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We test the validity of the sudden-approximation theory of deuteron stripping of Butler, Hewitt,.
McKeller, and May (BHMM) by testing its predictions of final-state angular distributions and
spectroscopic factors against those of an essentially soluble model of stripping reactions. This model has
been constructed with an excitable nuclear core which therefore allows a calculation of the final-state
spectroscopic factor to be made in advance. it is based on the solution of the Faddeev equation for
multichannel separable s-wave two-body interactions between proton and neutron, proton and core, and
neutron and core. There are two features which characterize BHMM; one is the sudden approximation
and the other is use of intermediate neutron states of a special sort. Both these features give rise to

difficulties.

I. INTRODUCTION

The use of the sudden approximation for calcula-
tions of stripping yields was suggested by Tanifuji
and independently by Butler.' In this account the
neutron-proton interaction is neglected at the in-
stant of stripping: This approximation is valid for
processes taking place during times that are less
than the characteristic time of the internal motion
of the deuteron and so is expected to have validity
at moderately high energies. In distorted-wave
theories the deuteron-nucleus interaction is all
important although there is some uncertainty about
its correct form. By contrast the Butler, Hewitt,
McKellar, and May (BHMM) sudden-approximation
theory transfers the emphasis onto a complete set
of states associated with the neutron in the contin-
uum. Optical-model wave functions are used for
these which form part of matrix elements which
(apart from energy conservation) represent deu-
teron breakup.

Empirical studies®? have been conducted with
the BHMM theory by applying it to (d, p) stripping
reactions involving doubly magic target nuclei.
The theoretical cross sections were generated
from optical-model approximations for scattered
neutron and proton wave functions at the required
energies. It was already known a priori that the
sudden approximation would not be valid at low in-
cident deuteron energies. Empirically, these stud-
ies established that at energies above the target
nucleus’ Coulomb barrier the predicted angular

distributions for the final proton were in good
agreement with published experimental distribu-
tions. A comparison of theoretical and experimen-
tal amplitude normalizations provided an estimate
of the spectroscopic factor (S) for the final-state
nucleus. Unfortunately, the extracted value of S
was found to be energy-dependent, even for ener-
gies above the Coulomb barrier. This was illus-
trated in the study® done on the 2°®*Ph(d, p)**°Pb(g.s.)
reaction. Here the predicted value of S steadily
rose from 0.50 at 14.8 MeV incident energy to 0.73
at 27.5 MeV. (The Coulomb barrier height is near-
ly 16 MeV.) In addition, the BHMM spectroscopic
estimates were characteristically lower than those
of distorted-wave theory.

It thus became desirable to test the features of
the theory in an ideal situation for which the spec-
troscopic factor is known exactly by other means.
A solvable three-body model which was construct-
ed in order to do this is presented in this paper.
The distinguishing feature of this model is that it
contains one particle (the infinitely heavy nuclear
core) which is excitable. The nucleon-core inter-
actions are thus multichannel. Coupling the chan-
nels together produces ground-state spectroscopic
factors of less than unity. These can be calculated
in advance from a knowledge of the two-body pa-
rameters. The remaining two particles are light
and identical and so the model can simulate nucle-
ar reactions involving an excitable nucleus and
two nucleons. Three-body forces, antisymmetri-
zation. and breakup are not included and all parti-
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cles are assumed to be spinless. The nucleons
can bind together to form a “deuteron” and either
one of them can bind separately to the core.

If stripping theories are cast with the same lim-
itations, they can be tested against the essentially
exact model calculations. This is what was done.
The sudden approximation was examined thorough-
ly and distorted-wave calculations were sometimes
included for comparison.

The model itself is based on the Faddeev equa-
tions. These were solved using separable two-
channel two-body interactions from which the cor-
responding optical potentials were calculated ex-
actly. (Optical potentials are required as data for
BHMM calculations, although in realistic cases
one has to rely on nonunique phenomenological
parametrizations.)

The BHMM and distorted-wave Born-approxima-
tion (DWBA) calculations that were performed with-
in the restrictions on the model revealed the same
general features that characterized the more real-
istic calculations®® mentioned earlier. It was
found that the BHMM estimate of the spectroscop-
ic factor was a monotonically increasing function
of the incident-deuteron energy. This estimate
then leveled off at a value near that of the DWBA
estimate which appeared to be essentially energy-
independent. At this point however, both theories
overestimated the spectroscopic factor. Further
calculations have revealed the cause of the energy
dependence of the BHMM spectroscopic factor to
be, not the sudden approximation, but the errone-
ous assumption that the optical wave functions to-
gether with the bound-state wave function form a
complete set of neutron wave functions.

In Sec. II we give a schematic discussion of
BHMM in a notation which is used later. The mod-
el is described in terms of the interaction used
(Sec. III), the solution of the three-body equations
(Sec. IV), and the casting of the approximative the-
ories BHMM and DWBA into the same form (Sec.
V). The remaining sections are devoted to dis-
cussing the results and to a conclusion.

