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Cluster model and the photodisintegration of 'Li
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The total cross section for the photodisintegration of 8Li, leading to three-body final states
is considered in. a sequential decay model. Various cluster decompositions of the bound and
continuum states are studied. The influence of the (3He+3He) channel on the photoeffect is
considered in a schematic coupled-channel model. The models investigated are able to pro-
vide a qualitative description of the data. The cluster model for ~Li appears to provide a
more satisfactory over-all description than the shell model. Various open questions remain
concerning the importance of nonsequential amplitudes.

NUCLEAR REACTIONS Photodisintegration of ~Li; coupled channels; cluster
model.

I. INTRODUCTION

In a previous publication' we dis "ussed the total
cross section near threshold for the photodisinte-
gration of 'Li. Qur analysis was based on a sequen-
tial decay model. In this work we extend our anal-
ysis to higher energies and discuss various modi-
fications of the model used previously.

The previous model, when used at higher y-ray
energies (E&a 12 MeV) yields a cross section that
is about a factor of 2 too large (see Fig. 1). Here
the ground state of 'Li is taken to be the (P,„)'
shell-model configuration. The model is based on
the assumption that the y ray ejecta a P„,proton
or P», neutron leaving the system in the 'He or
'Li ground state. The latter states, which are un-

stable, are then considered to decay, leading ulti-
mately to a three-body final state (n+P+'He). For
the purposes of this work we will call the afore-
mentioned model, the "shell model. " This termi-
nology is used to distinguish that model from the
various cluster-model decompositions used in the
following discussion. The shell -model result
(Fig. 1}may be placed in better all over agree-
ment with the experimental data by introducing a
numerical factor a, which reduces the amplitude
of the (P„,}'configuration in the shell-model de-
scription of the 'Li ground state. If we neglect,
without any justification, the contributions of the
other parts of the 'Li ground state and put ny

we can achieve qualitative agreement between
theory and experiments over a large range of y-
ray energies. However, the previous agreement'
in the threshold region for the magnitude of the
cross section is destroyed, while the excellent
agreement for the average neutron energy in that
region' (Ez —-6 MeV to E& = 12 MeV) is retained.
The addition of contributions from the (P„,}'or
(P„,P„,) portions of the 'Li ground-state shell-

model wave function would tend to again produce
an overestimate of the cross section over most of
the range of y-ray energies. We note that the pro-
cesses involving the ejection of a P„,nucleon from
the (p„,)' configuration or the (p„,) nucleon from
the (P», P»,} configuration are not readily encom-
passed by the sequential model, as in this case, the
low-lying (J= 2 ) states of the residual nuclei ('Li
or 'He) are very broad. In this work we do not at-
tempt to describe the photoeffect leading directly
to three-body channels, but limit ourselves to the
processes that may be considered sequential.
Therefore, we drop the (P„,)' and (P», P„,) con-
figurations from consideration.

Because of some of the difficulties encountered
with the shell-model approach we have also inves-
tigated various cluster models for the 'Li ground
state and continuum states. We discuss the theo-
retical basis of the cluster model and the results
of our calculations in the next section. As we will
see, if we discard those parts of the electromag-
netic interaction which connect different cluster
decompositions, we are able to provide a reason-
able fit to the data. The neglect of these terms
again corresponds in part to the neglect of nonse-
quential processes.

II. CLUSTER MODELS —GENERAL CONSIDERATIONS

It is useful at this stage to introduce a decompo-
sition of the 'Li ground and continuum states into
various cluster partitions. It is apparent that the
cluster decomposition has certain advantages for
the description of a light nucleus such as 'Li. This
description has a certain intuitive appeal in the
case of the photoeffect, where the long-range por-
tions of the wave function (that portion in which the
"clusters" are well separated} is important. How-
ever, as is well known, the various cluster de-
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compositions are not linearly independent except
in the far asymptotic regions. The use of non-
orthogonal cluster states leads to major ambigui-
ties in the meaning of those spectroscopic factors
which might be extracted from experimental in-
vestigations. However, the use of ortkogonalized
cluster decompositions has a great advantage in
that standard Dirac algebra may be applied in the
analysis. For example, if (~4I ) j denotes a set of
(closed) orthogonalized channel states one may
write for the ground state of 'Li, ~4', ),

