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The method developed in a previous paper for the construction of separable representations
for T matrices is extended. It is shown that the separable representation @re propose is valid
in the vicinity of specified off-shell points. Since the off-shell points considered include those
with arbitrary negative-energy parameters, the method presented here should be of value for
the bound-state three-body problem.

I. SEPARABLE REPRESENTATIONS IN A

NONORTHONORMAL BASIS

Following our previous study, ' we consider the
rank-N separable potential

u=vp(pvp) '& &pv

where I' is a projection operator onto a space
spanned by a finite set of functions. ' Previously
we considered the set of N functions (~ &j,,»,,&, [&j&»&}.

For the purposes of this work we wish to extend our
definitions of the space spanned by P to include
the functions' ff &j&, .» „,), J g»&, fg, .2, &$. The new
feature' in this discussion is the inclusion of the
off-shell functions i &I&, a, ). These off-shell state
vectors are neither mutually orthogonal nor or-
thogonal to the mutually orthogonal states

Thus we must consider how to work with a non-
orthogonal set of state vectors.

We have previously discussed the operatox given
in Eq. (1.1) in the case that P is a projection op-
erator defined such that

as do the N orthonormal states )4&&.

We now wish to show that g', defined as

~'= vn(nvn)-'&"&nv (1.5)

(nvn)-'&'&(nvn) =(nvn)(nvn)-'&'& =p. (1.5)

The definition of II implies that

Thus Eq. (1.5) may be reexpressed as

1& ' = (vp)(pII p)t(pri p)(pvp)(pn p )) '&" (pII p)(pv)
=vp(pvp}-'& & pv=u. (1 8)

In order to construct 'U from the relationship in
Eq. (1.5), it is necessary to work in a basis which
is not orthonormal. We define the matrix M by

(nvn)-'&'& =g(y, &M, , &y, (,

is identical to the operator g defined in Eq. (1.1).
Of course, the operator (IIVII) " ' which appears
in Eq. (1.5) is defined to be'an inverse in the sub-
spacey l.e.q

where the state vectors i@&& are orthonormal The.
operator (PVP& " ' was defined as an inverse in
the subspace, i.e.,

{PVP)(PVP) '&'& =(PVP)-'& &(PVP) =P. (I.S)

We now define an.operator II such that

The operator II is not necessarily a projection
operator, since we do not require that the (&t&&&

be either orthogonal or normalized. We do, how-
ever, require that the i &j»; be linearly independent,
and that the N states ( &j&;) span the same subspace

and similarly define the matrix I by

n(rivn)-'"&n = P )y,&M„&y, (

i,j,k, l

I 4&&M;i&4& I 4m& &4a I V I4&& &e& I=P.
i,j,k, i

(1.11)

Multiplication from the left by II in Eq. (1.11)

k jII i Mjj j g f ~

t,j,k, l

(1.10)

The definition of (IIVII) " ', Eq. (1.6), may then
be written as
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gives

I y, ) &y, I y, &M, ,&y, I y, & &y, I vip, & (y, I-g I y, & &y, I

i,f,k, l, P

= Q I e~&Mpk &Pa I vl @i& (tr I-p I 4 p& &Ap I
=o.

k, 1,P
(1.12)

Since the states 1$;& are linearly independent, it
necessarily follows that

It is now easily shown that

(2.4)

QM~&ea lvlei& 5&i.

The potential 9 is then given by

(1.13)
k2k = k2 k (2.5)

v =g vl y, &M;&&y& I v, (1.14)

with M;, given by Eq. (1.13}. Thus Eqs. (1.13) and
(1.14) provide the explicit formulas necessary to
construct 'V for the case that the states 1$,& are
neither normalized nor orthogonal.