1. SUDDEN-APPROXIMATION (BHMM) THEORY
OF DEUTERON STRIPPING

This theory has been discussed elsewhere,**
We repeat here the essential ideas in the same
notation that we later use to discuss the theory
and the three-body model.

The formal many-body matrix element® for deu-
teron stripping is given in its unsymmetrized form
by

M =(ea47 V2195 )

where ;" is the incident-deuteron wave function;

V% is the neutron-proton interaction; y§” is the
final-state proton scattered from the target, with
boundary conditions for incoming waves; and Pn
is the wave function of the final-state neutron
bound to the core.

The deuteron and bound-neutron wave functions
are n-dimensional vectors whose components rep-
resent the amplitudes in each of the » states we
assume for the core.

The spectroscopic amplitude S*2 for the final-
state neutron is given by projection of the ground-
state core out of the final state

ol lo,)=5"2]¢,), )

where we have chosen the particular #-dimension-
al normalized vector

al=(1,0,...,0) (3)

as the state vector of the ground state of the core
and ¢, is the bound-state neutron wave function
normalized to 1.

In the BHMM approach it is assumed, in com-
mon with most direct-reaction theories, that the
major contribution to the stripping cross section
comes from the deuteron incident on the core
ground state. The matrix element, with this re-
striction imposed, is referred to as M., where

MM =¢85 | V92| a,a] ). (@)

Here the ground-state projection operator is just
glgf. Hence, applying the relationship for the
spectroscopic amplitude (2),

Mc =SV o057, | V2| al Ui, ®)

where Y, is the first term of the expansion of the
full deuteron wave function into terms involving
the various core states a;; viz.

n
v = Z aah. (6)
i=1

That is y4) represents that part of the deuteron
wave function which does not involve core excita-
tion.

If a complete set of neutron states ¥, is insert-
ed into the right-hand side of Eq. (5) the matrix
element M. can be transformed without approxi-
mation into one which will render the central fea-
tures of BHMM explicit.

Mo=3 [ dk, [ de,sv% o a, 14,6
i

XU 6 | VR [iha, ), (7

where the summation is over the core state j upon
which the intermediate neutron is incident and the
integration includes all the momentum states of
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the intermediate neutron, both bound and scattered.

The proton coordinates are grouped in §, which is
formally summed. The y5;; have to be complete
for both neutron and core in the sense that, if i
is the core index and Eﬁ, the neutron coordinate

f A, 30 45 T ) = 6~
®

The term involving an intermediate bound neu-
tron which is the same as the final-state neutron
can be made explicit by substitution of ¢, and use
of Eq. (2). This term is simply SM. as can be
seen by comparing it to the expression for M, giv-
en in Eq. (5). The other bound-state overlaps van-
ish. Hence

Mg =SM; +SV?M , (9)

where

Zf aF, [ deon a4 5
X(Unti6e | VO [Ha0ay)  (10)

the dash indicating that the bound states are not
included in the integration.

Therefore the stripping cross section can be
written in the form

do S

S — 2
dﬂoc(l_s)zwsl, S#1, (11)

This expression is correct to the extent that the
full matrix element M is given by M. No further
approximations have been made.

The central feature of the BHMM theory is the
use of the sudden approximation to describe the
incident-deuteron wave function in terms of the
wave functions for the neutron and proton. In this
way it differs from DWBA where the emphasis is
on the deuteron-core interaction, about which
there is some uncertainty. In BHMM the emphasis
(and the uncertainty) is transferred onto a com-
plete set of states associated with the neutron in
the continuum. Equation (10) can be written

f dF, [ im0 |93 s B)

X (P 1 (kny k) | V2 9500,
(12)

Here yy ;(k,, k,) is the state consisting of isolated
core and scattered neutron and proton with asymp-
totic momenta k, and E,, respectively. Although
this involves a mixture of core states it is speci-
fied by the core state j upon which the neutron and
proton are incident.

The sudden-approximation deuteron transform
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is used to evaluate the last factor which includes
the neutron-proton interaction ya2,

The other feature of BHMM is the assumption
that the only core state which contributes signifi-
cantly to the intermediate sum is the ground state
j=1. Thereafter a product of optical wave func-
tions can be used to describe y,,, i.e.

o 19 (ks ) = [9F 98 (13)

where zl)"“’ and £ are generated by the optical
potential ‘which déscribes elastic scattering on the
ground-state core.

III. TWO-BODY SEPARABLE INTERACTION

A. One-term single-channel separable interaction

Over the last two decades, a lot of work® has
been done on the properties and uses of an inter-
esting class of nonlocal interactions known as
“separable” or sometimes as “factorable.” For
the simplest such case, the one-term single-chan-
nel separable interaction, the potential operator
factorizes. In the momentum representation it is
written

V®, ) =®| VID) =-rg®)e®’), (14)

where A is a parameter measuring the strength of
the interaction and g (which is a function of the
relative momentum J) is the form factor providing
the “shape” of the interaction. This can be written
alternatively in projection-operator notation

v=-xlg)(gl, (15)
where
®lg=g®. (186)

One reason this potential has gained so much at-
tention is the fact that the Schrddinger equation is
easily solved for both bound and continuum states.
Usually this can be done in closed form, depend-
ing on the analytic properties of the form factor.
Separable interactions can thus be pedagogical de-
vices which illustrate in a clear way many aspects
of collision theory. But they are also used in mod-
el calculations to elucidate aspects of more realis-
tic calculations as in this paper and elsewhere.””