Li

(2.1)

I
o tr, » =p f Ir,', , c'&(r,'. , c'& &"I r„c&ar,',

C

are orthonormal, ' i.e.,

(2.3)

eral, one would find

(r,'. , c'~r„c)=6„,6(r, r,', ) (r,'. , c'~ p~ r„c),
(2.2)

where the second term is a measure of the nonor-
thogonality. We then propose the determination of
an operator F such that the channel states

where the summed absolute squares of the ampli-
tudes (C&„~4, , ) are equal to unity. We can be
more precise concerning the nature of the ~4 ),
particularly if we limit ourselves to two-body
channels. For example, we may start with two
wave functions, each internally antisymmetrized,
for two nuclei separated by a distance r and having
relative orbital angular momentum I,. The intrinsic
spine of the clusters (S, and S,) may be coupled to
/ in some particular order, and the resulting state,
after full antisymmetrization, may be denoted as

~
&„c). Here c sistinguishes the particular intrin-

sic states used, the coupling scheme, and the vari-
ous angular momentum quantum numbers. In gen-

(C, (r,' ) ~4&,(r,)) =6„f&(r,—r,'.) .

Thus if we write

l
+.„&=Q J l
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C

with
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FIG. 1. Total cross section (solid line) for proton
ejection from 8Li based upon the shell-model descrip-
tion. The contribution from each continuum partial wave
considered is also shown. The neutron curves may be
obtained by displacing the proton curves 1 MeV to the
right (threshold effect). The arrows indicate the proton
and neutron thresholds in the sequential decay model;
the (n +p +3He) threshold is at 3.70 MeV. (a) To obtain
the total cross section in the shell model one adds the
neutron and proton contributions oz —-o & +o". (b) To
obtain the total cross section in the cluster model (with-
out channel coupling) one adds one half the proton and
neutron contributions o& ——o ~/2+o "/2. The total cross
section data are from Ref. 2.

In general, the construction of the operators F
is a difficult problem and we will not attempt to
make that construction in this work. ' We have,
however, presented the foregoing discussion in
order that the nature of the approximations used
in the following discussion will be apparent.

Continuing in this manner we may also provide a
cluster decomposition of the relevant continuum
states of 'Li, that is, those states which are
reached in the dipole photodisintegration. Since
the ground state has (J=1', T =0), the relevant
continuum channels have (Z = 0, 1,2; T = 1).
These continuum solutions may be written as

(2.9)

where c denotes the channel in which there are in-
coming waves; V&,', (r, ) is a wave function having
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outgoing waves in channels c' (including c' = c).
We may obtain integral equations for the wave
functions (j)d~r, (&,r) by writing the total Hamiltonian
H as H =X+ (H -X), where X is an appropriately
defined channel Hamiltonian.

It is possible to obtain a symmetrical descrip-
tion of the particles if the channel Hamiltonian is
written in terms of an appropriate set of ortho-
notvtd«states (see the Appendix). In terms of the

states

l
d, (d,')) f =Id, (r, )& dr, (r, l d,'&,

where

(4,.(k,' )i 4,(k,)) = 5„5(k,' —k, )

we may define

X=+ Jj (4,(k.)&E„.(4,(k,)(dk, .

