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Neutron-proton scattering at a few Mev
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In this paper we reanalyze the np scattering data at a few MeV; we confirm, as previously
suggested by Hopkins and Breit, that the np interaction models all predict the angular dis-
tribution well. Any further angular-distribution measurements must be very precise to con-
tribute further to our knowledge.

NUCLEAR REACTIONS np scattering E ~ 10 MeV; calculated 0(8), P (8), oz, ,
correlated experiments.

I. INTRODUCTION

There are many reasons for reanalyzing our
knowledge of the nP cross section at a few MeV.
Among them is the use of the cross section as a
standard. One use of this cross section standard
is a measurement of fast neutron flux —particular-
ly for reactors using fast neutrons such as the
liquid metal fast breeder. In such an application,
neutron fluxes are obtained by measuring the
proton recoils from a hydrogenous radiator. This
number is proportional both to the Qux and to the
np differential cross section at a c.m. angle of
180'. Secondly we may be interested in the theory
of the nP interaction and thirdly, we may wish to
use the deuteron as a neutron target in elementary
particle physics experiments, and hence need to
know the nP scattering parameters. All these
reasons are coupled. If, for example, we wish
to know the cross section at an energy at which
it has not been measured, we can interpolate using
theory if we are onvinced that the cross section
does not have an unknown oscillation or resonance.

II. DATA

In the region of incident neutron energies E»
from 100 keV to 10 MeV there are several mea-
surements of the total cross section for np scat-
tering with an accuracy of 1~/~ or better. Since
the compilation of MacGregor, Amdt, and Wright
there have been other data. ' ' Total cross sec-
tions are fairly easy to measure and are therefore
more reliable and more accurate than differential
cross sections. There are only a few differential

cross-section measurements below 14 MeV and
none of enough reliability and accuracy to be of any
significance. Therefore, anyone who wants to
know the 180' differential cross section below 14
MeV must use theory or a combination of theory
and experiment.

In addition to the total cross-section data, there
exist data below 60 MeV on np angular distribu-
tions, "on polarization, "on correlation coeffi-
cients, ' and on triple scattering. '

III. INTERPOLATION USING BASIC THEORY

Hopkins and Breit' use the theoretical knowledge
of the momentum dependence of the nP interaction
at threshold. If the nP potential has a short range,
the various phase shifts are expected to behave as'"where k is the wave number and L the an-
gular momentum in units of k. The scattering of
nucleons by nucleons has been extensively studied
at incident (laboratory) energies from zero up to
400 MeV. At the lower part of this range, the
phase shifts are small, and Breit and Hopkins
argue that they can be determined at low energies
by the threshold behavior.

We find it convenient to parametrize the angu-
lar distribution in nP scattering by either one of
two parameters:

+ = +Zso~+90

R 4Ãoy80 jar

At low energies where S phases and S, P inter-
ference dominate, R =R'. At higher energies,
where D phases become important, R'&R.
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Neutron beams at an energy close to 14.1 MeV
can be conveniently produced by the reaction
'H+'H- n+'He and there have been many mea-
surements at this energy. ' " The values of R
derived therefrom are listed in Table I together
with the values of R given by various models. '" "
In Ref. 20 the full angular distributions are
plotted.

If we examine the earher measurements (Refs.
8-13) we find an average value

A = 1.079+ 0.011, X' = 2.1, (3)

five degrees of freedom. If we include the dis-
cordant value R = 1.031+0.01 found in Ref. 14 we
find

8 =1.051+ 0.007, g' =13.8, (4)

six degrees of freedom.
Opinions differ on how to handle a discordant

set of data; one could throw out the data of Ref.
14 since it is 4 standard deviations from the
earlier data or one could use the combined average
and increase the error estimate by a factor of 3
to allow for the difference in internal and external
consistency. Then one obtains

A =1.051+0.021 at 14.1 MeV.

If 8 and P phase shifts have threshold behavior
and higher waves are negligible (the fact that R
is close to one tends to suggest that P phases are
small and thus may have threshold behavior), then

(5)

The direct interpolation procedure then consists
of fitting A at 14.1 MeV by the experimentally
determined value. We find from Eqs. (5) and (6)
that below 5 MeV, A is known to better than 0 'Po.

But this interpolation is sufficiently important
that the validity of extrapolating the threshold be-
havior to energies of 14 MeV must be independent-
ly confirmed. Doubts already arise when consid-
ering the S phases above 5 MeV; both the singlet
and triplet nP scattering lengths are large, so
that the effective range term [Eq. (11)] is relative-
ly large. The variation with energy of the total
cross section indicates this, and phase-shift
analyses confirm it."" Further doubts arise
from considering the Po phase shift which devi-
ates considerably from threshold behavior above
25 MeV. Therefore, the data at 14.1 MeV and
higher energies do not, by themselves, determine
the coefficients of the threshold dependence or
the phases below 14 MeV.

