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Electromagnetic corrections to allowed nuclear beta decay*
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Dominant Coulomb corrections to the spectral functions for allowed nuclear P transitions
are calculated using the el.ementaxy particle approach.
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I. INTRODUCTION

In a recent series of papers' we have given mod-
el-independent forms for the spectra in various
experiments utilizing allowed nuclear P decay.
The forms given were correct to first order in
the recoil parameter of smallness E/M, where
E is the electron energy and M is the nuclear
mass. Electromagnetic effects were neglected
except for the dominant Coulomb interaction in-
cluded in the standard Fermi approximation. We
suggested careful examination of recoil terms in
order to gain information concerning the possible
existence of second class currents, ' the validity
of the conserved vector current (CVC) hypothesis, '
the presence of possible T violation, 4 and other
effects.

However, in order to properly assess the result
of an experiment in recoil order, it is essential
to know the electromagnetic corrections, since
they can simulate a bona fide recoil term. In this
note we calculate the electromagnetic corrections
to spectra based on the elementary particle treat-
ment.

Section II defines notation and sketches the deri-
vation of final-state Coulomb interactions due to
Armstrong and Kim. ' In Sec. III the effect of these
Coulomb corrections on the decay spectra is eval-

uated, and in Sec. IV, in order to understand
some of the approximations involved in these ex-
pressions, we discuss an alternate procedure
correct to order Zn based on single photon ex-
change.

II. COULOMB WAVE FUNCTION

Here as in Ref. 1 we shall assume the validity
of the CVC hypothesis and of the usual V+A form
of the weak interaction. We deal temporarily
with electron decay —modifications appropriate
to positron decay will be discussed at a later
stage. Let P„P„P,l denote the four-momenta
of parent nucleus, daughter nucleus, electron,
neutrino, and define

where M, and M, are the masses of parent and
daughter.

An arbitrary allowed nuclear P decay can, to
first order in recoil, be described in terms of
four nuclear form factors. If

L" =~(P)r"(I+~.)~(~)

represents the lepton current then the hadronic

current matrix element can be written as

I "&S I I'„(o)+&,(o) I~) =4~ b»» &»I" -i &~gaCg,",z" (2b(e')4 ay+i &i)i,f 'I c(e')I'" —d(e')e"l),

where 8, 8' represent the spin of parent and daugh-
ter nucleus and M, M' its projection on some axis
of quantization. Here Latin indices are summed
from 1 to 3 while repeated Greek indices imply a
four-vector contraction. The coefficients a, 5, c,
d are the conventional Fermi, weak magnetism,

Gamow-Teller, and induced-tensor form factors
and are discussed more completely in Ref. 1.

Armstrong and Kim' studied the problem of
electromagnetic corrections from an elementary
particle viewpoint and showed that the appropriate
expression for the P-decay matrix element in the



ELECTROMAGNETIC CORRECTIONS TO ALLOWED NUCLEAR. . . 1743

presence of the Coulomb interaction is (for elec-
tron decay)

Pk
5zj 5jjjj 2

a(0)Pr(r)

(2)

where

In Eq. (2} we have included only the Fermi and
Gamow-Teller matrix elements, as the additional
(weak magnetism and the induced tensor) are al- '

ready small corrections O(q/m). Since the leading
terms result only in final electron states with
total angular momentum —,', we project out

~
w

~

= 1

terms and neglect all others, yielding:

I'j ,/2$(P, r-)=N (a+by +cy ~ r+dy ryeo)u(p),

and

d'q
pr(r)=

(0) ( ), e-'"'a(q')

d3q

c(0) (2w)s

where

2m '/2 E +m

(6)

are the'vector and axial "weak charge" densities,
and g(p, r) is the solution to the Dirac equation in
the presence of the nuclear Coulomb potential V(r)
which reduces as Z-O to

y( p, r) u( p) e'
Z~O

In standard notation'

1/2

(7)

i 2m '" E+m

1/2

and 5 =-,'~+
Ql Q l Assuming for simplicity that

p„(r) = p„(r)= p(r), the decay .—amplitude becomes'.

xQ E C"j
' "Y" ~*(p)e ""jt/ (r)

K, jI

where

&r„= 2w[l (K) +1 —y]+ q„—argI'(y+i v),

u(p)(t'+y, j~)y (I+y,)v(t)M'(p„p. ),

where

Px
M'(p„p2)= 4J 4N 2M a(0)

Af '0;N P 7l

j'j; j jjk jjxq4 ( )

(6)

( ) — g&( ) K, 0( )
( 2 2ZS)1/2 t=(B, —CI), s= (A, -DI)

c/ZE 2. -a+i nZ(m/P)
v=, exp 21 7/„

p y+i v

g&0, 0&qK - 2w; v&0, 0

(4)
with

1 (2w)&N=
4

expi [~w(1 —y) + q, — rga(y1i+v)],

For example, in the case of a point nucleus V(r)
aZ/r and-

g„r P E+m '" Re

with

A = d ra*r e '''&pr,

B = J"d'r b *(r)e " ' Np(r),

C = d'rc*r l r" e '''Np r,
(10)

Q„(p, r) =2 e' "" ' (y+i v)(2pr)&
I'(y+i v) I

I'(2y+1)

&&e
' """"F(y+1+i v; 2y+1; 2ipr).