(2.10)

(2.11)

(2.12)

In Eq. (2.12) E+ is the channel energy defined by the asymptotic configurations. We may write the formal
Lippmann-Schwinger equation

I4.".'& =14.(k.)»..+E X„., (H -X)IK".&,
Ek K+ Ze

(,)~ l, „x [4, (k,' )&dk,' (4, (k,' )[(H-X))&idd(;~&

c' kc k'C +

(2.13)

(2.14)

(2.15)

(2.16)

with

It is now useful to introduce another channel Hamiltonian in which the effects of the parts of H diagonal
in the channel indices are summed. This will lead to a two-potential formulation of the theory. The equa-
tions for the problem without channel coupling may be written

I .(kl)&d"l ( .(".') I(H —X) I ed'(kd)&

C

Using the solutions of Eq. (2.14) we may rewrite our equations as

(@(,)) )8(.),k )&5 ~ Ie,"(k!)&~k! (ed"(kd )I(H-&)l@.".'&
E —E t, +itc'&c kC k'C

)d=- g f le(d(d)}d, (e(d(d)l dd. . (2.17)

Here K is a new channel Hamiltonian which incorporates the effects of those portions of H which are diago-
nal in the channel labels.

In order to reduce Eq. (2.15) to an equation involving one-body amplitudes we write the ~ed~' (k, )) in a-

form analogous to Eq. (2.5), i.e.,

I e."(k.)) = f l
d (r)& e."(r)dr. ,

where the momentum label k, is included in the index c of the wave function 8('l(r, ) .
The next step involves projecting Eq. (2.16) from the left with (4, , (r, ) ~

to yield

(4, (~. )~4.",'&=(4, (», )ie,"(k,)&+ + (4, (&. )IG."'(H-X)~4.-(~, )&dt;-(4.-(~,.))4&;)&
C

tl

(2.18)

(2.19)

with

G(+) I ed" (kd ))dk! (e."'(k,' ) I

C) I
Ek, -Ekt, +i (2.20)

Making use of Eqs. (2.9), (2.18), and (2.4) we obtain

4(;&(r, , ) = 8,')(r, )5„, g ~" 9(",&(r...r,' )dr,' (r,' i V~ r, „&dr, ,A'(;,&,(r, ),
ttg t

where we have defined for c' t c"

(~.' I
I'I «.-&=(4. (~.' )I(H-X)14. (~.-)&

(2.21)

(2.22)
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and

" (C', (r, .) ~8,')(k,' ) ) dk,'.(g(')(k,'.) ~4, ,(r,', )& e,', )(r, , ) 8,', )~(r,', )dk,',
Ep Epp +ie Ep, Ep& +peC' C C

(2.23)

Equation (2.21) is of the form of a set of coupled integral equations which are familiar in nuclear physics.
This equation may be readily solved if we make the approximation that the channel coupling terms are sep-
arable, i.e.,

(r"Ii'lr. -&=h."-&r. If. &(f. Ir.-&. (2.24)

Here A, , - is an measure of the channel coupling and the (r,
~ f,) may be termed, "form factors. " The mod-

ification of the preceding formalism necessary in the presence of redundant solutions is discussed in the
Appendix.

+ — I C'p((» p) z) ("p)& 4(((rp)«p
V2

(3.1)

with l=1, j= &, J=1', and where P and n refer to
the proton and neutron terms, respectively. In
Eq. (3.1), I denotes the angular momentum of
ground states of 'Li or 'He (I= p }. We have also
assumed that the Q»(r„} and Q, p(rp) are normalized
to unity so that all-over normalization of the wave
function requires the introduction of the factors
of 1/v2.

We could supplement Eq. (3.1}with terms in

which l = 1, j = &, i.e., Py/2 particles coupled to
the same five-nucleon states as above. The wave
function should then be renormalized. This would
introduce an extra parameter into the theory and
leave the results for the total cross section essen-
tially unchanged. (Although we have used slightly
different wave functions for the d, /2 and d», waves,
the spin-orbit effects on the d waves are quite
small and the calculation could have been done in
an I. Scoupling scheme. -)

When using the cluster model to calculate the
photodisintegration of 'Li we neglect those matrix
elements of the dipole operator that change the
cluster structure; that is, we assume the (n+ 'Li)

HI. APPLICATIONS

For application to the photodisintegration of 'Li
we first consider the distorted waves 8(' (r, ) in
the absence of channel coupling. For the contin-
uum channels we include sy/2y ~3/2y and d», waves
(for both protons and neutrons). These continuum
wave functions, obtained from a (real) potential of
the Woods-Saxon type, are coupled to the 'Li and

