided little information about the levels above 3 MeV in excitation energy. Recently, particle- $\gamma$  coincidence studies<sup>4,5</sup> have significantly extended the level structure of this nucleus, and Hasper, Smith, and Smulders<sup>4</sup> have investigated the levels of <sup>38</sup>K to 3.7 MeV by means of  $\alpha$ - $\gamma$  angular correlations following the excitation of levels by the  ${}^{40}Ca(d, \alpha)$ -<sup>38</sup>K reaction. In that work it was observed that a small peak in the  $\alpha$ -particle spectrum corresponding to an excitation energy of about 3460 keV showed no coincidences with  $\gamma$ -rays and it was suggested that this level must have a lifetime appreciably longer than 50 ns.

This paper describes our investigations of a new metastable state at 3458 keV which has been produced using the <sup>24</sup>Mg(<sup>16</sup>O, pn)<sup>38</sup>K and <sup>35</sup>Cl( $\alpha$ , n)-<sup>38</sup>K reactions. As this study was being concluded, van Driel et al.<sup>6</sup> reported their measurements of this isomeric decay in which the  $(^{16}O, pn)$  reaction was used for production of the isomer. The results given here are in good agreement with their work.

### **II. EXPERIMENTAL PROCEDURES**

The 22- $\mu$ s <sup>38</sup>K activity was produced in bombardments of thick magnesium metal targets with 32- to 56-MeV <sup>16</sup>O ions or by bombarding either PbCl<sub>2</sub> or AgCl with 10- to 16-MeV  $\alpha$  particles. The ion beams from the Argonne tandem accelerator were pulsed after acceleration by vertical deflection across a slit by means of an electric field<sup>7</sup> and the decay was observed between beam pulses.  $\gamma$ -ray pulse-height and time information were stored in a magnetic-core memory in  $4096 \times 16$ -,  $1024 \times 64$ -, or  $512 \times 128$ -channel arrays.

The detectors used in these measurements were a 23-cm<sup>3</sup> Ge(Li) spectrometer with 2.9-keV energy resolution full width at half-maximum (FWHM) for the 1332-keV  $\gamma$  ray of <sup>60</sup>Co and a 4-cm<sup>3</sup> intrinsic Ge detector having a resolution of 800 eV at the 59-keV  $\gamma$  ray of <sup>241</sup>Am. Energy and efficiency calibrations were performed using standardized radioactive sources.

Figure 1 shows  $\gamma$ -ray spectra measured for two equal time intervals following the beam pulse. Except for the peaks attributed to the decay of the 8-min ground state of <sup>38</sup>K, all of the labeled  $\gamma$  rays decay with a lifetime of  $32.4 \pm 0.8 \ \mu s$  $(t_{1/2} = 22.5 \ \mu s)$ . A list of  $\gamma$  rays attributed to this decay is given in Table I. Van Driel et al.<sup>6</sup> have also suggested a  $\gamma$  ray at 2187 keV with an intensity approximately 1% that of the 2646-keV  $\gamma$  ray. This transition was not confirmed by the present measurements but it is possible that such a weak  $\gamma$  ray would be undetected due to the background of  $\gamma$  rays in that region.

 $\gamma$ - $\gamma$  coincidence measurements were performed using the Ge(Li) or Ge detector in conjunction with a  $10.2 \times 10.2$ -cm NaI(Tl) detector. Coincidence gates were set on the 2646- and 3420-keV photopeaks in the NaI spectrum. The 38-keV  $\gamma$  ray was observed to be the only  $\gamma$  ray in coincidence with the 3420-keV  $\gamma$  ray (see Fig. 2), while the 774and 812-keV  $\gamma$  rays were detected in coincidence with the 2646-keV  $\gamma$  ray.

9

1857

The reaction threshold for formation of the 22-  $\mu$ s isomer by the <sup>35</sup>Cl( $\alpha$ , n)<sup>38</sup>K reaction was determined by observing the intensity of the 38-keV  $\gamma$  ray as a function of bombarding energy and integrated beam. Figure 3 illustrates the experimental data. The solid curve represents a best fit of the data to an  $(\epsilon - \epsilon_0)^{1/2}$  functional dependence,<sup>8</sup> where  $\epsilon$  is the bombarding energy and  $\epsilon_0$  is the threshold energy of the reaction. The measured reaction threshold of  $10.39 \pm 0.03$  MeV is in excellent agreement with that calculated using the reaction Q value<sup>9</sup> for an excitation energy of 3458 keV for the isomeric state.