D = d rd"(r) l .r" e "''Np(r).

Given a model for p(r) we can calculate the decay
spectra.
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III. DECAY SPECTRA

.Suppose the parent nucleus has net polarization [p =(M)/J and orientation parameter Az =1 —2(MR)/
J(J+ 1). If

1+m, '/2Mb
1+6/2M

represents the maximum electron energy, the spectrum in electron and neutrino variables is defined as

G 2cos&

+[P h, (E)+, h, (E) +n ~ th, (E) +n l h, (E)

1 np' 1p' ] p ~ j+ n ln l- —h (E)+ ———h (E)+ n ~ l n l- — h (E)E 3 ~2 vs 3 E '
)

'

where h, (E) are given in Ref. 2 in terms of a, b, c, d. ' The dominant electromagnetic corrections (those
proportional to Ia I', lc I', ReaRc) alter the form of the spectral functions to

h, (E) = [E(z, E)l [h(D() (E) +ah;(E)],
where

E(z, E) =2(1+y)e""(2pR) " '
I
I'(y +fv)

I
/[I'(2y+1)]

is the conventional Fermi function, h';" (E) is given in Ref. 2, and

AB(E)[E(ZE)).=jej'I]A]' ~ ]B]'+]C]'+]D]' 2Re(A"D+B'C)

+2 ' Re(A "B+C D-A C —"B"D)-[E(Z,E)]I

+le]'I]A)'+]B]'+]C]' )Dj', —,'Re(A D BC)+
+2 ' Re(A "B+CRD+ 2 A*C+ ,'BRD) —[F(Z-, E)]

&hR(E)[ &(z, E)J= Is I'( IA I'- IB I'-
I c I'+ ID I'+2 Re(B*c -A*D) —[F(z, E)Jj}

—T lc I'& IA I'- IB I'- Ic I'+ ID I'+6Re(A*D B*c)-[F(z,—E)]},
I/2

22 (E)(2IZ E)]=(, 2'Ree"e[]A]' —]B]'+)C]'- ]D]'-[E(Z E)[j]

"1 I c I
'& IA I' —

I
B I'+

I c I' —ID I' - [F(z, E)I},
1/2

ee (E)[2'(ZE)I 2Re=o'e I]A]'+]B]'~ ]C]' ~ ]D]'-2Re(A"D+B'C)J+1

~ 2 '-Re(A B+C "D A C"—B"D)—-[E"(Z,E)]I

eZ", jej'I]A j'+]B]'~ ]C]' ~ ID]'+2Re(A'D+B C)

(12)

+2 ' Re(A RB +C*D +A*C +B*D)—[E(Z, E)]
1/2

h, ( )[ (A, E)]=E( ZE2Re "[-2]C]'~ 2(D)'+2Re(B C-A D)]"
lc I'I.2 Ic I' —2 ID I*+2Re(B'c -A*D)],
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&h,.(&)[F(Z,&))=&g~ lc)'{ IA I'- IBI'+ ICI' —IDI'-[F(Z, &)]),

Ah»(E)[F(Z, E)]= 8&-z)c~' 2Re(A~D+B*C)+2 'Re(A*C+B~D)

&h,.(&)[F(Z,&)] =-bz lcl'[2IC I'-2IDI'1,
where y~~, 0«. are defined in Ref. V.

For positron decay the lepton matrix element is replaced by

u(~)y (I+y,)(i"+ K' y.)v(p),
where

t'=( B', C-'I), s'=(A', D'I)-,

and A', B', C', D' are defined as in Eq. (10) except that a~(Z, r) a(--Z, r), N(Z)- N*( Z), -etc. , and q„ is
subject to the restriction

0, 2m- q„

«0, 0 & g„(-,'~.
The changes in the spectral functions are then found by replacing A-A'~, B-B'~, etc. in Eq (12).and
using the lower sign.

