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Particle-hole interactions and vibrational states*
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(Recejved 16 November 1973)

A method is presented for the treatment of particle-hole residual interactions that is both
simple and extremely accurate. This method is compared with the random-phase approxima-
tion, Tamm-Dancoff approximation, and other approximations in the schematic model of
Brown and the monopole model of Lipkin, Meshkov, and Glick.

I. INTRODUCTION

The Tamm-Dancoff approximation (TDA) and the
random-phase approximation (RPA) have served
as a basis for the calculation of the properties of
vibrational states in spherical and deformed nu-
clides. In spite of the widespread use of these ap-
proximations, they suffer from serious inadequa-
cies. The TDA doeq not take into account the
ground-state correlations induced by residual in-
tex actions. For a sufficiently large interaction,
the RPA gives unphysical imaginary eigenvalues.
Further, half of the eigenvalues obtained with the
RPA are spurious for all interaction strengths. In
this work we develop an approach that has none of
these shortcomings.

Our approach to the problem of particle-hole
residual interactions is based on the treatment of
particle-particle residual interactions that we have
presented previously. This approach is more ac-
curate than the RPA and other higher-order ap-
proximations that we have encountered. In the
case of a separable residual interaction, our meth-
od gives dispersion relations of the TDA form;
i.e., there are not any spurious solutions. Because
of the simplicity and accuracy of our approach, we
feel that it can provide a useful starting point for
the treatment of more complicated particle-hole
residual interactions than we consider here.

In Sec. II we develop the formalism for treating
particle-hole residual interactions. In Sec. III we

apply this treatment to schematic models and

compare our results to other approximations.

II. FORMALISM

The treatment of particle-hole interactions con-
sists of two parts: (1) the derivation of equations
for the description of excited states and (2) the
construction of an explicitly correlated ground
state. We consider a Hamiltonian with a single
multipole particle-hole residual interaction. AQ

orbitals are assumed to have unique partners in
the residual interaction.

The Hamiltonian of the system we study is

&=+~a&n —Q van;scTmsT s
25; Sc

where T 8 is defined as

+ ~
Tcf 8 Qofge 0 gQ ~ o

The letter N is used to denote a fermion occupa-
tion probability and at (a) are used to denote fer-
mion creation (annihilation) operators. Numbers
are used as indices for particle orbitals and Latin
letters are used as indices for hole orbitals.
Greek letters are used as indices for both particle
and hole orbitals. The negative indices are used
to indicate time reversal partners in the doubly
degenerate Nilsson orbitals that we have in mind.

The starting point for our treatment of vibra-
tional states is the well-known commutation rela-
tion of a particle-hole pair with the Hamiltonian

t

= (t~ —e~)a~ a~ -Q V~~. ~~ T2~[N~(1 —N~) —N~(1 —N~)]

—V~. 4~(a~ a~+ a ~ a~)[N~(1 —N~) —N~(I —N~)],

where the prime on the summation in Eq. (8) indi-
cates that the summation does not include 4d. We
shall ignore the final term in Eq. (3) and the prime
on the summation in our development in order to
keep the equations uncluttered. It is a simple mat-
ter to take these features into account, and we do
in the numerical results that we present. Denoting
the excited state of interest as

~ p) and the cor-
related ground state as ~0), we obtain from Eq. (3)
the relations

&yl ~, [&,(I-&.)- X.(1-&,)] ~O& (4)
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and

[-(e4 —~d) ~-]&pl a'da. lo&

N, (1—N )+N (1 —N )=1,
Nd(1 —N4) + Nd(1 —Nd) = 1

and we also note that

(6)

V2~. ~ T2q N 4 1-N „-N ~ 1-N~ 0,
(5)

where 1d is the excitation energy of the state I p&.
It should be noted that Eq. (5}has meaning only
when the particle-hole correlations induced by the
residual interaction are included in the description
of the ground state. In order to obtain a set of
useful relations for the amplitudes (pl adtad Io) and

(&)lambda, l0), we must decompose the expressions
on the right-hand sides of Eqs. (4) and (5). Be-
cause each orbital has a unique partner in the resi-
dual interaction, we have the operator relations

where we use angled brackets to denote expectation
values in the correlated ground state. It should be
noted that our treatment of the problem is exact to
this point. However, Eq. (9) is not very useful as
it stands.

