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Unitarity and off-shell effects in the impulse approximation*
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For elastic scattering of a particle from a finite many-body target, the procedure of elimin-
ating the two-body potential in favor of a two-body scattering matrix is examined. It is shown

that the theory of Kerman, McManus, and Thaler leads to unitary relations which are not of
a particularly convenient form. A simple procedure which identifies the appropriate off-shell
scattering matrix to be used in the impulse approximation is presented. The projection oper-
ator technique is employed to define an optical potential and then, in a truncated Hilbert
space, a relation similar to a two-body Low equation is used to identify the appropriate two-

body T matrix. With this latter procedure the unitarity relations are maintained in a form
which allows them to be used as a guide to the validity of the impulse approximation.

I. INTRODUCTION

In the theory of the elastic scattering of nucleons

by nuclei, the two-body potential is frequently
eliminated in favor of a two-body scattering matrix.
In the theory of Kerman, McManus, and Thaler
(KMT)' or in the multiple-scattering series of
Watson, ' this procedure requires the direct re-
placement of a many-body operator by a two-body
operator. This scheme has the disadvantage,
however, that it is difficult to know what off-shell
effects must be included in the two-body operator
so that it may "best" represent the many-body
operator it is to replace. In the Watson multiple-
scattering series, some of these effects may be
included by performing the selective resummation
as a three-body problem. '

In order to understand~better the replacement of
a two-body potential by a two-body scattering
matrix, we reexamine here the KMT formalism.
In Sec. II the theory of KMT is reviewed. In Sec.
III we examine the relationships that unitarity
implies for the T matrix. In Sec. IV we examine
the case of elastic scattering of a projectile from
a target composed of A nonidentical particles.
We employ the projection-operator4 technique to
define an optical potential. By limiting the non-
elastic space to single-hole states and employing
an equation similar in form to a two-body Low

equation, we demonstrate how to identify the two-
body scattering matrix which occurs naturally in
the many-body problem. This approach is closely
related to treatments presented elsewhere. ' ~ '
However, the application of this approach to the
simple problem considered here clarifies the pro-
cedure, and also demonstrates the origin of the
effects which distinguish the free scattering ma-
trix from the scattering matrix used in the im-
pulse approximation.

The results are shown to satisfy unitarity re-

lations. In the Appendix, these results are gener-
alized to the case where the target particles are
identical.

II. MULTIPLE-SCATTERING FORMALISM

In the theory of the scattering of nucleons by
nuclei, where the nuclear force is considered to
be singular, it is customary to eliminate the
singular two-body potential in favor of a two-body
scattering matrix. In the theory of KMT one
writes a T matrix which satisfies an equation of
the form

T(E) =Avo, +Avo, . T(E),
1

"S-Ip-a„+a~ (2.1)

1
f01(%) V01 VOI f01(R) 9

(d —Ap Ag+ gE
(2.2)

or equivalently,

1
1+ t„(&u)( &u —h, - h, +ie) ' (2.3)

Substitution of Eq. (2.3) into Eq. (2.1) immediately
yields

T(E) =Ato, ((u) + (A —1)to,(&u) . T(E)
1

+f„((g) . — . T(E)1 1
E Ap H~+ $& (0 kp A~+ zE.

(2.4)

where spy is the potential between the incident

particle, labeled zero, and particle one. The
identity of the target particles has been employed
to replace V=+;vo; by Av„. A two-body T matrix
t(&u) is then introduced. This operator satisfies the
equation
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or

T(E) =A to, (())) + (A —1)to,((d}GO(+)(E)T(E)

+4 ( )[G."'(E)-g.' ( )]T(E), (2.5}

where Go(+)(E) and g(,"(u&) have the obvious defini-
tions. The standard approximation used with KMT
consists in dropping the last term in Eq. (2.4) or
Eq. (2.5) and setting (() =E. In this approximation,
we find that the approximate transition operator
T(E) satisfies the equation

T(E) =A to, (E) + (A —1)to,(E)GO(+)(E)T(E) . (2.6)

PT'(E)P —= T,')(E)

satisfies the equation

(2.14}

T,',(E) = PU'(E)P +P U'(E)PGO+'(E) T,', (E) . (2.15)

The identifications

where ~k„4$ represents particle zero in a plane-
wave state incident on the ground state ~(1„&, then
this immediately gives that [G,"'(E),P] = 0.