It then immediately follows from Eq. (1.1) that

14& =14& (2.6)

where the functions on the right of Eqs. (2.4}-(2.6)
are those solutions which are used to define the
P space. Therefore, it follows immediately from
Eq. (1.1) that'

(plK(s ')Ik) =&plK(s ')lk) (2 7)

v
I g, &

= vl t,& (1.15) (p IK(k,.') I kg& = (p IK(kg')
I k,.& . (2.8)

and likewise

(4 lv=&g Iv, (1.16)
It is clear, therefore, from the two-potential

formula for K that

if
I (,& is a state vector in the subspace defined by

P, i.e., if

(1.1I)

Thus we have shown that any vector 1$,& in the
subspace has the desired property given in Eqs.
(1.9) and (1.10). We also note that even if the state
vectors 1$;& are not normalizable this result
holds provided only that the operator V is such
that (Q, I Vl P, & exists.

& p lft(s& ') lk, &
=

& p lz(k;) lk;& =0. (2.10)

For simplicity let us consider a rank-one poten-
tial v based on a single off-shell solution' Ip, a &,&:

& p IK(s'}
I q&

=
& p I v I e,'2,', &+ &1(",~",p l(v -v}14.'2,', &

=(P IK(e')
I q) + &P II~(s') I q& (2.9)

The symmetric function (p IR(s'} I q) satisfies the
relation

II. SEPARABLE REPRESENTATIONS OF THE
POTENTIAL OPERATOR

v I y.",2,,& & g.",l,, I v

& y,&'j,
I
v lq&'&,

i&f ' f
(2.11)

We now return to the problem posed at the be-
ginning of Sec. I: We consider the set of N state
vectors' ( I g, 2, ), I ice&, I tt,,a, &}. It is useful to
define the various solutions of the off-shell equa-
tion for Q,

I k.'~.'. &
= Ik&+~0" (s') vl V.'. & (2.1)

(P IK(s')
I q&

= &P I v I g.",', ),
satisfies

K(s') = v+ v G,"' (s')K(s'} .

(2.2}

(2.3)

where the superscript zero identifies the principal
value prescription. The corresponding K matrix
K(s'),

The K matrix for this choice is found to be

&plvltt "~, &(@"2, Ivlq)
&plK(')lq&=(go Iv vGo ( )vlf', o )

f t j
(2.12}

For the case s'& 0, this expression also yields
the T matrix

(2.13)

since in this case all the wave functions 1$,'&', )
and

I g,'2',
& are identical. For s') 0 we may find

t(s') from the standard relation between the T
matrix and the K matrix.
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One may also construct a separable potential 9
from the off-shell wave functions which satisfy
outgoing boundary conditions

I g,'.««.). In this
case, one would have'

&pit(s&') Ik&& =& pl t(s, ') Ik, &, (2.14)

i.e., the matrix t would be equal to t along a
single line in the (p, s, q) space. One finds, how-
ever, that & k, I t(s, ')

I q& and ( k, I t(s, ')
I q) are not

necessarily equal. In the case of the K matrix
this equality follows immediately from the Hermi-
ticity of the K matrix. For the T matrix, the addi-

tional equality can be achieved if one also includes
in the P space the functions lg,' & «&. In our pre-

1 j t j
vious work where only on-shelL wave functions

I g«, ««) were employed this point did not arise.
This is because in that case we may generate the
P space with the set of functions f I

g«".3 «, & j or
( I

g«'. 2 «,&) or (I P, ««. ) ), since these functions
are not linearly independent.

It is, perhaps, important to note that the re-
lationship between t and K is such that the identity
(q IK(s, ) lk,. &

=
& qlK(s& ) lkz & does not imply

(q I t(s, ')
I k, &

= ( q I t(s; ')
I k& ). If however, we in-

clude both I g,
'

««, ) and li)«' ««& among the states

which define the P space, we have

(pit(S «) Ik.) =(plK(s «) Ik & i i
w

&plK(s, ') Is, & s,. &s~ IK(s.
1 —i -,' ws, ( s, IK(s, ')

I s,.).