An extreme form of this possible ambiguity is
given by the older interpolation of Gammel. "
Assuming the absence of P waves and fitting to

the 90-MeV data, he obtained

8 = 1+2(E(90)'.

This interpolation predicts the low-energy results
indicated in Table I and Fig. 1.

However, the deviation from threshold behavior
is dominated by the long-range part of the inter-
action. The one-pion-exchange part of the poten-
tial (OPEP) dominates for the long-range part of
the nP interaction since the w meson has the small-
est mass of any strongly interacting particle. We
know the pion-nucleon coupling constants and
hence OPEP. This is confirmed by analysis of
high-energy low momentum transfer data. ' At
low energies, the P phases are determined pri-
marily by the OPEP. The S phases also depend
upon details of the core in the nP interaction, but
this dependence is constrained by a combination
of the total cross-section data and the high-energy
data.

IV. USE OF A MODEL FOR INTERPOLATION

In order to do better than the simple interpola-
tion' and to take account of all the points noted
above, we use models that build in the OPEP be-
havior as well as the threshold limit and which
fit all the data well (in general y.'/X, ' = l-3 for
all data up to 350 MeV). We have matched the
low-energy data even better by adjusting the
parameters in each of three separate types of
models; the Hamada-Johnson (HJ) potential, "
the Bressel-Kerman (BKR) soft-core potential, "
and the boundary-condition models of Feshbach
and Lomon'9 {BCM) {various fits for several values
of the percentage of D-state and pion-nucleon
coupling constant). The Yale potential" used by
Hopkins and Breit' is similar to the Hamada-
Johnston potential. " All these models have the
theoretical one-pion-exchange (OPEP) form at
large interaction distances.

The choice of a variety of models provides an
indication of the degree to which errors in the
high-energy data can propagate down. To test the
propagation of the errors in the low-energy data,
we have varied the BCM parameters to match the
extremes of the experimental errors on the vari-
ous experimentally measured nP parameters.

In Table I we show these various model predic-
tions for R. The difference between the '*uncon-
strained" energy-dependent phase-shift analysis
of Ref. 1 and the "constrained" analysis is that
in the latter case the analysis was constrained to
give a positive value for the S, D "coupling" pa-
rameter so that it could match the low-energy
data on this parameter given by the binding energy
of the deuteron. With the unrealistic "uncon-
strained" phase-shift analysis omitted, the models
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TABLE I. Angular dependence near 14.1 MeV.

Source and reference 0'(180') /(T(90')
X2 of model fit

to data'

Experiment,
Experiment,
Experiment,
Experiment,
Experiment,
Experiment,
Experiment,

Ref. 8
Ref. 9
Ref. 10
Ref. 11
Ref. 12
Ref. 13
Ref. 14

1.10 + 0.03
1.093 + 0.022
1.08 + 0.016
1.06 + 0.023
1.04 + 0.06
1.06 + 0.06
1.031 + 0.010

Phase-shift analysis, Ref. 1 "unconstrained" phases
Phase-shift an~lysis, Ref. 1 "constrained" phases
Phase-shift analysis, Refs. 7, 15
Threshold extrapolation without P waves, Ref. 16

1.014
1.055
1.055
1.05

Hard-core potential, Ref. 17
Flat-core potential, Ref. 18 fitted to a&

Flat-core potential, Ref. 18 fitted to c ~

Boundary-condition model, Ref. 19, case
D state, (g„) =14.94&& (4x)

Boundary-condition model, Ref. 19, case
D state, (g„) =14.95& (4x)

Boundary-condition model, Ref. 19, case
(4x) ' g =14.4 (4.94% D state)

Boundary-condiQon model, Ref. 19, case
poor low-energy fit

5, ' 5.20%

15 ' 7 55%

5~ with

5~ with

1.066
1.066
1.066

1.080

1.082

1.077

1.080

154
391+ X2(g) d

356

218

303

228

225

' The model comparison is with e, a~, and Q of Table II and with 94 data points at energies
below 59.35 MeV taken from Refs. 1-6. Data with poor absolute normalization were omitted.

~ To increase the precision of Ref. 17 in fitting a~, a~, and ~ we have used Mz(reduced)
= 938.903 MeV, M~(T =1)=137.54 MeV, and M„(T = 0) =139.74 MeV. The hard-core radius
is 0.343K/M„C.