The matrix elements of T'(E) representing elas-
tic scattering are (k0, 4)„~ T'(E) ~ko, 4„&. Thus, with

the definition of P given by Eq. (2.13), we see that

Since Eq. (2.6) is not a many-body Lippmann-
Schwinger equation, it then proves convenient to
define an operator T'(E) such that

0 ') ~'(E) Ik&-=«04~ I T'(E) lkoc~&,

(k'I&'p (E) (k&-=(k,'@„)U'(E) lk, @g&,

(2.16)

(2.17)

T'(E) = [(A —I)/A]T(E), (2.7)
and

so that T'(E) does satisfy a Lippmann-Schwinger
equation, viz. ,

T'(E) = (A —1)t,(E)

(k [g,")(E)(k&=-(k„'C „[G,")(E)(k, C„& =

(2.18)

+ (A —1)t(),(E)GO" '(E)T'(E) . (2.8)

Q[1-(A —1)to, (E )Go" '(E)]Q T'(E)

= Q(A —1)to,(E) + Q(A —1)to,(E)GO(')(E)PT'(E) .
(2.10)

By solving Eq. (2.10) for QT'(E) and substituting
that result in Eq. (2.9), we obtain

P T '(E) =P U'(E) + P U'(E)G o"(E)PT'(E), (2.11)

with

U'(E) —= (A —1)t~,(E) + (A —1)to,(E)

Q
Q[E —jgo —H~ —(A —1)to, (E)]Q

(2.12)

In order to obtain Eq. (2.12), it is necessary to
assume that [G,"'(E),P] =0. If we take P to be

P=— ko, 4 dko ko, 4~, (2.13)

We now note that Eq. (2.8} is still a many-body
equation. Again following KMT, we may reduce
Eq. (2.8) to a one-body equation for elastic scat-
tering by projective techniques. We define pro-
jection operators P and Q such that P+Q =1,
without at this point specifying P any further. We
then find a relation for PT'(E) from Eq. (2.8) by
observing that

P T'(E) = P(A —1)to, (E) + P(A —1)to, (E)GO(+)(E)PT'(E)

+P(A —1)to~(E)Go(+)(E)Q T'(E) (2.9)

and

transform Eq. (2.15) into the one-body equation
for elastic scattering (units such that I'=2m= 1
are used),

&'(E) = &.', (E) +&.'„(E)g,"'(E)&'(E) (2.19)

The optical potential '0,'~,(E) is a complex energy-
dependent one-body potential. Clearly Eq. (2.19)
is a one-body Lippmann-Schwinger equation, with

all the properties that implies. However, ac-
cording to Eq. (2.7) the elastic scattering transi-
tion operator in the impulse approximation is
given by f'(E) which is related tot'(E) by

f'(z) =( )) r'()() . (2.20)

Since F rather than ~' represents the elastic
scattering operator, the unitarity relations of
interest necessarily concern themselves with W.

However, we have noted that it is ~' and not W

that satisfies a one-body Lippmann-Schwinger
equation. This fact leads to an inconvenient state-
ment of the required current conservation. This
question will be examined at the end of the next
section.

III. UNITARITY RELATIONS

In this section we discuss the unitarity relations
for both two-body potential scattering and also for
the full many-body problem. We shall be par-
ticularly interested in the implications that the
unitarity of the S matrix has for the T matrix.

We begin by considering a general transition
operator s'(E). We need not specify, at this time,
whether t'(E) is a one-body or many-body operator,
as we are interested in formal manipulations which
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are valid for both the case when f (E) is a one-
body operator and when f'(E) is a many-body oper-
ator. We shall return later to the physical impli-
cations of a specific identification of'f (E)

We assume that K(E) may be related to a po«n-
tial g by s, Moiler wave operator Q"'(E):

of the full mary-body T matrix [given in Eq. (2.1)]
on a subspace of the full Hilbert space. We shall
define this projection by F(E},

f'(E) = O'T-(E)d' . (3.9)

The usual operator algebra indicates that %'(E)

satisfies
f (E)= 1) Q'"(E).

This immediately enables us to write

Q&+&'f'(E) = Q "&'(E)V) Q")(E)

The Hermitian conjugate of Eq. (3.2) is

(3.1)

(3.2)

7 (E)= U{z)+U(z)G("(E)f'(E),

where U(E) is given by

(3.10)

f't(z)Q &+)(E) —Q (+)1'(E)~tQ (+)(E) (3.3)

and the difference between Eq. (3.3) and Eq. (3.2)

7't(E)Q "'(E)-Q"'t(E)r (E) = Q' "t(E)[V)t-%)]Q"'(Z) .

The wave operator Q'"(E) obeys the relation

Q'"(E) =1+9.'"(E)~ Q'"(E)

(3.12)[&P, Go&'&(Z}]= 0.
In general, of course, U(E) is not Hermitian even
though V may be a Hermitian operator.

In this case, Eq. (3.V) becomes

i(z) f'(E) =-2vir'(E}5(z- H,)r(z)
+ m t(z) [U(E) —Ut (E)]v&&(E),

(3.13)

where, as usual, 4'+@=1. We have also assumed
that

= 1+9&'&(E)f (E),
with 9,'+'(E) defined by

(3.5)
where we have made the identification HQ AQ+HQ,
and where%' satisfies the relation

9,'+'(E) =(E-X,+le) ', (3.6) 'u)(E) =&P[I+ Go+'(E)U(E}&(E)]5'. (3.14)

+ Q&'»(E)(v) -u')Q" (z)

= -2vif'(E)5(z -X,)f (E)

+ Q &'»(E)(~-V')Q("(E) . (3.7}

If g is Hermitian this becomes the familiar re-
lation

f (Z) -f'(E) =-2vif't(z)5(E-X, )f (Z). (3.8)

It is of consequence to note that the derivation
of Eq. (3.7) requires only that the wave operator
obey a Lippmann-Schwinger equation, Eq. (3.5),
and that the transition operator be defined ac-
cording to Eq. (3.1). We note that the V) in Eq.
(3.1) and that in Eq. (3.V) are necessarily identical.
If we take that matrix element of Eq. (3.8) which
corresponds to forward elastic scattering, we ob-
tain the usual optical theorem.