IV. PHOTON EXCHANGE

If one needs only the lowest-order Coulomb corrections, as would be appropriate for light nuclei, we
may employ an alternate elementary particle approach taken by Bottino and Ciocchetti. ' These authors
worked with the electron wave function as modified to first order in Za by the Coulomb potential. How-
ever, it is useful to start with the entire correction to the decay matrix element due to the one photon
exchange term in order to understand the approximations involved in going to the potential form. In the
following discussion we shall assume that the initial and final nuclei have spin —,

' but it should be clear
that a similar derivation obtains for arbitrary initial or final spins. Also, in order to simplify the dis-
cussion we shall assume that

gv(e') gA(Q')
G( 2)

gv(0)
We have then

M=M' '+5M,
where

M+~ =(2s) 5 (p|-pz —p —l)u(p)y~(1 +y~}v(l )G(q )u(p~)y"[ g|,(0) +gz(0)y~] u(p~)

and

5M =n d x d z 4
e'"' ' " " . e '' p''0 k —q u p yS+ z —x y& 1+ys v L

dk i l+k+p -p x

1x u(P2)y [g„(0)+g„(0)y5]z „.y& ZsFs(k )u(P, )+u(P~)y&Z&F&(k )

(14)

M „,y"lg&(0)+g&(0)y, lu(p, ) ~.
1

Here F„(k'}and Fs(k') are the charge form factors for the initial and final nuclei. ' If we take F„(k')
=Fs(k') =—F(k') and neglect O(a) terms with respect to terms in ZcL we may write

5M=Z~& dz dz 4e "++& P~'" . e ' ''Q k —q Ek u Py Szz —xy&1+y5
d k i l+k+ -p x

" (&)("(uh''fr UO'z (0)rJ». '2":„" "(u)' (P)~.
I +.. 2

&|'[g,(0)+z,(oh. ] (P)). (16)
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We now make the replacement p, —p„dropping corrections of O(q/M} and due to the presence of the nu-
clear form factors, we have k/p -1/MR «1. Thus we drop f y„with respect to p„and write"

k~ —2k P+ie k'+2k P+ie

Defining the nuclear potential by

V(r) = -8wZ~a 4, '. e "E(k~)
d'k 5(k,} g, .„
2W k +RE

and making a change of variables we find the Armstrong-Kim result

SM =(2~)'S'(), -P, -) -()J d'« "'p(~))()', ~h, O+r)~(t) m())~'(((0)+ ((Oh, )~()t),

(18)

V(A~) ~(P)e "'=(J &'*S(P-)e"'r.&b)& (* r)-
is the modified electron wave function correct to first order in the nuclear potential.

In order to evaluate the effect on the decay spectra we apply a Fourier transform to the propagator
yielding

5M=(2v)'5'(P -P -P-~) 2+
d'k k, , k. 2p. k,', ~(p)(2P'-k yr. )r ( 1+r,) v(i)

x s(p, )y "[g&(0) +g&(0)r, ]m( p, )

For a point nucleus {E(k')= G[(k —q)'] = 1}

[1,k]
(k'+ ' )(k' —2p k +

'
} 2 i j i

so that

M('~+eM =M('} I+ + ~ ~ ~
&0 ZE

151

which is just the aZ part of the usual Fermi factor modification.
The Coulomb effects not included in the Fermi function are given by

(20}

(21)

d'k5(k') k, . k, 2k
. Q(p)(2P'- k yy')y„(1+y, )v(l }M'(p„p,).a Z «[E(k~)G((k -q)) - 1]

(28)

If we retain only terms of first order in P, l this becomes"

5M,.„„,. =a Z —m(P)[4P'(X+ F}+q'X+ re(X+2F}—y' fX]y „(1+y, )v(l )M "(P„P,), (24)

where

X= dkE(km)G'(k'), 1'= dkG(k*)F'(k ).
0 0

The corrections to the spectral functions are

SnZ pn. ' 6 m 2

hh, (E}=v
8 is i' 4E(x+F)+E++ ' (X+2F) + ic (* E(LSX+4F)-~E~+ ' (X+2F)

Lh, (E)=+ {ia i'[4E(x+F)+E~]- ic ('[QE(2X+F)-E+]},

saZah, (E) = ~4 3m ( 4+1 2R-","i.i" E(5X.4F}{,
sJ+1 (25)
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Saz f J m. '
d&,(E) =w

& 1
28ea*c 4E(X+Y)+E++ ' (X+2Y)

3n J+1
nl 2

!c!' Z(6X+4Y) E-~+ (X+2Y)J+1 g
1/2

ah(z)=v ( Rasa'c+ I le( I(z -lx
3m ( @+1 &+1

brio(E) =7 equi! C! E(5X+4Y),
80,Z

Sh„(z)=+ e„!c!*(E,-z)X,SnZ

where the upper (lower) sign is for electron (posi-
tron} decay.

For a uniform charge and "weak charge" density

9mB

140
while for a surface charge distribution

X=Y=-
j12 '

where 8 is the nuclear radius.
We can check consistency with the Armstrong-Kim
procedure by expandingA, B,C, D, to order Zn

!A!'=(1-raZEB}F(Z, Z),

2 ReA ~B = —g a Zm, BE(Z, E),
2ReA*D = & aZ(Z —E)BZ(Z, Z).

Substitution in Eq. (12) reproduces the results
given in Eq. (25) for the case

(26)

32

for the case of a point charge electrostatic distri-
bution but a uniform "weak charge" density
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