1 —i ,' ws)(s, IK(s,—')Isq&

= (p I t(s, ') Ik&&, (2.15)

and similarly

(k,. I t(s, ')
I q&

=
& k, I t(s, ')

I q& . (2.16)

Equivalently, we may define the P space through
the functions I((,

'
w «) and

I g, ««.& to obtain the
relations given in Eqs. (2.15) and (2.16).

&plK(s, ) Ik, & =&plK(s, ) Ik &

and

&k& IK(sg) I q) = &kg IK(sg) I q&.

(3 1)

(3 2)

Thus we see that the K matrix (T matrix) for g
and the K matrix (T matrix) for V are identical
on two intersecting lines, intersecting at the point
s =s„p=q=kj. This implies that at the point
s sj, p = q =kj any derivative in the plane given
by the intersection of the two lines referred to
above must be the same for K and K. Now it is
also clear that the derivatives

(k, IK(s) 1k'& =
& kq IK(s) lk, & (3 3)Bs IS=Sj S=Sj

must be equal as well if Eqs. (3.1) and (3.2) obtain.

III. CONCLUSIONS

We have shown how to construct a separable
potential Q from the potential V, such that at N
points in the (p, q, s) space the K matrix (or the
T matrix) for g and the K matrix (T matrix) for
V are identical. These N points are given by
s =sj, p=q=kj. These points may be either off-
shell points (s, 4 k, ) or on-shell points (s, = k~).
Furthermore, we have seen that this construction
necessarily has the further property that

This is very easy to prove.
However, we shall not pursue this argument

because this is but a special case of the general-
ized effective range expansion which will be dis-
cussed elsewhere. The derivative in any direc-
tion at the point s = sj, p = q = kj is given uniquely
if the state vector

I g,"««) is known. The con-
struction under discussion is one which has the
property that lg,",a „.) = Ig, '««). In fact Eqs. (3.1)
and (3.2) are another expression of the property.
Thus it follows immediately that

&P IK(s')
I q& —= &P IK(s')

I q& (3 4)

in a volume containing the point s =sj, p=q=kj.
This property is now established whether or not

sj =kj, i.e., this property can hold for off-shell
as well as on-shell points. Hence it follows that
we nave the latitude to choose to fit the approxi-
mate separable potential off shell as readily as
on shell. Similar remarks hold for the T matrix
subject to the relations discussed in Sec. II. These
are the constructions we sought to establish.

Recently Pieper' has constructed a separable
nucleon-nucleon potential based on the method
given in Ref. 1. This potential provides a more
accurate representation of the data than any other
separable potential now available in the literature.
This success motivates the present extension.
The T matrices in the bound-state three-body
problem, for example, are far off shell and evalu-
ated at negative energies. Therefore it may prove
advantageous to compromise the on-shell fit in
favor of greater accuracy in the off-shell region
of greatest importance in the many-body problem.
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tThe finite number of orthogonal continuum states j(t, )

do not define a well behaved projection operator
P =g;]ip&)((t; ~. This is a consequence of the fact that
continuum state vectors are not normalizable. How-

ever, the expression in Eq. (1.1) is independent of the
norm of the state vectors (g&). This property leads
to a proper definition of the operator'0 in Eq. (1.1).

tThe functions (g, t ~ ) are defined in Eqs. (4.9)-(4.H)
of itef. 1. They satisfy (tp~t z) =(k)+ G (s )V[ tp~t ~)

where 6 ~(s ) is a principal value Green's function.
The corresponding E matrix is (p)%{st}g)= (p(V)g, t, )
and satisfies K(s2) = V + VG~O~(s2)E(s2). Similarly the
T-matrix equation is t(s )= V+ VG ~(s2)t(s ).

48eparable approximations to the T matrix for negative
energies have been discussed by K. L. Kowalski, Nuovo
Cimento 45, 769 (1966).

5S. Pieper, Phys. Rev. C 9, 883 (1974).