The approximation that we introduce" at this
point is to replace the summation over intermedi-
ate states in Eq. (9) with a single intermediate
state Iy, ) (SIS approximation). For Iy, ), we
choose the normalized state

Iy )
N 4(l —N d) —(N 4(1 —N 4)&

((N 4(1 —N d))[1 —(N 4(1-N d)&]j''

(10)

The state
I y, ) is orthogonal to the ground state

I0). Our motivation for this choice of Iy, & is that
both &p lambda lyd&o»d (yolT»a da-4 l0) are large.
An equally plausible choice for the intermediate
state is

N d(1-N 4)=a da 4a 4a d (7)

independent of any features of the interaction.
Making use of Eqs. (6) and (7), we rewrite the
terms on the right-hand side of Eq. (5) as

(@IT»[N~(I - N, ) —N, (1 —N, }]I o)

=&4&l T, 1, Io)-2&@latda 4T»a~a dlo& ~ (8)

At this point, we introduce a complete set of inter-
mediate states into the final term of Eq. (8) to ob-
tain

(ala da 4T„a 4a, lo)

=(&la', a~ Io)&T,Qa 4a d)-

(10')

However, making use of Eq (6), w. e see that these
choices are equivalent.

Inserting the intermediate state Iy, ) into Eq. (9),
we obtain the result of interest

(y Ia'da 4l0&&-T2. a'4a .&

(&la da 4T»a 4a, lO& =

Making an analogous approximation, we find that

4 d» d 41 (N(1 N))

(12)

+ (/la da 4ly)(ylT»a, a dl0),
[ y)ve 0)

(9) Substituting Eqs. (11) and (12) into Eqs. (4) and

(5), we obtain the set of linear equations for the

amplitudes (1t lad~ad lo) and (1t1

lambda

4lo&:

(e4 —ed) -&+2 + V».4d '1
' '„(Pladadlo) = g V» 4d(&la,"a,+a,a, lO&

and
T a'a

-(~4 ed) ~+2+ V»«g gl qg (ala-da-410& = Q Vdddd&~ laaa +a 4a 110&3.--
2b

If the interaction is separable, i.e.,
Vqq. 4' —Vag V4ff y

(13)

(14)

(15)

Eqs. (13) and (14) can be combined to

1= p Vdd (44 ed) 1d+2Vddp V24
4g 2b

give the dispersion relation

(T,4ada4& ' ~ V ~ ~ (T»a da d)"~ "&N (1-N )&

(16)
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In the model systems that we have considered, we
find that the final summation in Eq. (16) is larger
than 2(e4 —z,}and this dispersion relation does not
give spurious eigenvalues, in contradistinction to
the RPA.

Whether or not the interaction is separable, we
can determine the eigenvalues ~ and the relative
magnitudes of the amplitudes (p ~asta4~ 0) and

(P ~at,a, ~0) once we have values for the ground-
state expectation values (T»astag', (N, (1 -N, )),
etc. , that appear in Eqs. (13) and (14). In order
to determine these quantities, we must construct
a correlated ground state. To this end, we apply
the method of correlated quasiparticles. 4' The
basic idea in this method is to replace the creation
and arinihilation operators that appear in the resid-
ual interaction by products of number operators.
We set

&a,'. a, ata, &

= (N, (1 -N)}Ns(1 -N, ))'~s ~(N, (1 -N„)Nq(1 -N, ))'~

with the quantity S
&

defined as

Sa, B=(NnNB)~ ((I -N„}(1-NB))'~s. (21)

The ground-state properties of the system are
determined by solving the set of algebraic equa-
tions

e(H)
8(N„)

(22)

Q (N~NB) = (N~)Q (NB)+(N„)(1 —N„), (22}

after decomposing the expectation values that
appear in S 8. The decomposition of S 8 is
carried out in the manner developed for particle-
particle residual interactions. In the interaction
we consider here, orbitals are either correlated
or anticorrelated with each other but never both.
In such a case, we decompose the products (N„NB)
by satisfying sum-rule relations of the form

The residual interaction that we are studying here
is of the same coherent form as the particle-par-
ticle interactions for which Eq. (17}was developed.
Accordingly, this approximation should be quite
accurate here. For the problem considered here,
we note

where the prime on the summation indicates that
the summation is just over the orbitals P with
which orbital a is correlated by the residual inter-
action. Next, we define

R B -=RB =-min((N )(1-NB) and (NB)(1 —N„)).
N, (1 -Ns) ~Ãs =—1 -Ns (18)

(24)

=(NsN s)~s((1 -N, )(1-N,)) (19)

and Etl. (17) is considerably simplified. Making
use of Eq. (18), we have

(asasa sa )

The quantity R„8 is the maximum correlation
enhancement that is possible for the number opera-
tors N„and N8. If the correlation enhancement
were any larger than R & we would have the un-
physical situation

and similar relations apply for all other combina-
tions of creation and annihilation operators that
appear in the residual interaction. Substituting
Eq. (19}into Eq. (1}and taking ground-state expect-
ation values we find

or

(NQNB)& (NN)