~ The model of Ref. 17 is unable to fit a& and & simultaneously (implying a wrong value of
the effective range). To precisely fit a& we have used a core height V~ (T = 0, S =1)=463.5
MeV. To precisely fit ~ we have used V, (T =0, S =1) =466.91 MeV. In both cases we use
V~(T =1, S=0) =699.96 MeV for a precise fit of a, .

Due to the ultra-high experimental precision of &, the contribution to X from this source
in this model choice is huge and essentially irrelevant. The predicted value is & =2.2505.

To increase the precision of a, we have used f00&
——1.875 64 instead of the published value

of 1.875 60.
To compensate for the change in g~ we use f&0&

-—1.859165 and fo& ——1.705 92 instead of the
published values.

~ To decrease the precision of a, (A X =7) we use foof =1.87545.

all give at 14.1 MeV

1.05 & R & 1.082 .
The last two entries show the effects of decreas-

ing the pion-nucleon coupling constant g, to a
low value or of spoiling the 'So scattering-length
fit by changing the boundary condition. We see
the effects are smaller than model differences.

To be thorough one would perform a complete
error analysis to determine the extent to which
the errors on the low- and high-energy data prop-
agate, through the parameters in the models, to
changes in R and R' at low energy. This is a
formidable task. However, as shown in Table I,
we find that small adjustments to the models to
match extremes of the low-energy cross-section

data make smaller changes in the predictions than
the differences between the models. Also, the
models used provide a variety of fits to the high-
energy data, thus indicating the range of error
propagation downward.

The energy dependence of R according to the
models is shown in Fig. 1, with the experimental
values of R superposed. We note that the simple
linear interpolation is not correct, but use of it
will not lead to a large error.

As shown by Wg. 2, the models predict the
linear behavior of Eq. (6) below 5 MeV, but al-
ready at 14 MeV they show a deviation from the
simple behavior confirming the need for the more
complex analysis. The assumption of Ref. 16 is
inconsistent with the finite P wave predicted at
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FIG. 1. nP angular distribution coefficients. The ex-
perimental values of R [ Eq. (1)] at 14.1 MeV are those
of Refs. 9, 10, 11, and 14 and are tabulated in Table I.
At 24 MeV the experimental value of R is extrapolated
from the experiment of L. N. Rothenberg, Phys. Rev.
C 1, 1226 (1970). The curves are predictions of models
or extrapolation formulas as indicated by the legend.
The points marked with an x are obtained from Yale
phase shifts via Ref. 17. The dashed curve is R [Eq. (2)]
as predicted by the BCM potential. The HJ, BKR, and
BCM potentials are the versions indicated by Table I
footnotes b; c, a, fit; and e for 5.20% D state, respec-
tively.

low energies by the models and their prediction
for R is inconsistent with Eq. (1) below 5 MeV.

In spite of the considerable differences between
the models for the short-range part of the inter-
action, they predict a narrow band of values for R.

The most extreme in this respect is the predic-
tion of the boundary-condition model. Vfe believe
the reason is that this model at low energies fails
to fit the 'P, phase shift well (see Fig. 11 of Ref.
19) and it is the interference of this amplitude
with the S amplitude that gives rise to the angular
distribution. %e also note that the Hopkins and
Breit recipe gives a different energy dependence
of R and 8 than the other models. At E„b&3.2
MeV they use phase-shift analyses which are re-
quired to provide phase shifts varying smoothly
with energy. The difference of this curve from
one generated by a theoretically reasonable model
gives one indication of the variation possible in
the energy-dependent analysis of the experiments
and this partially substitutes for a complete error
analysis.

In general, we believe that the Hamada-Johnston
model, adjusted as we have to fit the low-energy
data, gives the best recipe.

V. POLARIZATION

The polarization at low energies has been shown

by Clementel and Villi" to be proportional to

P ~ 2 sin5('P, ) sin[t)('P, ) —('S,)]
+ 3 sin5('P, ) sin[5('P, ) —()('8,)]

and since 5('8, ) is large and the P-state phases
are small, this is approximately

I.04— x HGPKINS- BREIT
(Yale Phase Shifts)

BCM--—BKR
Hj

—sin~(3S, )[2t){'P,) + St)('P, )] .

All the phase-shift analyses show that

~('P, )= —2&('P.)

I.05—
b

b

I.02—

I.OI—

)00' I

0
I I I

6
EI b(MeV)

IO

FIG. 2. R' [Eq. (2)] predictions for np scattering at
low energy. The model curves and points are as in Fig. 1.

and hence, a large degree of cancellation occurs
in the polarization. Small errors in 5('P, ) lead
to larger fractional errors in the polarization.
Although the cos8 term in the differential cross
section" has some cancellation from the 'P, and
'2', contributions, there is also a large contribu-
tion from 'P, and 'S, interference. Hence, the
fractional error in the ratio o',«jo,a is only pro-
portional to the fractional error in the I' phase
shifts without an enhancement due to cancellations.
Moreover, because of the growing importance of
OPEP, these model errors decrease as the energy
is reduced.

