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Off-shell effects in elastic pion-nucleus scattering*
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For elastic scattering of pions from nuclei in the energy region of the (3, 3) resonance, the
effects of the binding of the target nucleons are shown to be important in the calculation of
the pion-nucleus optical potential. The size of these binding effects is estimated for the
case in which the free pion-nucleon scattering amplitude is represented by a separable form.

Recently there has been a great deal of interest
in the scattering of pions from nuclei. Various
calculational approaches are available, including
those which are based on Glauber theory, ' semi-
phenomenological optical models, ' the Watson'
multiple scattering theory, the impulse approxi-
mation, ' ' or the extension of Chew-Low theory'
to the case of bound nucleons. In order to con-
struct a microscopic description of this process,
one must take account of a number of interrelated
effects.

These effects include the off-shell aspects of the
pion-nucleon T matrix, dispersive effects due to
multiple scatterings, the quenching of the pion-
nucleon interaction due to the Pauli principle,
other effects of the Pauli principle, pion inter-
actions with nucleon pairs, etc. Because of the
resonant nature of the free pion-nucleon T ma-
trix, one expects that calculations in this energy

region will be particularly sensitive to the proper
treatment of off-shell effects. This situation is
in contrast to the case of nucleon-nucleus scatter-
ing at intermediate energies, where the relevant
T matrices are slowly varying functions of the
energy.

In this paper, therefore, we shall consider the
role of off-shell effects in pion-nucleus scatter-
ing which arise from the fact that the target nu-
cleon is bound in some orbit ( P, &, with energy
e = —~eb (. The leading term in a systematic hole-
line expansion for the optical potential has been
derived in Ref. 7. In Ref. 7 the interaction of a
nucleon with a correlated nucleus was considered.
For the pion, we must omit those effects which
arise from the identity of the incident particle and
the target particles. Furthermore, in order to
simplify the discussion we will neglect correlations
among the target particles. In that case, we may

write the leading term in the pion-nucleus optical potential as

(k',
)
V'"[k,) =Q d'1'»'d'&»& @& Ik»&(k.'k»'I4(~k. }1k.k»& (k»14~& .

A derivation of this formula for the case where the incident particle is not identical to the target parti-
cles and in which the target particles are assumed to be uncorrelated has also been given in Ref. 8. The
T matrix, t, (ez ), was shown in these references to be a modified Bethe-Goldstone reaction matrix. If
we neglect the Pauli effects, which restrict the recoil of the target nucleon, and the distortion effects,
which describe the fact that the pion and nucleon are scattering in the presence of other nuclei, the T ma-
trix in Eq. (1) becomes the free Pion nucleon scatte-ring amplitude t, w»1th the energy parameter shifted,
viz. y

&k'k» l4 (~k, }Ik.k»& - &k'k» I t.»(~k —
I ~b I & Ik.k»& (2)

where e& =(k,'+m, ')'" -m, is the kinetic energy of the incident pion.
It is not uncommon to use the approximation of Eq. (2) with the energy parameter of the T matrix chosen

as something other than e&, —~e, (. We are therefore led to consider the approximation

(k',
)
V' '(k„&= Q d k»cPk»(p~ (k») (k', k„' (t,»(ep, —

) e~)+n~)(k, k»& (k» (@»&.
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We shall examine several choices of the parame-
ter 4b which correspond to some customary
choices for the T matrix in Eq. (2). A measure
of the sensitivity of the T matrix to the choice
of the energy parameter can be obtained by con-
sidering the ratio of the "incorrect" to the "cor-
rect" off-shell T matrix,

(k"kÃ I t.N('«. —
I ~« I+~«) lk'k~&

(k."kN It.~(~kvr I ~« I) lk'. k~&
(4)

Of course, we have R =1 for b, b =0.
We should like to transform the T matrices in

Eq. (4) to the center-of-mass frame for the pion-
nucleon system. Such a transformation is known

not to be unique' for a fully off-shell relativistic
T matrix. We shall here make the simple assump-
tion, however, that the total momentum and total
energy in the laboratory constitute a four-vector,
which we will transform into the pion-nucleon
center-of-mass system. With this assumption
the energy which occurs in the denominator of
Eq. (4), ««, —Ie, I+n „becomes

(u'-=[(e-«. +m „+m„—I c, I+n, , )'

-(k, +k„)']" —(m, +m„), (5)

—(d+bb,

where ~ is defined as

(u -=([ e«, +(m, +m„) —
I
e, I]' —[k„+k„]'}'"

—(m. +m„).

(6)

where m„ is the rest mass of the nucleon (units
with c =1 are used).

As ~b will be small in comparison with the total
mass of the pion and nucleon, we may expand
Eq. (5) as

[&«„—Ie, I+(m. +m„)]
&u+(m, +m„)

where the subscript (3, 3) represents the dominant
channel (total angular momentum equal to 2, iso-
spin equal to 2, orbital angular momentum equal
to 1). If we thus keep only this term in Eq. (9),
we have the simple relation

R((u, t«, ) =D, ,((u) jD, ,((u, t«, ) . (10)

t» «
=

I &«I+ &«„» (11)

where e], is the kinetic energy of the nucleon.
N

An average value for 6b in a typical nucleus would
be approximately 40 MeV. The magnitude and the
phase of R(cd, t«, ) for t». , =40 MeV are plotted in
Figs. 1 and 2. One sees immediately that the shift
of 40 MeV in the energy parameter of the T ma-
trix to be used in the impulse approximation,
Eq. (1), alters this T matrix quite significantly.