The form of Eq. (3.7) is perhaps worthy of fur-
ther note. Let us consider the specific case
where K(E) in Eq. (3.1) is taken to be a projection

where XQ is taken to be the difference between the
full Hamiltonian, H, and the potential '0, i.e.,
XQ=H-g. This relation, together with its Her-
mitian conjugate, when inserted in Eq. (3.4) yields

7'(E) -f't(E) = f'~(E)[9,'"(E)-9' '(E)]f (E)

It is convenient to add the condition that the inci-
dent state be included in 6'.

As a second example of the implications of Eq.
(3.V), we may identify f (E) with the many-body
T matrix T(E}, but consider the Lippmann-
Schwinger equation, Eq. (2.1), which relates T(E)
to V. If V is Hermitian, Eq. (3.7) implies

T(E) —T (E) =-2&&i Tt(E)5(E-H )T(E), (3.15)

qT(z} Tt(z}y-,= -2vi d T'(E}5'5(E-H,}NT(Z}e

-2' «&'Tt(E) f&5(E -H()) 4I T(z}g,

(3.16)

s'(E) —s' ~(z}= 2vi, V (E)5(E --Ho)K(z)

-2via Tt(z)g5(E-H, )gT(z'ff.

(3.1'?)

Comparison of Eq. (3.13) or Eq. (3.14) with Eq.
(3.10) indicates that

~'(E)[U(z)- U'(E)Q(z)

2si&yT'(E)g5(z -H,)gT(E}5'. -
(3.18)
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This discussion is, of course, a mathematical
statement of the conventional remark that lack of
Hermiticity arises from the failure (by a trunca-
tion of the Hilbert space) to include all possible
physically available states

If we now specify t=- I', where I' is as given by
Eq. (2.13), then we are dealing with the subspace
in which the target nucleus remains in its ground
state. In this case, we may define a one-body
optical potential by

&kol v.„lko& -=&kocgl «E) lk.4&&,

where «E) is given by Eq. (3.11) with 6' and g re-
placed by P and Q, respectively. The correspon-
ding T matrix, we shall indicate as T, , (E),

(3.20)

r.„(E)= v.„(E)a&:,&(E), (3.2i)

where 0,"„'(E}is defined by

Il& &(E) =i+(E I +i~)-'V"'(E}

The forward-scattering matrix element of Eq.
(3.7) is [where now we identify W(E) with the one-
body operator T,p,(E)]

&k, ( r.„(E)—r.'„(E)~k, &

(3.22)

2wi&k J T~-p, (E)6(E-h,)r.p, (E)~ks&.&y('I V.„(E)-V.'„(E)ls'„-."&,

(3.23)

where ~gP'& is the solution for energy E of the
Hamiltonikn H(E) =ho+ V,~, (E). The first term on
the right-hand side of Eq. (3.23) is proportional
to the total elastic cross section, whereas the
second term on the right-hand side is proportional
to the total cross section for absorption. With

If we now examine the diagonal matrix element
of Eq. (3.15) corresponding to forward scattering,
we obtain the optical theorem relating the imagi-
nary part of the forward-scattering amplitude to
the total cross section. The forward-scattering
matrix element of Eq. (3.16) or Eq. (3.1V) then
yields the expected result, viz that the total cross
section may be split into two parts, the first of
which is manifestly the total cross section of scat-
tering into all possible final states included in 6'.
The second term then necessarily represents the
total cross section for all scatterings into states
not included in 6'. Thus it is obvious that the total
cross section for scattering into the states in g is
given by
o...(g) =-(4m)' . (k, e„~m'[u(E) —V'(E) j~(E)(k,@,&

= (4s')' &k, e„~T(E)'g

x 6(E-a,}gr(E)~k, C„&. (3.i9)

these identifications we have

4m
elastic nonelastic y

g
(3.24)

where f» (0) is the forward-scattering amplitude
We now return to the many-body problem and

rewrite Eq. (3.15) as

-»f&k, 4„IT'(E)95(E-&.-ff&)QT(E) Iko C'~&.

(3.26)

For the optical potential V,~,(E), which has been
constructed to give the elastic scattering matrix
elements of T(E), one may identify, term by term,
Eq. (3.23) with Eq. (3.26). Thus, Eq. (3.26} leads
again to the unitarity relationship of Eq. (3.24),
where now, however, each term in Eq. (3.24) can
be identified with the corresponding many-body
term in Eq. (3.26).