## **III. DECAY SCHEME**

The decay scheme deduced from the present measurements is shown in Fig. 4 and is consistent with that proposed by van Driel *et al.*<sup>6</sup> A total conversion coefficient of  $0.58 \pm 0.18$  is determined for the 38-keV transition from an intensity balance and is in excellent agreement with that expected for a pure *E*1 transition, although a predominantly *M*1 transition with some *E*2 admixture cannot be



FIG. 1.  $\gamma$ -ray spectra from <sup>24</sup>Mg (<sup>16</sup>O, *pn*) reaction at 44-MeV bombarding energy. Time intervals are indicated and single- and double-escape peaks are denoted by \* and \*\*, respectively.

TABLE I.  $\gamma$  rays observed in the decay of 22.5- $\mu s$   $^{38}K$  isomer.

| Energy<br>(keV)  | Relative intensity |
|------------------|--------------------|
| $37.9 \pm 0.2$   | 81 ± 8             |
| $773.9 \pm 0.3$  | $75 \pm 6$         |
| $811.8 \pm 0.3$  | $27 \pm 3$         |
| $2645.9 \pm 0.3$ | 100                |
| $3420.4 \pm 0.4$ | 53 ± 5             |

ruled out.

A level of 2646 keV has been observed in various charged-particle transfer reactions<sup>1-3, 10</sup> and, although definite spin assignments are not possible, this level could have spin of 2, 3, or 4 and is of apparent negative parity. Our preference for the  $(4^{-})$  assignment shown on the level scheme will be discussed later.

The 3410- to 3470-keV region appears to be somewhat complicated with at least three levels in this range. The  $(d, \alpha)$  reaction study of Jänecke<sup>1</sup> established levels at 3420, 3440, and 3470 keV. The latter level which is only weakly populated in  $(d, \alpha)$  probably corresponds to the 3460-keV  $\alpha$ -particle group which showed no coincidences with  $\gamma$  rays in the  $\alpha$ - $\gamma$  angular correla-



FIG. 2. Low-energy region of the <sup>38</sup>K-decay spectrum showing the  $\gamma$ -ray singles spectrum and the spectrum obtained by gating on the 3420-keV  $\gamma$  ray.





10.6

Alpha-Particle Energy (MeV)

10.7

10.8

10.5

10.4

tion measurements.<sup>4</sup> The level placed by Hasper, Smith, and Smulders<sup>4</sup> at 3416 keV has the same branching pattern for  $\gamma$  decay as the 3420-keV level observed in this study. In addition, a level at approximately 3430 keV has been seen in the  $(d, \alpha\gamma)$  and  $({}^{3}\text{He}, p\gamma)$  work of Collins *et al.*<sup>5</sup> and probably corresponds to the 3443 ± 10-keV level observed by Hasper, Smith, and Smulders. This level is most likely the 2<sup>+</sup>, 0 state identified<sup>2,3</sup> in the (d, t) and  $({}^{3}\text{He}, \alpha)$  reactions.

In very recent measurements<sup>11</sup> using the  $(\alpha, d)$ reaction, which has been shown to preferentially populate  $(1f_{7/2})^2_{70}$  levels, a peak at 3.44 MeV has been observed with cross sections having an angular distribution similar to other known 7<sup>+</sup> states of nuclei in this region. This 7<sup>+</sup> assignment is thus associated with the isomeric level at 3458 keV seen in the present work. The fact that this state is strongly populated in the  $(\alpha, d)$  reaction but only weakly populated in the  $(d, \alpha)$  reaction is consistent with the two-particle nature of this state. Also the observed greater population of the isomer, relative to the ground-state population of <sup>38</sup>K, in the (<sup>16</sup>O, pn) reaction than that in the ( $\alpha$ , n) reaction is consistent with the high-spin assignment. An optical-model calculation with the computer code ABACUS<sup>12</sup> using the parameters for <sup>4</sup>He and <sup>16</sup>O described in Refs. 13 and 14 yields an average angular momentum of  $6\hbar$  for the compound system formed by <sup>4</sup>He-ion bombardment



FIG. 4. Decay scheme for the  $22.5-\mu s$  isomeric state of <sup>38</sup>K. Transition intensity is proportional to arrow width.

while <sup>16</sup>O ions can carry in more than twice as much average angular momentum.