(N„N, ) (N, ).
(26)

(H) =Q e,(N )

Q Vssis, (Ss.-s+Ss. +S s, +S-s.-s) (20)
2b'3c

Also the correlation enhancement between number
operators depends on the magnitude of the relevant
matrix element in the residual interaction. When
the matrix element is large, the correlation en-
hancement is large. With all of these features in

mind, we set'

(Ns N s) = (Ns)(N s) + V„.„R, , (N, )(1 —N, )
g Vss, 44(Rs 4+Rs 4) 2

V2b: ~cR
Q Vs, .44(Rs 4+Rs 4}

(26)

and equivalent relations for other products of number operators.
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l(j))=gcRBaRtaBlO&+QDRBatBa Rl0)
2b 2b

and the quantity & (j)la4ta4l0& is then just

(2V)

&(t)la, a410& =g C,B&a,a, a, a, ) +D»(a, a Ba, a4&
2b

Making use of Eq. (18) to eliminate half of the
number operators, and Eq. (26}, we can now solve
Eq. (22) to determine the ground-state expectation
values for particle-state occupation probabilities;
(N, ),(N, ), . . . . With these expectation values and

Eq. (26) we can evaluate the ground-state expecta-
tion values that appear in Eqs. (13) and (14), al-
lowing us to determine the properties of the ex-
cited state l (j)&.

The one remaining problem at this point is the
determination of the absolute magnitudes of the
amplitudes &(t)la, a4l0& and &(j)lat4a 4l0&. The ex-
cited state of interest l(j)& is of the form

Making use of Eq. (26), we obtain the correlations
between number operators in this model. These
relations are

(NRN, &
= (NR)2+ (, (NR)(1 N-R)2,0- N2i

(N, N. ) (N, &(1=—N&(1,~ (N, )),
2

(32)

(33)

(N BN 2&
= (NRN4) 1 (34)

and

(N N, & (1 —N &' (=1 (N)), ,
2

(35)

where o is the number of terms in the summation

QB T». The factor a —(N, ) rather than o appears
in the denominators because we have taken into
account the fact that N, is not correlated with N, .
Using Eqs. (32) through (35) we find that

or (28)

&(j)lata l0)= P c s +4D s +c &N ),
2bWd 2b

(29)

(N ) BiR

S, ,=S, ,=() —N, )(1+ (cr N21

X N2 + N2 1 -N2
2

where the quantities S4, and S4, have already
been determined. From Eq. (29) we see that a
knowledge of the relative values of the amplitudes
&(j&lat aR l0) is easily converted to a knowledge of
the relative magnitudes of the coefficients C» and

D». From Eq. (29) we also see that the determi-
nation of the absolute values of the amplitudes
& (j&la aslO& can be made via the normalization of
l(j)&. We have

&(j)l (j)) =1 = Q C,B'(NB)+D, B (NR)+2C, BDRBSR

The single remaining expectation value (N, ) is
determined with Eq. (22). For small values of
oV'/e, we find

(N, )=

(36)

(38)

2b

+Q Q CRBC44S24+DRBD44S 4 B
2b 4d &2b

+ 2bD4dS2, -4+ 2b 4d -b d. (30)

i.e., the method of correlated quasiparticles gives
positive occupation probabilities for the particle

This result completes our treatment of the par-
ticle-hole interaction.

III. APPLICATION TO MODEL SYSTEMS 0.8—
otic Model

=l0

V2b 3g
V' for all matrix elements,

for all particle orbitals,

mb=0 for all hole orbitals. (31)

In order to compare our method with other
approaches to the problem of particle-hole inter-
actions, we have carried out some calculations
using simplified models of the residual interaction.
The first such model that we consider is the sche-
matic model of Brown. ' The simplifications intro-
duced here are

0.6—

0.4—

0.2—

I
RPA I I

0.25 0.5 0.75
oV~

This work

1.0 I.25 I.5

FIG. 1. Comparison with the TDA and RPA for the
schematic model.
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orbitals for all interaction strengths. If we had
ignored correlations and set

S~ 8
——((N„)&1 —N„&(N8)(1 —N8&)ii2, (39)

this would not be the case. Such a procedure would
give negative values of &N, ) when 2aV2 is less than
e. The important correlation relation is Eq. (36}.
In the limit of weak interactions we see tbat

S, ,-((N,)ja)" as N, -O. (40)

Having determined (N, &, we solve Eq. (16) to
obtain the excitation energy of the vibrational state

In Fig. 1 we present the results of our calcula-
tioris together with RPA and TDA results for
0 =10; i.e., 20 particles. In calculating the excita-
tion energy we have taken into account the features
discussed after Eq. (3). The excitation energy of
the vibrational state, as calculated with our meth-
od, is positive everywhere. It approaches zero
asymptotically. From Fig. 1 it appears that there
is very little advantage in calculating excitation
energies with the RPA rather than the TDA.