%'e now return to the theory of KMT which was
reviewed in Sec. I. We recall that the physical
elastic scattering is given by the matrix elements
of PT(E)P with T(E) given in Eq (2.6). . On the
other hand, it was the operator T'(E) which was
shown to satisfy an equation of the Lippmann-
Schwinger form. Thus it is of interest to derive
the unitarity relations implied by the structure
of the KMT formulation of the multiple-scattering
problem.

It is worthwhile to recall that the only approxi-
mation made in deriving Eq (2.6) for. T(E) was
the omission of the term proportional to [Go"'(E)
-g,' (&u)] in &q. (2.5). If this omission is justified
for the particular problem of interest, then T(E)
is a good approximation to the exact T matrix and
thus must satisfy an optical theorem of the form

4n—Im.r (0&=g =o . +gtotal elastic nonelastic

=-(4~)' 1m&k, e„jr (k.C„&.

(3.27)

A model in which the neglect of [G,'+'(E) -g,',"(up) j
can be made exact, is one in which all of the
eigenstates of H„are taken to be degenerate. The

r(E)-Tt(E) = 2~i r-"(E)p5(E-z, -a„)pr(E)
-2vf T'(E)q5(E-a, -a„)qr(E).

(3.25)

For forward-elastic scattering, we take the ma-
trix elements of Eq. (3.25) with the state ~k, 4„&,

«, +„lr(E)—Tt(E)lko I„&

=-2~f&k, e„ir'(E)p5(E-a, -a„)pr(E)ik, c„&



1378 ERNST, SHAKIN, AND THALER

many-body Green's function, Gn("(E), would then
become

G(+)(E)
p (s.28)

which can clearly be exactly cancelled by re-
defining g,',"(E)as G,',"(E)= G,"'(E). In that case
of course, t»(E) represents the two-body T ma-
trix for the scattering from an infinitely heavy-
target particle, and is not therefore related di-
rectly to the observations. Such a model [Eq.
(3.28)] derives from the use of the closure ap-
proximation in the many-body problem. There
are, of course, other models in which the neglect
of this term is exact. We mention this here only
to demonstrate that there are models in which

T(E) may be the exact T matrix, and in these
models the optical theorem given in Eq. (3.2V) is
also exact. Thus, we may conclude that the
neglect of the term proportional to [G,'"(E)
-g,',"(e)] in Eq. (2.5) does not preclude the exis-
tence of unitarity relations.

A unitarity relation for the KMT theory can be
derived immediately for the operator PT'(E)P
—= T,', (E) which satisfies a Lippmann-Schwinger
equation of the form

If we now take the forward-scattering matrix
element of this equation, we find the "optical
theorem"

o„„t=—Im f» (0) =-(4tt)' Im(k»4„~ T(E)~k»4„)total P ~p 2P

where R(h) is given by

A-1
o,~,n., +R(ho), (3.34)

x Q "&(E)~k, c„)]. (3.35)

This is not a particularly convenient form for
an "optical theorem" to take. The difficulty is
that one is not able separately to identify the two
terms on the right-hand side of Eq. (3.33) with

elastic scattering and with nonelastic scattering,
respectively. It is clear that this came about be-
cause T,' (Et) satisfied a Lippmann-Schwinger
equation while the physical elastic scattering oper-
ator is given by PT(E)P = [A/(A —1)]T,', (E). Com-
parison of Eq. (3.34}with Eq. (3.27} allows one to
make the identification of R(k,) as

R(kn)=-(4w) 4. ((k(t4s~iQ(+'~(E)[U'(E) —U'~(E}]

T,',(E) =PU'(E)P+PU'(E)PGn+'(E)T, ', (E) (3.29) 1Ak&=—g . +o0} A elastic nonelastic ' (s.se)

where Q'"(E} is defined by

(3.30)

where U'(E) is defined in Eq. (2.12). Equation
(3.7) then implies that T„(E,) satisfies a unitarity
relation of the form

T,'i(E) —T,',~(E) =-2siT 'e((ATE) (5E ho)T,', (E)-
+ Q' "~(E)[U'(E)—U' (Et)]Q"'(E),

We may pursue this point further by noting that
the theory of KMT may be rewritten in a form
which identifies the "true" optical potential, that
is that potential which when inserted in a one-body
Lippmann-Schwinger equation, will generate T(E).
This can be accomplished if we write Eq. (2.15) as

P T(E)P =P U(E)P + P U(E)PGn(+i(E)P T(E)P,

(3.37)

Q ' (E) = 1+Gn+'(E) U'(E)Q (E) (3.31) where U(E) is defined by

nt'(a)p= (a t) T.', (EI. '

If we multiply Eq. (3.30) by [A/(A —1)], we have
the unitarity relation for PT(E)P given by

pf(E)p-pP(E)p=-ssi( a )pT~(a(ps(a-s, }

(3.32)

x P T(E)P+ Q(+'~(E)—1

x [U (E) —U ~(E)]Q (E) ~

(3.33)

The physical elastic scattering amplitude, how-

ever, is given in terms of PT(E)P which is related
to T,', (E) by

U(E) = U'(E), (s.s8)

with U'(E) given in Eq. (2.12). Equation (3.3V) may
be written

P[1+ PO(E)PGo+'(E)]PT—(E)P
1

=PU(E)P+ PU(E)P Gee'(E)p T(E)P.