## **IV. DISCUSSION**

The decay of the <sup>38</sup>K isomer can be understood in terms of the shell model where the isomeric state has the  $(1f_{7/2})^2_{70}$  configuration. The 7<sup>+</sup> level exhibits two decay modes; one to the probable  $4^-$  level at 2646 keV and another by an *E*1 transition to the level at 3420 keV which is a likely  $6^-$  level. The shell-model calculations of Engelbertink and Glaudemans<sup>15</sup> for A = 38 nuclei describes the lowest-lying negative-parity states by the configurations  $(2s_{1/2})^4(1d_{3/2})^5\rho$ , where  $\rho$ denotes a particle in the  $1f_{7/2}$  or  $2p_{3/2}$  shell. These calculations predict  $4^-$  and  $6^-$  levels at 2.45 and 3.80 MeV, respectively, which receive their main contributions from the  $(2s_{1/2})^4(1d_{3/2})^5$  $\times 1f_{7/2}$  configuration.

In the case of the 38-keV E1 transition the observed hindrance factor of  $10^6$  can be understood by considering two sources. This retardation can be attributed to the characteristic inhibition of E1 transitions in a T=0 self-conjugate nucleus<sup>16</sup> and the *j* forbiddeness<sup>17</sup> associated with the  $f_{7/2}$  $\rightarrow d_{3/2}$  transition. The transition rate of the competing unhindered 812-keV (assumed E3) transition is in excellent agreement with single-particle estimates.

The excitation energy of an expected  $7^+$  level in <sup>38</sup>K can be estimated for weak coupling by the following calculation<sup>18</sup> where the excitation energy of the  $7^+$  level is merely the difference between

$$\begin{split} E_{70} &= \epsilon_{\pi} + \epsilon_{\nu} + 2\epsilon_{\pi}^{-1} + 2\epsilon_{\nu}^{-1} + E_{70}[(1f_{7/2})^2] \\ &+ E_{00}[(1d_{3/2})^{-4}] + 8a + 2\epsilon_C \,, \end{split}$$

and the  $(1d_{3/2})^{-2}$  ground-state configuration

$$E_{30} = \epsilon_{\pi}^{-1} + \epsilon_{\nu}^{-1} + E_{30}[(1d_{3/2})^{-2}],$$

where  $\epsilon_{\pi}$  and  $\epsilon_{\nu}$  represent the  $f_{7/2}$  proton- and neutron-particle energies and  $\epsilon_{\pi}^{-1}$  and  $\epsilon_{\nu}^{-1}$  are the  $d_{3/2}$  proton- and neutron-hole energies, a=0.248MeV,  $\epsilon_{C}$  is the Coulomb interaction energy between the  $d_{3/2}$  hole and the  $f_{7/2}$  particle (-0.323 MeV in this region), and the remaining terms represent the interaction energies for the respective configurations. The excitation energy is then

$$\Delta E = (\epsilon_{\pi} + \epsilon_{\pi}^{-1}) + (\epsilon_{\nu} + \epsilon_{\nu}^{-1}) + E_{70}[(1f_{7/2})^{2}] + E_{00}[(1d_{3/2})^{-4}] - E_{30}[(1d_{3/2})^{-2}] + 8a + 2\epsilon_{C}$$