The polarization is, therefore, sensitive to
details of the models. The results are displayed
in Fig. 3. It is evident that the polarization pre-
diction of the Hamada-Johnston potential is good;
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the prediction of the BCM model is inferior and
we attribute this to the poor fit to the 'P, phase
shift already noted above. Fortunately this phase
has less importance in the differential cross
section.

We also note in Fig. 3 the lack of smoothness
of the predictions from Hopkins and Breit, due
to the fact that they tie themselves to phase-shift
analyses and not to a model.

4.4

4.0—

3.6—

—H J POTENTIAL
BCM POTENTIAL--- BKR POTENTIAL

VI. TOTAL CROSS SECTION AND BEST VALUES

The total cross section is measured at several
energies from 500 keV to 30 MeV and is displayed
in Fig. 4; in Fig. 5 we display e&XE, which is
easier to read in the region of 5 MeV where it
is nearly constant.

At zero energy we know the cross sections
from measurements; these are separated into
singlet and triplet parameters by using coherent
scattering and the use of the binding energy of
the deuteron. These very low-energy parameters
are listed in Table II. In the first column we show
the "1970best values" listed by Wilson. " Since
then, the measurement of the coherent nP scat-
tering length by the measurement of the critical
angle for reflection of neutrons by hydrocarbon
mirrors has been revised by Koester and Nistler"
leading to "1973best values" shown in the second
column of Table II. We have confidence in
Koester's revised value, because he has also
revised the measurement of the coherent scatter-
ing by carbon and, hence, the carbon total cross
section. This now agrees with Houk's' careful
work, enhancing our faith in Houk's total hydrogen
cross section. However, we must ignore the dis-
cordant measurement of coherent np scattering
by scattering on parahydrogen, which in any case

b 3.2—

2.8—

z

I I I I I I I I I I I

I.O l.5 2.0 2.5
EI b ( Mev)

FIG. 4. np total cross section. The experimental data
are tabulated in Ref. 1. The model curves and points '

are as in Fig. 1.

has internal inconsistencies; but we note that in-
cluding it and increasing the error to span the
data has no effect on the major conclusion of this
paper.

At low energies these can be used to calculate
the cross section according to the shaPe-indePen-
dent effective-range approximation

3' 7T

k'+(xk'rI -l/a, )' k'+[xk r, -1/a, ]'
k' = (Me/k') where M is the nucleon mass and we

neglect the contributions of order k' in the ex-

0.14—

O. I 2—

O.IO—

0.08—
Peo.

OQ6—

0.04—

Har well
Ref I

D Wisconsin

~ Ref. 6
Hopkins Breit CalcUlation

BCM Theory—H J Potential--- BKR Potential

)
SI

7—
b
4J

BCM
——BKR—HJ

x HOPKINS/BREIT
——EFFECTIVE RANGE

0.02—

10 20
~la h

30 40

I I i i i I i i i i I

0 5 10 l5 20 25 30
EL (MeV)

FIG. 3. nP polarization. The data are from Refs. 1
and 6. The model curves and points are as in Fig. 1.

FIG. 5. nP cross sections multiplied by the energy.
The model curves are as in Fig. 1. The dash-dot curve
is the effective-range prediction.
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pansion of the S phase shift:

k cot5t = —+ 2k'r
q
—P~k x, +

1 ~ 4

a, (12)

Higher partial waves are also neglected. In
Table II the values of a„a, , and r, are deter-
mined from low-energy measurements and the
deuteron binding energy c; r, is determined by
fitting to experimental data at energies up to 2
MeV. In this detailed fitting, theoretical values
of the omitted terms in the cross section are used
for columns 1 and 2. In column 3, we list the
"shape-independent parameters" (except for p, ).
The calculation from the shape-independent formu-
la is simple and forms a convenient reference.
In Fig. 5 we see that this formula underpredicts
o, by 2%%uq near 10 MeV. In Fig. 6 we plot the dif-
ference of the total cross section from the effec-
tive range formula for each model and for the
data. This gives a convenient expanded scale.

we present two alternative simple recipes. Read
o, from Figs. 4 or 5, or if more accuracy is de-
sired, calculate o, from the simple effective-
range formula and use Fig. 6. The Hamada-John-
ston prediction is to be preferred and the accuracy
should be a+p. Then read R' from Fig. 2 to
derive o,«. Again, the Hamada-Johnston predic-
tion is to be preferred, but we suggest assigning
an error equal to the difference from the BCM
model, leading to an over-all error in o»p of less
than ~/p up to 5 MeV; this error is a standard de-
viation. Alternatively experimental data can be
used for 0~ combined with theory for R' as above.