Thus Eq. (3.38) may now be rewritten as

(3.39)

PT(E)P =P P ~t P +PV,sPGo"(E)PT(E)P, (3.40)

where the effective potential I'V,ffI' is given by

1

P[1+(I/A)PO(E)PGn' (E)]P

(3.41)
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From this equation one may identify an optical
potential (k'

I V„,lk& defined by

i.e.,
U'(E) = (A —1)t„(E) . (3.48)

(k'I v.,t lk& -=( '@~l v.ffl«'~&. (3.42)

An integral equation which relates V,~, to U(E) can
then be found from Eq. (3.42),

(k I v.„lk& =(k'4'~
I
U(E) lk4'~&

dk k'4~ UE k 4~

(3.43}

PT(E)P —PT (E)P =-2wiPTt(E)P5(E ho)-

x PT(E}P+ PQ'+ (E}P(v,ff
-V.' )PQ'"(E)P, (3.44)

where Q"'(E) is given by

(3.45)Q'+'(E} = 1+Go+ (E)PV,ffPQ'+'(E) .
The expression for PT(E)P —PTt(E)P in Eq.

(3.44) should be compared with the expression
given in Eq. (3.33). In Eq. (3.44), one may now

take the forward-scattering matrix element and

derive the optical theorem

o,.„,=—Im f„(0)4m

p

=-(4w}'2 Im (k, C„IT(E) lk, 4„&

x (ko4'~ IQ~ 't(E)[V«, —V~«]Q"'(E) Ik, C„&,

from which we may make the identification

(3.46)

where U(E) is defined in Eq. (3.38).
Since PT(E)P is related to PV,«P by a Lippmann-

Schwinger equation, we have immediately

It would be convenient if the unitarity relations
could be used as a guide to the validity and ap-
plicability of an approximation to U'(E). For
example, one would like to know exactly which in-
elastic channels are being ignored by the approxi-
mation in Eq. (3.48). The form of Eq. (3.33), in
which a piece of the elastic scattering cross sec-
tion is contained in each of the two terms on the
right-hand side, does not provide a convenient
method for identifying the physical implications
of an approximation to U'(E). Furthermore, Eqs.
(3.45) and (3.46) provide unitarity relations in
terms of the potential V,«which is related to
U (E) via an integral equation. This is also incon-
venient. Thus one may conclude that although in
the theory of KMT one may derive unitarity re-
lations, the resulting relations are not especially
helpful in understanding the physical implications
of approximations to the theory.

In the next section, we shall examine an alternate
approach to the replacement of a potential by a
two-body scattering matrix in the many-body
scattering theory. This approach relies on the
truncation of the full Hilbert space to include the
space of the elastic scattering states plus all
single-particle single-hole excitations of the tar-
get. Since the problem may be treated exactly
in this truncated space, unitarity is treated in a
consistent manner. This approach has been ap-
plied to the problem of an incident nucleon scat-
tering from a target which is composed of A cor-
related and identical nucleons in Ref. 5. In order
to understand more clearly the treatment of
unitarity in this approach, the simple-model
problem of a distinguishable nucleon scattering
from A distinguishable, uncorrelated nucleons is
examined in the next section. It is shown that in
this approach unitarity may be used as a guide
to the validity of the impulse approximation.

~nonelastic ~4~ & a .z.
&Zap

x (k, c„IQ"'t(E)[V,s V„,]Q'"(E)-lk, C„) .
(3.47)

The unitarity relations given in Eqs. (3.33) and

(3.46) are exact. One does not, however, wish to
calculate PT(E)P exactly, but rather to approxi-
mate the potential U'(E) defined in Eq. (2.12) and
then to calculate the corresponding approximation
to PT(E)P. For example, in KMT it is noted that
the leading term for U'(E) at high energies arises
from dropping the Q-space contributions to U'(E),

IV. OFF-SHELL EFFECTS
IN THE IMPULSE APPROXIMATION

In this section we shall present a simple deriva-
tion of the impulse approximation and discuss the
implications which the unitarity relations, de-
veloped in the previous section, have for the
resulting approximation. The t matrix which ap-
pears in the impulse approximation will be identi-
fied through the use of an equation which is formal-
ly similar to the Low equation. This t matrix will
also be shown to be a modified Bethe-Goldstone
reaction matrix. The procedure used here is that
of Ref. 5. However, in Ref. 5 the inclusion of
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correlation effects and the need to maintain com-
plete antisymmetrization necessarily leads to a
complicated development. Here, we should like
to concentrate our attention on the identification
of the appropriate f matrix to be used in the im-
pulse approximation. %e shall thus examine the
simplest case, the case of a distinguishable par-
ticle incident on A distinguishable particles bound
in a "nucleus. " An alternative derivation to the
one presented here would be to generate the inde-
pendent-particle approximation to the very general
T matrix given in Ref. 6. The case where the tar-
get particles are treated as identical fermions is
a simple generalization of the following develop-
ment and is given in the Appendix.