Me ground states to form states with J=O, 1, 2 .
For the 'Li ground state we consider a similar
cluster decomposition with a P„,neutron (or pro-
ton) coupled to 'Li or 'He in their ground states.
Thus we may write

1
Ig', , & =~ ' I@ [(1)()p)(r,)& 4)p(r, )dr,

portion of the bound state is connected to the (n
+'Li) portion of the final continuum channels. Sim-
ilarly the (P+ 'He) portion of the bound state is on-
ly connected to the (P+ 'He) continuum wave by the

dipole operator. Therefore, in this approximation
we are neglecting the photodisintegration of the
'Li or 'He ground-state clusters. This corre-
sponds, in part, to neglecting disintegration di-
rectly into three-body channels, a processes which
we do not consider in our sequential decay model.
We recall that similar direct three-body processes
were neglected in what we have termed the shell
model. Note that also neglected is a process which
is sequential: For example, starting with the (n
+ 'Li) portion of the 'Li ground state, the y ray can
eject a proton from the 'Li cluster leaving the sys-
tem in the 'He ground state (which then decays to
a neutron plus an o. particle}. T1)ese latter pro-
cesses are included in the shell-model description
since there the P-shell particles are treated in a
symmetrical fashion.

Now the use of the cluster decomposition of Eq.
(3.1) yields a result that is reduced from the "shell-
model" result for the (P„,)' configuration by a fac-
tor of —,. (This factor has its origin in the neglect
of processes involving the ejection of nucleons
from the 'Li or 'He clusters in the 'Li ground
state. } With the particu(ar assumptions made,
we may conclude that the cluster-model version
of the theory is in better all-over agreement with
the data then the shell model. The agreement in
the threshold region is unsatisfactory and may in-
dicate the presence of some three-body breakup
amplitudes which are not described in our sequen-
tial decay model.

It is possible to extend our considerations to in-
clude a wave function more general than that of
Eq. (3.1). For example, we may add amplitudes
corresponding to other iwo-body channel (o. +d) or
('He+'H). Without carrying through the Program
of channel orthogonalization, the addition of extra
channels becomes increasingly ambiguous.
ever, we have made some investigation of the role
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I +.„.,&
= rrf (Orr rrr r (".» (r r(".&r(".

+ + @K(&)1)zj +P

+ I re rsv (3.2)

where I Z (r, }& is the ('He+'H) state vector with

separation of the clusters given by r, .
As noted previously we have considered the d„„

d»„and s,» (uncoupled) continuum channels for
both neutrons and protons. In the continuum prob-
lem it is possible to couple the I

33P,] ('He+'H)
channel to all of these; however, that is a formid-
able problem. As the d,~, channel is the most im-
portant by far in the total cross section, we con-
sider coupling the ('He+ 'H) channel to the d»,
channel. As a further simplifying assumption we
couple separately to the d„, neutron channel and
the d, i, proton channel. This makes the contin-
uum coupled-channel problem a two-channel prob-
lem for the eases in which either a d„, neutron or
a (I„,proton is incident. (We have also investi-
gated the same two-channel problem with dsf2
waves replacing the d», waves. )

Since our coupled-channel investigation is highly

of other channels. In particular for the discussion
of the photoeffect it is convenient to add some of
the ('He+ 'H) decomposition to the ground state and

simultaneously consider the coupling of this chan-
nel to the continuum channels. We neglect the
(c(+d) channel and argue that except in the asymp-
totic region the channels ()»+ 'He), (n+ 'Li), and
('He+'H) may provide a sufficiently complete ba-
sis. More precisely, we may conjecture that as
we add channels (in some definite sequence) and

systematically orthogonalize and orthornormalize
these channel states, the channels added later in
the sequence will have small amplitudes for sma11,

cluster separation. This feature may be exhibited
by studying the nature of the operator I' of Eq.
(2.3). In this work we have not attempted to ac-
tually carry out the orthogonalization program.
Some justification of this neglect may be found in
the observation that most of the contribution to the
photodisintegration matrix elements comes from
the region of configuration space where the clus-
ters are well separated and where they have some
degree of linear independence. Clearly, these
questions deserve fux ther study; however, with
these reservations in mind we continue our dis-
cussion.