At intermediate angles o(8) can be calculated
accurately enough up to 10 MeV by assuming that
it varies as I +a cos8 (i.e., neglecting D phases).

35 in& iu &

30-

VII. OTHER INFORMATION

Two other pieces of information confirm the
general theoretical picture. There have been
searches for fluctuations in the nP total cross
section as a function of energy. Early experi-
mental claims have been convincingly refuted. "

Secondly, the photodisintegration of the deuter-
ion by y rays with energies from 2.5 to 6 MeV
proceeds mainly by the electric dipole transition
('S- 'P). Using the approximation that the nP
force is short ranged, the cross section can be
shown to depend primarily on the normalization
of the ground-state deuteron wave function, and
hence on the nP triplet effective range. The trip-
let effective range p, (-e, -e) is found to be (1.82
+ 0.05)x 10 " cm and this is equivalent to r,
=(1.82+0.05)x10 "cm after a small correction
is applied for the shape parameter. The equality
of this with the number derived from nP scatter-
ing confirms the short-range character of the
potential as assumed in OPEP.

VIII. CONCLUSIONS AND RECIPE

We have seen that the theoretical models all
give a good description of the low-energy data,
and the nP and PP intermediate-energy data, while
satisfying theoretical requirements such as one-
pion-exchange dominance at long range. There-
fore, we can have confidence in the predictions.
There are more theoretical constraints than used
by Hopkins and Breit. The variety of models and
data fits gives an estimate of the possible error
propagation.

For those who wish to determine o'esp to mea-
sure neutron intensity by means of proton recoils,

25—

20— c4

—H J —EFF. RANGE
BCM- EFF. RANGE——BKR- EFF. RANGE

i5- I

I

I „,. ti
, Iio- '~

1'
0 —I&

/
b

/
b /

/

-io—
/

I

I-l5—
/

I I
I-20—
I

I
-25- 1 I

/

30 sr I I

0 2 4 6
I I I

8 10 I2

E)pb ( MeV)

I I I

I4 I6 IS 20

FIG. 6. The difference between model predictions of
o z and the shape-independent effective-range value
oz,(S. I.). The models are as indicated in Fig. 1. The
poor effective range of the BKR potential causes large
deviation from ~z(S. I.) below 8 MeV. The difference
of experimental value of o z from az(S. I.) is also plotted.
The open circles represent the data of Ref. 3, in which
the normalization is not adequate to predict the scatter-
ing lengths. The other data (filled circles) shows the
trend to the shape-independent approximation.
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TABLE II. Low-energy np parameters. The changes 1970-1973are a revision of f due to changes in earlier re-
sults, and a change in ro, with newer cross-section measurements and a revised energy scale for earlier measure-
ments.

Parameters 1970 values 1973 values
Shape-independent

fit

Binding energy of the deuteron e (keV)
Low-energy cross section 00 (b)
Coherent scattering length

f =(3a&+a )/2 (fm)
Triplet scattering length (derived)

a, (fm)
Singlet scattering length (derived)

a~ (fm)
Triplet effective range (derived)

ro~ [=p(0, -c)] (fm)
Singlet effective range (derived)

ro~ (fm)
Ground-state effective range

p(-e, -&) (fm)
Triplet effective range derived

from p(-&, —~) using model (fm)
Quadrupole moment of the deuteron Q (fm)2

2224. 644+ 0.046
20.436 + 0.023

-3.7196 0.004

5.423 + 0.005

-23.712 + 0.013

1.761 + 0.005

2.74 + 0.05

1.82 + 0.05

1.83 + 0.05

2224. 644 + 0.046
20.436 + 0.023

—3.739+0.003

5.414+ 0.005

-23.719+0.013

1.750+ 0.005

2.76 +0.05

1.82 +0.05

1.83 + 0.05
0.278 + 0.008

2224. 644
20.436

-3.739

5.414

-23.719

1.7481

2.76

The ascribed uncertainty is due to the variations of electronic wave functions used in the analysis of the experi-
ments.

A nuclear data committee" has recommended a
remeasurement of the nP angular distribution at
these energies. We believe the accuracy of the
measurements must be greater than the accuracy

of this recipe for the measurements to be useful.
At least it should be as accurate as this recipe
purports to be, as an independent check of our
analysis.
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