We recall that the target ground state is repre-
sented by the A-body state vector ~4„&. The tar-
get is taken to be in an eigenstate of the Hamil-

tonian H~ with eigenvalue E„,
&~ I4~& =&~ 14~& (4.1)

=(Z„- +S„)(k, 4„&. (4.2)

Use of the projection operator P, defined by

dko ko@~ ko@'~

Here we consider the target to consist of A dis-
tinguishable particles occupying fully A states,

The state consisting of a particle in a plane-
wave state (labeled by zero) incident upon the
target will be represented by ~k, 4„&. This state
is clearly an eigenstate of the Hamiltonian H,
=&0+H~y

ff)k, C„&=(a, +If~) lk. 4~&

lead earlier to the optical potential,

(iT,'(v.„(z))lc,)=(k,' o„gu„k, I)+(k,' o„(I t'„0
& @„.Q(gu„) &, @). (4 4)

where q» is defined by

~, =1,—lf, &&b, l, (4.6)

and 1, (or 1~) stands for the identity operator in
the space of particle zero (particle j).

In order to replace the potential operator in this
equation by a T matrix, we must explicitly include
certain of the eigenstates of @JIB. If we are in-
terested in the leading term in a hole-line expan-
sion, the appropriate states to consider are those
which arise from a single-hole state being created
in the target. We thus define our model problem
as the truncation of the Q space to include only
the space of the incident-particle and a single-
particle-hole excitation of the nucleus. This ap-
proach is thus very similar to treating the Watson
multiple-scattering series as a three-body prob-
lem. '

The A -1 particle state vector which corresponds
to particle j being removed from the state (b&& in
the target, we shall denote as ~4g, ). We may
now define a projection operator Q» which projects
onto the space where the A. -1 particles j c j are
in the state ~4„' g and particle j is not in the state
lh, &,

(4.5)

We may then write

qeq=(I: q,)a(y q, .).
Moreover, H may be written as

(4.7)

H &0+@»+&0 + &0&+ &»g+H~-iy (4.8)

where H», is defined by

2' +l g g~~.
f&» f &» A&»

(4.9)

With this assumption, only the diagonal terms in
j and j' in Eq. (4.V) survive,

QHQ = Q» H Q». = Q»HQ» . 4.11
»

The off-diagonal terms represent higher-order
effects (in a systematic hole-line expansion) which
will not interest us here.

With this approximation for QHQ, Eg. (4.4) for

We now further assume that the matrix &4
~'

PI~4 ~ g
is diagonal in j' and j,

&4'~-J JII4'~-x& =(E~+E. )~i g ~ (4.10)

the optical potential becomes

(k,'Jv.„N)[k,)=(lee Qu„k, e ,'~ „k,'e„Q v„Q Q, q q
. QI(Q „) k,e ).E —Q»HQ»+i@

(4.12)
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This formula may be reduced to the form of the
impulse approximation if we explicitly construct
in the Qf space the eigensolutions of QfKQf . These
eigenvectors we shall denote by Qf ~ gz&,

(QfKQf)Qf l(I()z& =EQf I (I)z& . (4.13)

where, when the vector qf ~uf z) is expressed in
coordinate space, it will be a function of r, and

r, Thus, Eq. (4.13) implies the equation for
q, ~uf z) given by

(E —E„—Ez -h -hf-v f —Uf —Uo)qf ~uf z) 0,

The vector Q, ~gz& may be expanded as

Qf I tz& =qf I ~f,z& I~A 1 &, (4.14)

(4.15)

where the potential U, is defined for i =j and i =0

by

U~(r,.) = f d'r, r,d, r du r„dL v(r, -r, l l(q, ~ qr,rr„„lkr, ) I

k s'j

(4.16)

We may now rewrite the optical potential in Eq. (4.12) as

(k'I v, (Z) lk ) =,g ( d dbr(b'b)r Ik'/)(kr I b)rI(k,'k l)v,. Ikdvr)

1
~ f dz '(k,'k,'I v„q, I u, ) z z, . (u, ~

I q,v„ I kdvf)I .
~g +z

~ E -E'+i~
A

(4.17)
At this point, it is convenient to choose an energy scale such that E& =0 and to introduce the states

q, ~uf z) which are solutions to the equation

(E —ho -hf —v» —Uf —Uo)qf ~ uf z) = 0.
The optical potential will then become

(k,'I v.„(z)lk, & = g (d'kqd'kl(k) k)) (kr lb() I(k'k&l j lk k )

(4.18)

r ( dz'(ir,'ir,'I v„q, I, ) z z, , (u, I qr ulk, ic,&I.
0 j

(4.19}

In this form, the term in the curly brackets in Eq. (4.19) is similar in form to the two-body Low equation
for a T matrix. We are thus led to define tf(E) by

(k'kf (tf(E)(k kf)=&k'kf(v»[k kf)+ I dE'&k'kf'(v»qf )uf z), . &uf z. (v»q)k kf).
40 +Sf

(4.20)

The optical potential then may be written

&k,'I V.„(E)I k. &
= g )t ff'hfff'hf'&tff

I
kf') &kf I hf& &k'.kf I t, (E) I k.kf& . (4.21)

The T matrix defined in Eq. (4.20) is the T matrix
which occurs naturally in the reduction of the
many-body problem to the form of the impulse
approximation as given in Eq. (4.21).