If we include the ('He+ 'H) channel with the con-
stituent nuclei in a relative "S state we may re-
place Eq. (3.1) by

schematic we have used a separable approxima-
tion for the channel coupling as in Eq. (2.24). Let
us denote the two coupled channels by indices 1
and 2, the latter index for the ('He+'H) channel.
Also, let h, be the threshold energy for the latter
channel, 5, = 15.69 MeV. Then we have equations
of the form

It"&=le"&+"9"&E)lf&&f Io"&

I~". &= ~6' (E —~)lf,&&f,le()&

(3.8)

(3.4)

and

(.) )(92'(E —&)If,& &f, l()", &

I-)('&f Ig'"(E)lf &&f,l@'(E-d)lf.&

'

{3.6)

We note that for I E I
& 4, the wave function in chan-

nel 2 is exponentially decaying.
The potentials introduced in the (n+ 'Li) and {P

+ 'He) channels were discussed in Ref. l. (These
were of standard Wood-Saxon form. ) The poten-
tials determining the propagation in the ('He+ 'H)
channles were taken from Ref. 4. The potential in
the "S channel was adjusted to give a bound state
at 15.69 MeV, the threshold for breakup of 'Li into
'He plus a triton. The resulting wave function has
a node since the potential used has an additional
more deeply bound, bound state. The latter state
is redundant (see Appendix and Ref. 4) and was
not used in the calculation.

The "P potential of Ref. 4 was found to have a
bound state with a binding energy of about 11 MeV.
This solution was also assumed to be redundant
(see the Appendix) and was projected out of the
wave function in the ('He+ 'H) channel; this pro-
jection was accomplished by requiring that the
form factor I f,& be orthogonal to the redundant
bound state. In keeping with the schematic nature
of the coupled-channel calculation, simple Gauss-
ian functions were used for the form faetoxs, the
results being rather insensitive to modifications
made in these functions.

On the basis of the bound-state model of Eq.
(8.2) and the continuum model of Eqs. (3.5) and
(8.6), the transition amplitude, leading to a photo-.
neutron or photoproton of momentum K, may be
written as

&&IT)'I'Li&= ~&(ii 'IDI4p, g,&+Am( 'IDI &Dig.

(3 7)

In Eq. (8.'I), Q~
&

refers to the bound-neutron

which are readily solved to give

~(,) 8(.),)('6", (E) I f,& &f, l
6' (E —&)If,& &f, I

e i"'&

I —)('&f I
8(+)(E)

I f ) (f I
8(+)(E —a) I f &

(3.5)
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(%( T, ('Li& = «(d, -& (a) y, , )

for neutron or proton emission, the results for
this amplitude having been presented in Fig. 1.

In the coupled-channel model one has several
parameters to specify. Once the form factors
and potentials in the various channels are chosen,
the parameter A. remains to be specified. We
have also introduced an addition parameter on
the basis of the following argument: Since the
(n+'Li) and (P+'He) channels are constructed
using an unstable five-body cluster it is possible
to associate a complex energy with these chan-
nels. One way to accomplish this is to make the
energy parameter in the propagators g'i (E) and

9,+ (E —d) complex; however, since these func-
tions are not developed using their spectral rep-
resentation this procedure is difficult. We have
tried to simulate the effect of the instability of
one of the channel clusters by increasing the
imaginary part of the denominators in Eqs. (3.5)
and (3.6) by a constant W/2. This crude approxi-
mation has the effect of making the 8-matrix
nonunitary even if E &0, i.e., when the ('He+'H)

(3.8)

or -proton wave function in Eq. (3.2) and
~ Z«0}

is the bound wave function for the ('He+'H) portion
of the 'Li ground state; D denotes the dipole
operator.