One should note that the phase of the ratio R
is given quite simply in terms of the phase shifts
in our separable approximation. This is because
D(c»») is the Jost function, whose phase is just

l.6—

It is straightforward to generate a separable
form for t„„which is exact on the energy shell
by employing the scattering theory for the inverse
problem' to generate a separable potential. This
potential may then be used in a Lippmann-Schwing-
er equation with relativistic kinematics to give
the separable T matrix of Eq. (9). We have used
the separable potential of Walker and Piepho" to
calculate R(e, t«, ) for two values of r,

It is quite common to use the on-shell two-body
T matrix in the impulse approximation. This on-
shell approximation requires that we take 6b to
be

With these relations the ratio R, defined in Eq.
(4), becomes in the center-of-mass frame of the
pion-nucleon system

( cc"
I t,„((v + t». , ) I

Tc')

( cc"
I t„„(co)I

cc '&
(6)

The momenta Tc" and 7&' are the relative momenta
of the pion and the nucleon in the pion-nucleon
center-of-mass system, which correspond to the
laboratory momenta k,", k'„' and k'„k„', respec-
tively.

The ratio R may be further simplified if we
assume that the pion-nucleon T matrix t,„ is
given by a separable form in the vicinity of the
(3, 3) resonance, viz.
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g«. «(cc )A. «(cc ) (9) FIG. 1. The magnitude of R(~, Ab) versus ~ for bed=20
MeV (solid line) and Ab ——40 MeV (dashed line).
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equal to the phase shift 5(&u). Thus the phase of
R(v, r, ) is just 5(w+n, ,) —5(&o).

We cannot make a trivial quantitative estimate
of the shift in the position of the resonance due to
the proper choice of a, . Qualitatively however,
one might use a Brett-Wigner form for D(~), viz.

l60—

I 20

D(&u) = &u —Es+ 2 i I'. (12)

Such a parametrization of the pion-nucleon (3, 3)
resonance has been found to be quantitatively de-
ficient. Qualitatively however, it suggests the
intuitive estimate that the effect of the binding
of the nucleon produces a resonance in the lab-
oratory which is -40 MeV higher in energy than
the energy of the resonance in the Pion-nucleon
center-of-mass system.

Another choice of 4, that has been used' is

(13)
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An average binding energy for a nucleon in a nu-
cleus would be approximately 20 MeV. We have
plotted the magnitude and the phase of A(&o, A, )
for b, , equal to 20 MeV in Figs. 1 and 2. It is thus
apparent that there is a significant correction
caused by this shift in energy.

In summary, we have examined the sensitivity
of the two-body T matrix which occurs in the im-
pulse approximation to the choice of the energy
parameter. The choice of the energy parameter
according to a systematic hole-line expansion
takes the T matrix in the impulse approximation
off shell by about 40 MeV, which results in a
significant correction in the region of the pion-
nucleon (3, 3) resonance. This correction, to-

FIG. 3, The phase shifts for the separable potential
given in the Appendix (dashed line) and the experimental
phase shifts (solid line) versus ~.

gether with other effects, ' ' must be included if
one is to make a quantitative comparison with
experiment.

APPENDIX

The two-body potential generated as a solution
to the inverse scattering problem' is not Hermi-
tian below the inelastic scattering threshold. "
Such a potential can still satisfy the optical theo-
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FIG. 2. The phase of R(~, 4q) versus u for b, q=20
MeV (solid line) and b, q

——40 MeV (dashed line).

FIG. 4. The magnitude of R(~, AI, ) versus co for the
separable potential given in Eq. (A3). The solid line is
for b q = 20 MeV; the dashed line, & q

= 40 MeV.
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rem in the tmo-body problem, however. This can
be seen from the "generalized unitarity" relation'
for the 7 matrix.

T(F) T'—(F) = 3v-i T'(Z)3(F. -H, )T(F)

+0 "'t(Z)(V —Vt)n '" (E), (Al)

where the symbols above are defined in the usual
manner. If we examine the matrix element of
T(F) above, corresponding to elastic scattering
in the forward direction, me see that the require-
ment that there be no absorption below the inelas-
tic threshold, c„„, is

for ek & e. , That this property holds in the two-
body problem and thus assures that the optical
theorem is satisfied in the tmo-body problem does
not imply that one will not encounter difficulties
mith unitarity in the many-body problem. For the

potential used in this paper, '0 the anti-Hermitian
part of the potential is quite small below the in-
elastic threshold. One would thus expect the vio-
lation of unitarity to be quite small.

We have examined this problem further by fitting
the phase shifts in the (3, 3) channel below the
inelastic threshold with a Hermitian separable
potential. of the simple form

(r'
~
V~r) = V,(nr')e ' " ' (nr)e ' ' . (A3)

Such a simple form does not fit the phase shifts
exactly; the best fit is given in Fig. 3. The magni-
tude" of ff(~, L,) is plotted in Fig. 4 for n, , equal
to 20 and 40 Mev. The results are quite similar
to those presented in Fig. 2. This suggests that
the lack of Hermiticity of the potential below the
inelastic threshold may not be a critical problem.
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