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The method developed in a previous paper for the construction of separable representations
for T matrices is extended. It is shown that the separable representation we propose is valid
in the vicinity of specified off-shell points. Since the off-shell points considered include those
with arbitrary negative-energy parameters, the method presented here should be of value for

the bound-state three-body problem.

I. SEPARABLE REPRESENTATIONS IN A
NONORTHONORMAL BASIS

Following our previous study,' we consider the

rank-N separable potential
v =VP(PVP) '™ py, (1.1)

where P is a projection operator onto a space
spanned by a finite set of functions.? Previously

we considered the set of N functions {Izpkia.ki), |wg)}.

For the purposes of this work we wish to extend our
definitions of the space spanned by P to include
the functions® {|yy.2 x,), [¥s), lzpsjz',,!)}. The new
feature* in this discussion is the inclusion of the
off-shell functions |y, ;2.¢; ). These off-shell state
vectors are neither mutually orthogonal nor or-
thogonal to the mutually orthogonal states

{Izpk{z,ki), |¢s>}-

Thus we must consider how to work with a non-
orthogonal set of state vectors.

We have previously discussed the operator given
in Eq. (1.1) in the case that P is a projection op-
erator defined such that

P=Z|‘I’4)<‘I’i| ’

where the state vectors |®;) are orthonormal. The
operator (PVP)~) was defined as an inverse in
the subspace, i.e.,

(1.2)

(PVP)(PVP) 1Py =(PYP)" 1P (PVP)=P. (1.3)
We now define an operator II such that
LESMDECHE (1.4)

The operator II is not necessarily a projection
operator, since we do not require that the |¢;)

be either orthogonal or normalized. We do, how-
ever, require that the |¢;) be linearly independent,
and that the N states |¢;) span the same subspace

9

as do the N orthonormal states |®,).
We now wish to show that v’, defined as

v/ =VI@vn) e nv, (1.5)
is identical to the operator v defined in Eq. (1.1).

Of course, the operator (IIVII)"**® which appears
in Eq. (1.5) is defined to be an inverse in the sub-
space, i.e.,

@vin)™® (@vi) = @vi@ v~ ¢ =P, (1.6)
The definition of IT implies that
N=MNP=PIl =PIP. (1.7)

Thus Eq. (1.5) may be reexpressed as

V' =(VP)(PIPYX(PIIP)(PVP)PIP)} 1) (PUP)PV)
=VP(PVP) 1P PV =1, (1.8)

In order to construct U from the relationship in
Eq. (1.5), it is necessary to work in a basis which
is not orthonormal. We define the matrix M by

@V @ =" (oM, (91, (1.9)
i,j

and similarly define the matrix M by

n@vm e n= Y

i,i,R,1

= Z l¢k><¢k '¢i>Mij<¢Jl¢l><¢ll'

i,5,k,0

()M (o |

(1.10)
The definition of (I1VII)~"1*®’, Eq. (1.6), may then
be written as :

D 1Ml 6n) (e | Vi) (b |=P.
i,i,k,1

(1.11)
Multiplication from the left by IT in Eq. (1.11)
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gives
Do 10020, [00M (500 Dl VId)Di =D [0,) (9,
i,0,k,01,p ?
= D [6p) My (e V] <¢,!-2|¢,><¢,|— (1.12)
k,1,p
Since the states |¢;) are linearly independent, it It is now easily shown that
necessarily follows that -
Y I‘ps(:z),k, I‘p(;)),kj>y (2.4)
M V] =0y . 1.13
; o De [V])) =0y (1.13) IIP;:(:Z) N |¢(O) (2.5)
The potential U is then given by and
Z _ [98) = ¥8), (2.6)
V= i 1
> V1o, )MoV, (1.14) where the functions on the right of Eqs. (2.4)—(2.6)

with M;; given by Eq. (1.13). Thus Egs. (1.13) and
(1.14) provide the explicit formulas necessary to
construct U for the case that the states |¢;) are
neither normalized nor orthogonal.

It then immediately follows from Eq. (1.1) that

VIE)=V]|E) (1.15)
and likewise
(& |U=<5§|V, (1.16)

if | &) is a state vector in the subspace defined by
P, i.e., if

[&)=P|&). (1.17)

Thus we have shown that any vector | ;) in the
subspace has the desired property given in Eqs.
(1.9) and (1.10). We also note that even if the state
vectors |¢;) are not normalizable this result
holds provided only that the operator V is such
that (¢, |V|¢;) exists.

II. SEPARABLE REPRESENTATIONS OF THE
POTENTIAL OPERATOR

We now return to the problem posed at the be-
ginning of Sec. I: We consider the set of N state
vectors® {|yy,2 ), [¥5), [¥s,2,x)}. It is useful to
define the various solutions of the off-shell equa-
tion for v,

198 = | k) +GL (s*) 0| 38,)

where the superscript zero identifies the principal
value prescription. The corresponding K matrix
K(s?),

(2.’1)

(p1K(s®) @) =(p|vIPE%), (2.2)
satisfies
K(s?)=0+0GL (s2K(s?). (2.3)

are those solutions which are used to define the
P space. Therefore, it follows immediately from
Eq. (1.1) that®
<P|i{(312)lk1>=<p|K(sj 2)|kj> 2.7
and
(DIK(R?)| k) =(p|K(R?)|R;) . (2.8)

It is clear, therefore', from the two-potential
formula for K that

4 0)

¢’32,q

(0)

(PIK(s®) @) =( |V Dg2e) + Be2p (V =0) |02

=(p|K(s*)|g) +(p|R(s*)|q) . (2.9)

The symmetric function {p|R(s?)|q) satisfies the
relation

(bIR(s;®) k) =(p|R(k*)|Ry) =0.