The T matrix may be written in operator nota-
tion by

where Gf(E) is defined by

1
Gf(E}—= qf E —qf (ha +hf + Uf + Uz + vof )qf

(4.22}

We may derive an integral equation for tf(E} if we
note that G'(E) satisfies

tf (E) = v» + v» Gf (E}v», (4.20} Gf(E) =gf(E)qfv»qf Gf(E}, (4.23)
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= v» + v,~g~(E)t, (E) . (4.25)

From Eq. (4.25) one sees that t&(E) is a modified
Bethe-Goldstone reaction matrix in which the Pauli
principle is imposed by the operators qf in Eq.
(4.24) and the potentials U, and U, distort the par-
ticle propagation in intermediate states.

Thus we have two expressions for t, (E), Eqs.
(4.20) and (4.25). As we shall see, the form in
Eq. (4.20) lends itself more readily to a discus-
sion of unitarity. The integral equation Eq. (4.25)
is, however, much more suitable to numerical
analysis. It is also interesting to note that the
solution for t~(E) involves the solution of a three-
body problem. This is most readily seen in the
equation for q~ ~u»), Eq. (4.15), where one sees
that the problem is one of dealing with two mutual-
ly interacting particles both of which are in a po-
tential field. The full implications of the three-
body nature of this problem have not yet been in-
vestigated.

There are several effects which differentiate the
T matrix defined in Eq. (4.22} from the free two-
particle T matrix. The first of these effects is the
replacement of the on-shell energy ~, +~, by the

o
energy e„-E& . In a typical nucleus, this is a
shift in energy of approximately 40 MeV. This ef-
fect can, of course, be ignored if the two-nucleon
T matrix does not change substantially when the
energy is varied by 40 MeV. This is certainly the
case for a nucleon scattering from an uncorrelated
nucleus above several hundred Me V. For elastic
pion scattering from a nucleus in the region of the
pion (3, 3} resonance, however, the T matrix is a
rapidly varying function of the energy. In this
case, one may not ignore this energy shift as is
shown quantitatively in Ref. 7.

where g~(E) is defined by

g'(E) =q&[(E-qi(IO+t i+U~+U. )q~] 'qi (4 24}

Substitution of Eq. (4.23) into Eq. (4.21) immediate-
ly yields an integral equation for t~(E),

t~(E) = v,) + v»[g~(E) +g'(E)q~v»q, G'(E)]v»

=v,&+v»g (E)[v»+v»G (E}v»]

The second effect which distinguishes the T ma-
trix of Eq. (4.20) is the presence of the operator
qf. For the case of an antisymmetrized target,
qf is replaced by an operator which excludes the
recoil-target particle from all of the space which
is occupied by the nucleons in the target (as is
demonstrated in the Appendix). The Pauli principle
has a well-known and important effect in nuclear
structure calculations. ' Its importance has also
been studied in pion-nucleus elastic scattering. '

The third effect which distinguishes t, (E}from
the free two-body amplitude is the presence of the
distorting potentials U,(r,) and U&(r&) T.hese po-
tentials represent the fact that particles 0 and j
are scattering in the presence of the remaining
particles and thus must propagate in intermediate
states which are distorted. This effect is also
familiar in nuclear structure calculations where
it appears as the potential which generates the
appropriate intermediate state spectrum in a
Brueckner-Hartree-Fock calculation. The sensi-
tivity of the calculational results to the choice of
the potential U, (r, ) if particle 0 and j are both nu-
cleons has been studied. " The choice is not crit-
ical because the strong short-range repulsion of
the nucleon-nucleon force is such that the impor-
tant range of intermediate momenta in a nucleon-
nucleon collision is quite high, "and the distor-
tions due to U, (r, } are thus not large For .the
scattering of a pion from a nucleus in the region
of the (3, 3) resonance, the intermediate pion and
nucleon momenta are not high, and thus the effects
of the distorting potentials could be large. It has
been suggested" that because the pion-nucleus
interaction is so absorptive in the region of the
(3, 3) resonance, U(r) for the pion should be treat-
ed self-consistently. One should notice that for a
singular two-body interaction, the potentials U, (r;)
as defined in Eq. (4.16) are infinite. This infinity
may be canceled by keeping certain two-hole terms
in the expansion of Q.