The amplitude in Eq. (3.7) may be compared
to the uncoupled amplitude (i.e., A. =0)

channel is closed. This additional inelasticity
represents the effect of the neglect of the three-
body (n+P+4He) channels in our coupled-channel
calculation of the final-state wave function based
on two-body dynamics.

As we now have essentially three free param-
eters (a, A., and g it is difficult to explore all
possible values and we will only present a few
typical results. It is useful to divide the total
cross section based on the amplitude of Eq. (3.7}
into three parts, the coefficients of a', aP, and
P'. We write

&r -&r +&r 3

«oo + «~oim +~ own ~

or = + on + +PotNr +P oiNn
2 P 2

(3.9)

(3.10}

(3.11)

I I I I I I I I I I

3.0

2.5—
~ ~

~ ~
~ ~

~ ~ . ~ ~ ~ ~ 0'g = 0
= 0.5
= 1.5

In these equations n and P again refer to the photo-
neutron and photoproton cross sections in the
sequential decay model. (For example, in the
photoneutron case the final-state proton is emitted
by the 'Li system after the neutron has been
ejected. ) We may speak of on, o,~, and oiNn as
the direct, interference, and indirect cross sec-
tions, for want of better names.

1,4

o
~f

u 2.0
OJ

~ (
~ /

1.0
lJ
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0.6o

0.2
Vl

o
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o
I

~ 1.0
~f
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~ ~ ~+%a +

~ ~

~

~
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8 12 16 20 24 28

Gamma-ray energy (MeV)

FIG. 2. The contributions from the d5g2 proton chan-
nel to &rg, s~ns, , and e~&~ as defined in Eq. (3.11).
(These curves correspond to the parameter values
A, =7.0 MeV, W=0.5 MeV. ) For larger values of A, the
oscillad. ons in OD are more pronounced.

10 14 18 22

Gamma-ray energy (MeV)

26

FEG. 3. The quantity (OD~+0~+o~&ND) for ds/2 proton
and d3/2 proton emission in the coupled-channel model
(with A, =7 MeV) and various values of W. ISee Eqs.
(3.13) and (3.14)]. The d5/2 cross sections are given in
the upper group of curves and the ds/2 contribution in
the lower group.
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The results of this model have the property
that for the values of X investigated (A. = 5 to A. =30)
the channel coupling induces rather large oscilla-
tions in (ID (see Fig. 2.). These oscillations,
which would make agreement with the experimental
data poor, may be canceled out by the interference
term oI~ if one chooses a ~ p or (a = p=1//3 ).
We have thus investigated the much simpler form
of the model:

of the sequential decay model to the interpretation
of the data could receive further clarification and
justification.

Further, the study of the reaction 'He+SH n+p
+4He would upon interpretation, give one some
idea of the strength of the cross-channel coupling
and some measure of the parameter X, if the reac-
tion is indeed sequential, i.e., 'He+'H-n+'Li-n
+p+'He or 'He+'H- p+'He-n+p+'He.

1or" = g(QD+0'~ +G~D ),

p(Ir —g(cD+ o~ +oIND ) .

(3.12)

(3.13)

Since, except for some relatively small thresh-
old effects 0'~= o~ we have the approximation,

r 8( D INY IND)' (3.14)

In Fig. 3 we present some results for the d»,
and d, ~, continuum (coupled-) channel contributions
to the quantity (oD~+o,~~ +cIQ ) for various values
of W and A. =7.0 MeV. In Fig. 4 we compare the
quantity given in Eq. (3.14) (including d, ~m, d3~„
and s», contributions) with the experimental data
of Ref. 2 for the case W =0.5 MeV.

IV. CONCLUSIONS

In this work we have compared a series of ap-
proximate calculations gf the photodisintegration
of Li leading to three-body channels. We find that
the shell model gives a good account of the cross
section in the threshold region but overestimates
the cross section by a factor of about 2 elsewhere.
The cluster-model result is of the correct mag-
nitude at the higher energies but is too small near
threshold. The difference between these models
may be attributed to the neglect of certain pro-
cesses in the case of the cluster model, as dis-
cussed previously. Whether this is a good approx-
imation requires further investigation.