For simplicity let us consider a rank-one poten-

(2.10)

tial U based on a single off-shell solution® Izp,(:” )
V19530 (bagan, |V
V= (2.11)
1T, IVIHCT L)
The K matrix for this choice is found to be
(IVIg23, ) uod, Vi)
<P|K(S )| )= ( (0) La, v= VG(O)(Sz)VllP;og) "
(2.12)
For the case s< 0, this expression also yields
the T matrix
(PlEs™ @ =(plv]9E) (2.13)

since in this case all the wave functions sti )q
and |y$3’,) are identical. For s?>0 we may find
t(sz) from the standard relation between the T
matrix and the K matrix.
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One may also construct a separable potential U
from the off-shell wave functions which satisfy
outgoing boundary conditions |§;73,,). In this
case, one would have®
(Plf(sjz)lkj>=<p|t(sj2),kj>’ (2.14)
i.e., the matrix  would be equal to ¢ along a
single line in the (p, s, q) space. One finds, how-
ever, that (&, |#(s,?)|q) and (&;|#(s;?)|q) are not
necessarily equal. In the case of the K matrix
this equality follows immediately from the Hermi-
ticity of the K matrix. For the T matrix, the addi-

S

which define the P space, we have
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tional equality can be achieved if one also includes
in the P space the functions [¢{3 ,). In our pre-
vious work® where only on-sheli wave functions
lzp,ff%_ "i> were employed this point did not arise.
This is because in that case we may generate the
P space with the set of functions {|y{;3 )} or
{los2 a2} or {Izpk“:%',,i)}, since these functions

are not linearly independent.

It is, perhaps, important to note that the re-
latignship between ¢ and K is such that the identity
(q|K(s;®)|k;)=(a|K(s;*)|k;) does not imply
(qlt(s;®)|k;)=(q|t(s;?)|k;). If however, we in-
clude both |§04 ;) and Iz‘p,,‘f%,,,j} among the states

NV ORI RO (CRILY

<p|t(sj 2)'kj> =<p|K(sj 2)lkj>_i%

=<P,k(31 z)lk1> -i%

1-i3ms;(s;|K(s;®)|s;)

. (DIK(s;)[s)) s, (5, R (s,*) | k)

=(p|is;?)kp,

and similarly
(ky | t(sy®) | @) =y E(s;2) | ) - (2.16)

Equivalently, we may define the P space through
the functions 9,3 ,,) and [$s3 4,) to obtain the
relations given in Egs. (2.15)’ and (2.16).

III. CONCLUSIONS

We have shown how to construct a separable
potential ¥ from the potential V, such that at N
points in the (p, g, s) space the K matrix (or the
T matrix) for v and the K matrix (T matrix) for
V are identical. These N points are given by
s=s;, p=q=k;. These points may be either off-
shell points (s; #%;) or on-shell points (s; =k;).
Furthermore, we have seen that this construction
necessarily has the further property that

(PIKR(s;) |R;) =CDIK(s;) | Ry
and
(k;|K(s;)| @) =Ry |K(s)) | @)

Thus we see that the K matrix (7 matrix) for v
and the K matrix (T matrix) for V are identical
on two intersecting lines, intersecting at the point
s=s;, p=q=Fk;. This implies that at the point

s =s;, p=q=Fk; any derivative in the plane given
by the intersection of the two lines referred to
above must be the same for K and K. Now it is
also clear that the derivatives

3.1)

(3.2)

z%(k, Iif(s)lk,)szsj =a%(kj|K(s)lk,) (3.3)

S=Sj

must be equal as well if Egs. (3.1) and (3.2) obtain.

1-i37s;(s; |K(s;®)]sy

(2.15)

—

This is very easy to prove.

However, we shall not pursue this argument
because this is but a special case of the general-
ized effective range expansion which will be dis-
cussed elsewhere. The derivative in any direc-
tion at the point s=s;, p=g=Fk; is given uniquely
if the state vector Iz/)s‘;’%',,l,) is known. The con-
struction under discussion is one which has the
property that [§3 , ) = W:?Z),kj ). In fact Egs. (3.1)
and (3.2) are another expression of the property.
Thus it follows immediately that

(p|K(s®)|q) =(p|K(s®)|q) (3.4)

in a volume containing the point s=s;, p=g=k;.
This property is now established whether or not
sj=k;, li.e., this property can hold for off-shell
as well as on-shell points. Hence it follows that
we have the latitude to choose to fit the approxi-
mate separable potential off shell as readily as
on shell. Similar remarks hold for the T matrix
subject to the relations discussed in Sec. II. These
are the constructions we sought to establish.
Recently Pieper® has constructed a separable
nucleon-nucleon potential based on the method
given in Ref. 1. This potential provides a more
accurate representation of the data than any other
separable potential now available in the literature.
This success motivates the present extension.
The T matrices in the bound-state three-body
problem, for example, are far off shell and evalu-
ated at negative energies. Therefore it may prove
advantageous to compromise the on-shell fit in
favor of greater accuracy in the off-shell region
of greatest importance in the many-body problem.
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