If all energies are calculated relative to closed-

- <sup>†</sup>Work performed under the auspices of the U. S. Atomic Energy Commission.
- <sup>1</sup>J. Jänecke, Nucl. Phys. <u>48</u>, 129 (1963).
- <sup>2</sup>H. T. Fortune, N. G. Puttaswamy, and J. L. Yntema, Phys. Rev. <u>185</u>, 1546 (1969).
- <sup>3</sup>J. A. Fenton, T. H. Kruse, N. Williams, M. E. Williams, and R. N. Boyd, Nucl. Phys. <u>A187</u>, 123 (1972).
- <sup>4</sup>H. Hasper, Ph. B. Smith, and P. J. M. Smulders, Phys. Rev. C 5, 1261 (1972).
- <sup>5</sup>W. K. Collins, D. S. Longo, B. P. Hichwa, J. C. Lawson, and P. R. Chagnon, Bull. Am. Phys. Soc. <u>18</u>, 602 (1973); W. K. Collins, D. S. Longo, L. A. Alexander, E. Berners, and P. Chagnon *ibid.* <u>17</u>, 534 (1972).
- <sup>6</sup>M. A. van Driel, G. A. P. Engelbertink, D. Bucurescu, H. H. Eggenhuisen, J. Konieczek, and R. L. W. van de Weg, in *Proceedings of the International Conference on Nuclear Physics, Munich, 1973*, edited by J. de Boer and H. J. Mang (North-Holland, Amsterdam, 1973), Vol. I, p. 205.
- <sup>7</sup>F. J. Lynch, K.-E. Nysten, R. E. Holland, and R. D. Lawson, Phys. Lett. 32B, 38 (1970).
- <sup>8</sup>J. M. Blatt and V. F. Weisskopf, in Theoretical Nuclear

shell <sup>40</sup>Ca, the numerical values can be obtained from the differences in binding energies of the appropriate nuclei. For example  $\epsilon_{\pi}$ , the binding energy of an  $f_{7/2}$  proton to the <sup>40</sup>Ca core, is given by the difference between the binding energies of <sup>41</sup>Sc and <sup>40</sup>Ca. The interaction energy of the  $(1f_{7/2})^2_{70}$  configuration must also take into account the observed energy (618 keV) of the known 7<sup>+</sup> state in <sup>42</sup>Sc. A value of  $\Delta E = 3.37$  MeV in remarkable agreement with the measured value of 3.46 MeV is obtained from this calculation and lends support to the  $(1f_{7/2})^2_{70}$  interpretation of the isomeric state in <sup>38</sup>K.

Note added in proof: Recent g-factor measurements<sup>19</sup> of the 22- $\mu$ s isomeric state in <sup>38</sup>K yield a magnetic moment consistent with the  $(1f_{7/2})^2_{70}$  interpretation for the 3458-keV level.

We wish to thank R. D. Lawson for several helpful discussions.

- Physics (Wiley, New York, 1958), p. 396.
- <sup>9</sup>N. B. Gove and A. H. Wapstra, Nucl. Data <u>A11</u>, 145 (1972).
- <sup>10</sup>K. Suzuki, N. Takahashi, T. Itahashi, and T. Wakatsuki, J. Phys. Soc. Jap. <u>30</u>, 1523 (1971).
- <sup>11</sup>R. Kouzes and R. Sherr, Bull. Am. Phys. Soc. <u>18</u>, 602 (1973).
- <sup>12</sup>E. H. Auerbach, Brookhaven National Laboratory Report No. BNL-6562, 1962 (unpublished).
- <sup>13</sup>W. J. Wallace, K. R. Knuth, and R. H. Davis, Phys. Rev. C 2, 1738 (1970).
- <sup>14</sup>J. V. Maher, G. H. Wedberg, K. A. Erb, J. C. Peng, and J. L. Ricci, in Symposium on Heavy-Ion Transfer Reactions, Argonne, 1973 (unpublished), p. 597.
- <sup>15</sup>G. A. P. Engelbertink and P. W. M. Glaudemans, Nucl. Phys. A123, 225 (1969).
- <sup>16</sup>L. A. Radicati, Phys. Rev. <u>87</u>, 521 (1952).
- <sup>17</sup>D. H. Wilkinson, in *Nuclear Spectroscopy*, edited by F. Ajzenberg-Selove (Academic, New York, 1960), p. 880.
- <sup>18</sup>R. D. Lawson, in Nuclear Phenomenology (North-Holland, Amsterdam, to be published).
- <sup>19</sup>A. Iordachescu, E. A. Ivanov, and G. Pascovici, Phys. Lett. 48B, 28 (1974).

1860