The schematic coupled-channel model also pro-
vides a result that is in reasonable agreement with
the data. In the application of the cluster model we
have not carried through the orthogonalization pro-
gram as given in the formal theory. However, in-
spection of the integrands of the photodisintegra-
tion matrix elements indicates that most of the
contribution arises from regions where the clust-
ers are well separated. Therefore the channel
orthogonalization may be somewhat less important
for this problem. This feature also deserves fur-
ther study.

Further experimental investigations of the angu-
lar distribution and energy spectra of the particles
emitted in the three-body photodisintegration
would be of help in understanding the nature of the
basic processes. In particular, the applicability

APPENDIX

In this Appendix we discuss the modification of
the theory necessary in the presence of redundant
functions, that is functions u,"(r,) which satisfy the
relations

~r„c)u,"(r,)dr, = 0
c

Jt )4), (r, ))u, (r, )dr, = 0.
C

These are eigenfunctions of the matrix

(r, , c'
(p ( r„c)

with eigenvalue unity

Since the ~4, (r, )) are not orthonormal, X of Eq.
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FIG. 4. The total cross section as based on Eq. (3.14)
calculated for A, = 7.0 MeV and 8'=0.5 MeV. The con-
tributions of the d3&2 and d&& continuum channels are
included using the coupled-channel approach. The s f/2
channel is included but without the coupling to the
( He+ H) channel.

P I (r,', , r'Iplr„r)r, '(r, )dr, =r, (r,'.). tA3)
C

In the case such functions exist, Eq. (2.4) becomes

&4. (r.' )I@,(r.)& =6„6(r,-r,' ) —g &,"(r,' )&,"(r,).
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(2.12) is unsatisfactory as a channel Hamiltonian.
This problem can be circumvented by introducing
a new set of orthonormal channel states

going waves in c') of the equation

E., —g &c"Iplc». .&clplc'& IxV& =0. (All)
CC

I&i;& (k, )) = P lc, .(r, t)) xi'& (r, )dr, ,c'
(A5) This last equation may be written in a still more

abstract form as

where the xt'& (r, ) are defined below.
It is useful to define the projection operator

5'., -pkop] Ix.")= 0 (A12)

(r,' c'lp lr„c) = &„ f)(r, -r,'i) —p u, (r,' )u,"(r,),
with the subsidiary condition plx&'» = Ixt'». We may
also write the following integral equation

or suppressing the coordinates,

(c'Iplc& = a.. —P I .")(u. I
.

We now note that if

Z& "Ipl '&Ix!".&=Ix'.",.&c'

and if

C

we have

(A6)

(A7)

(A8)

(A9)

Ix". &=Ik.&-, „„,(l-p)k. lxV&,
Ea, 0

(A13)

(A15)

where all quantities are now matrices in the chan-
nel space. In Eq. (A13) Ik,) is a "plane-wave"
state, i.e. IE, -k, ,]lk,) =0.

As an example, we present the solution of Eq.
(A13) in the case there is a single u, . In that case
we have

d;&, , (E„)Iu, ,&&u, Ik,&

(E
C

where

&A&;&(k,', ) IA&+&(k, )&
= 5„,6 (k, —k,', ) . (A 10)

An appropriate set of IX&;&& may be obtained as.
follows. We introduce the kinetic energy operator
for channel c, k, „and define IXi'~&& to be the solu-
tion with incoming waves in channel c (and out-

is diagonal in the channel indices. Note that
Q, .(u, I

xi'» = 0 as required.
In the presence of redundant solutions a satisfac-

tory channel Hamiltonian is then obtained by re-
placing the I4, (k, )& of Eq. (2.12) by the IA&'&(k, )).
The modification of the remaining equations of Sec.
II is fairly straightforward.
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Energy Commission.
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