Finally, we should like to discuss the implica-
tions of the unitarity relations of Sec. II for
the impulse approximation as defined in Eqs. (4.19)
and (4.20). According to Eq. (3.17) the anti-Her-

mitian part of the optical potential is given by

(tj)[v.„(z)—v~„(,z)]lir) =-mv((k,'o„(g v„)P Q, ()(z —Q+Q, )Q, (P v,„) V,+ ).
f n

(4.26)

From our explicit construction of the eigenstates
of Q+Q~ we may infer the types of states which
may contribute to the anti-Hermitian part of V~, (E)
and thus contribute to the absorption present in the
impulse approximation. The complete set of states

for q& ~u») may be characterized by the nature of
the incident wave boundary condition imposed.
These states are: (1) particle zero incident on
particle j which is bound by potential U& (not in the
state

~ f)&), however, which is excluded by q~),
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(2) particle j incident on particle zero which is
bound by potential U» (3) particle zero and parti-
cle j bound together by the potential e» and inci-
dent on the potentials U, and U„or (4) particles
zero and j unbound and incident on the potentials
U, and U, . As these are the only inelasticities
available in the truncated Hilbert space, and as
the derivation of the impulse approximation re-
quires this truncation, a necessary criterion for
the validity of the impulse approximation is that
the dominant inelastic channels at a given energy
are reasonably included in the inelasticities which
arise from the insertion of the above described
solutions for ~u, s) into Eq. (4.26). In particular,
it is well known that the impulse approximation is
valid in the region where quasielastie scattering
is the dominant inelastic channel. We see here
that the excitation of a single target particle to a
bound excited state is also included in the inelas-
ticities present in the impulse approximation.
Most importantly, we have seen that the impulse
approximation as defined in Eqs. (4.19) and (4.20)
treats unitarity in a consistent way within the trun-
cated Hilbert space.

APPENDIX

In this Appendix, the results of Sec. IV are gen-
eralized to the case where the target particles are
identical, but the incident particle remains dis-
tinguishable. The results of this Appendix will
thus be of particular interest to the study of pion-
nucleus elastic scattering. The more general case
of an incident particle which is also identical to the
target particles has been discussed in Ref. 5.
There, the target was also considered to contain
correlations.

%e begin by defining q, , as the fermion creation
operator which creates a particle in the bound
state b, The ta. rget wave function ~4„) will be
taken to be a single Slater determinant, which can
be written

(Al)

where ~0) is the vacuum. The creation operator
for the incident particle in a plane-wave state of
momentum k we shall denote by a~&. Ne may again
define the projection operator P as in Eq. (4.3) by

P-=d'ka~ 4» C„a-„=— d'k k C„k 4„
(A2)

If Q is then defined as the complement of P by

(4.4) still holds.
As before, we approximate Q by keeping only

those states which are a single-particle-hole ex-
citation of the target. We thus define Q& by

0& =~I d'~'I'o-'„n-'„, ~~, )4~&(4 ~In', n~ o~ (A4)

The fermion creation operator g-„creates a target
particle in the state

~
x-„) which is orthogonal to the

A bound states which are occupied in the target.
The "orthogonality scattering" states of Ref. 5

represent an explicit construction of such states.
The operator Q may then be approximated by

(A6)

As in Eq. (4.11), we now assume that QHQ is ap-
proximately diagonal in the hole index j,

Q&Q= Q] & Qg = 0 Qg

The eigenstates of QHQ, denoted by Q~ ps&, may
again be expanded in terms of the particle-hole
states,

Qgs& = Q )td'kd'0'&kk'(M~ s)a-q-„,q,, ICg&.

(A

The equation

(We- @E@lel4& =o (A8)

then yields an equation for (kk' ~u& s& given by

(E —.„-., -E„)&kk l~, ,&-jtd'p&klU. Ip&&pk'I~&

dPX~~UX~kpu)g

&klU. lp&=-Q&kf~l~. lpf~&, (A10)

alld

(x-„,/Ufx-, ,) -=&x-„.fa, /x-, ,
&

+ Q (XI 5, ~
u (

x- b, &„e,.6(k' —p')-
(A11)

d Pd P kXT~ 50 pXp~ pp Qy g =0,

(A9)

where v, is the interaction between the incident
particle and the target particles, and the following
definitions have been used:

(AS)

the definition of the optical potential given in Eq.
Eb, =&&i la, I &g&+ Q &&sf i I vI &y&i&~.

t=l
(A12)
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The matrix element (b, b, ~ v~ b, b,)„ is the antisym-
metrized matrix element of the two-body inter-
action between the target particles.

This equationfor ~u, s), Eq. (A9), is quite sim-
ilar to Eq. (4.14). The only differences are: First,
the Pauli principle restricts the target particles in

~u, x) in Eq. (A7} to the space which is orthogonal
to all of the states occupied in the target; and,
secondly, the potential U in Eq. (All) is more
complicated than U~ in Eq. (4.15) due to the iden-
tity of particle j with the other target particles.
The correct off-shell T matrix to be used in the
impulse approximation is then given by Eq. (4.17}
with the wave function q& ~u, s), as given by Eq.
(4.14), replaced by ~u»), as given in Eq. (A9}.

It is interesting to note that in the high-energy
limit where one may drop the subscript j on the
T matrix of Eq. (4.17), the identity of the target
particles will allow one to replace t(E) by At(E)
as was done in the KMT approach.
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