Making use of Eqs. (29) and (30), we can calcu-
late the absolute magnitudes of the amplitudes
&Pia„aei0&. It is interesting to consider these
quantities in the limits V 0 and V'-~. In Eqs.
(29) and (30) we replace C» by C and D» by D In.
the limit V'-0, we note

and /2
(Qiata, io&=(piat2a, io&= — =2. (49)

P g =Q 08. (51)

In this model each level has a degeneracy of one
and partners are unique in the residual interaction
term. Also, the conditions of Eq. (31) apply here.
This model differs from those that we have been
discussing in that particle orbitals are always .

filled or emptied pairwise by the residual inter-
action. This simplified correlation pattern gives
simpler ground-state correlations. Applying Eq.
(23) to this model, we find

(N2 N2& = (N2) + (N2)(1 —N2&, (52)

&N2N, ) = &1 —N2) + (N2)(1 —N2),
1

(53)

We next consider the monopole model' of Lipkin-
Meshkov and Glick (LMG). This model is similar
to the schematic model of Brown. Both exact and

approximate solutions for this model have been
presented in the literature. " In order to test the
accuracy of our method, we have carried out some
calculations for this model.

The Hamiltonian for the LMG model is

H= Qe~N~ — Q Q (P22P2, +P22P22) (50)
2b 3c

with the quantity P 8 defined as

D-o, (N2)-0, S2 0, S2, 2 0; (41)

hence

(o)-1 /2 (42)

1 Z/2

2 3 b c= N2 + N2 1 —N2

1 I /
x 1-N, '+ N, 1-N, (54)

and

&ala.'a, lo&=(a) '" (43) We note that

&a2ta, ata2) = &a2ta, a2ta2& =0 (55)

& yiat, a, iO& =0.

In the limit V'-~ we set

C=D,

(N, ) = (1 N, )=—
1 0'

2g ]

Using Eqs. (45) through (47), we obtain

1
[a(a+I)]'i2

(44)

(45)

(46)

(47)

(48)

in the LMG model. To determine (N, ) we substi-
tute Eq. (54) into Eq. (50}and use Eq. (22). To
compute the eigenvalues, Eqs. (13) and (14) are
modified somewhat for this model. The relations
of interest are easily obtained and found to be

2e —~+2V2(a —1), " &qiana, iO&

= (a —1)V'& pia2ta2io& (56)
and

-e —~+2V (a —1) "
& Qiana, io&2-

= (o -1}v'& 4 la2ta, lo& (57)

Combining Eqs. (56) and (57), we have

f —&+2V (o' —1,' " -c —ey2V2(a-1) ' —(cr 1)2V4' (1 —N2& (N, ) (56)
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0.4—

0.2—

0.0
0.50 1.00

(cr-I) V~
1,50

SCRPA

This work

Ifxoct
2.00

+ 2CDo(a —1)S,~, .

From these relations we find for V'-0,
(62)

(&I&la]a lO) =C(a —1)S, , +D(N, ), (61)

remembering Eq. (55).
The normalization condition for

I p) gives us

1 = ($1$)= a(C'(N, )+D'(1 N~-))

FIG. 2. Comparison with exact and approximate solu-
tions of the LMG model. The RRPA is the most accurate
approximation given in Ref. 7 and the SCRPA is the most
accurate approximation given in Ref. 8. (yIafa, IO) =0. (68)

I Q) = C g a2tasl 0)+D 2 a~ta2I0),
2b

giving

( /~1 a4 a, ~O) = C (N~)+D(o —1)S, ,

(59)

(60)

which allows us to calculate .
In Fig. 2 we compare our result with the exact

solution and some approximate solutions" for
cr =20. We see that the method developed here is
quite accurate. We note also that Eq. (58) gives
a considerably better approximation to the exact
solution for the case cr =4 than all approximations
shown in Ref. 8. This indicates that there are no
problems for small numbers of particles.

To calculate absolute magnitudes of amplitudes
in this model we note

In the limit V'-~, we find

0'+ 2(ala, a 10&=(&la~a, ~O&=
2 (

(64)

IV. SUMMARY

In this paper, we have developed an approach to
particle-hole interactions based on our treatment
of particle-particle interactions. This work pro-
vides a basis for a unified approach to the general
problem of coherent residual interactions. Our
method was applied to the schematic model of
Brown and the monopole model of LMG. Com-
parison with exact solutions of the LMG model
indicates that the method is quite accurate.

*Based on work performed under the auspices of the
U. S. Atomic Energy Commission.
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