A second reason for using such potentials is that
they may in fact represent the “real world” in cer-
tain instances. Thus, a potential due to Yamagu-
chi'! reproduces the low-energy neutron-proton
scattering parameters and leads to the Hulthén
form of the deuteron bound state. However, one
characteristic of this type of potential is that it
generates at most one bound state, which serious-
ly limits its application to physical problems. This
problem can be circumvented through introducing
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a sum of separable terms or a multichannel sepa-
rable interaction.

There are additional difficulties in using sepa-
rable potentials for the nucleon-nucleus interac-
tion. Since the nucleus is a relatively large object,
even at low energies a large number of partial
waves contribute. This can in principle be taken
into account by a multiterm separable interaction
but at a great cost in simplicity. For this reason
the exact formulation described in Sec. IV can be
regarded only as a crude model of the realistic
(d, p) reaction.

The Schrodinger equation for a pair of particles
interacting through the potential (14) or (15) is

&-T)o)=Vl9¢), 17

where H,=T is the kinetic energy of the relative
motion. For the bound state | ¢,) at energy z =-o?
(in units of energy defined by requiring #%/2m =1)
this becomes

[§a) ==Go(=a®)X| )Ny, (18)

where G, is the Green function (E -H,)™! and we
have defined

Ny=(g] o). (19)

Hence, projecting out the form factor from the
wave equation (18)

[1+(g|Gy(=a?)|g)AIN,=0.

The condition for a nontrivial solution N, is the
condition for a bound state to exist. This is

Dy(-a?) =0, (20)
where by definition
D.(2)=1+(g|Gy(2) | g)n. (21)

The normalization constant N, is determinable
to within a phase factor since

1=(palda) = XN |Xg| Go(-0?)Go(-0%) | £) .
(22)

It can be demonstrated that there can exist at
most one bound state and that this state, together
with the solutions for positive energy, forms a
complete orthonormal set.

B. One-term multichannel separable interaction

The potential operator describing the interaction
between a light projectile (nucleon) and a fixed tar-
get (infinitely heavy excitable nucleus) can be rep-
resented by an nX»n matrix, where » is the num-
ber of states of the target. Each element of the
matrix is an operator acting on the coordinates of
the projectile.

A particularly simple case, which we consider

|©

henceforth, is that in which the matrix elements
are each factorable in the form (15) with different
constants A. Thus we can write for this case

v=-Alg)el, (23)

where the diagonal elements of the strength ma-
trix A refer to the different channels (ground and
excited core states) and the off-diagonal terms to
the coupling between them. [In the numerical work
described later, this strength matrix is a real

2X 2 matrix

A, A
A= ( 11 12> . 24)
- Ap Ap (

A, refers to the strength in the ground channel
where the core is unexcited. A,, refers to the ex-
cited channel whilst A,, (=A,,) is a measure of the
strength of the coupling between the two. ]

The unperturbed Hamiltonian is given by

Hy=T +Hc, (25)

where T is the kinetic energy operator of the pro-
jectile and H; (an nX 7 matrix) is the core Hamilto-
nian defined by

Heay=ni04, (26)

where ¢, is the wave function of the core in the
ith state and 7; is its excitation relative to ground.
Thus 7, =0.

The perturbed states are solutions of the Schro-
dinger equation

(z-Hy) o) =Vo(@). @7

As before the bound and continuous states, solu-
tions of the Schrédinger equation, can be shown
to form a complete orthonormal set.

Bound states in the potential-well limit. The
multichannel potential is required for a descrip-
tion of the nucleon-core interaction where the core,
for simplicity of later calculations, is assumed to
be infinitely massive. The bound states in this lim-
it are given by a formula similar in structure to
that used for the ordinary one-channel case:

|£a>=-9_o(-az)|g){\_ﬂa, (28)

where the bound-state energy is —a? and by defini-
tion

No=(gldo)- (29)
So if we define
D.(2)=1+(g|G(2)| &) (30)

we can determine N, but only to within a constant
multiplicative factor, by

D.,(-a*)N,=0. (31)
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The over-all constant is found by normalizing
the bound-state wave function

1=(¢pol pa) =NLAZ| Go(-0?)? | g)AN,, . (32)

From (31) we see that binding occurs for z = -a?
when

det D(-a?) =0, (33)

Spectroscopic factor. The operator g,,g,f , with
matrix elements (g,,a,f)“ =08,,0,,, projects onto
the kth state of the core and so the spectroscopic
strength of the bound state at z = —o? in this chan-
nel is given by

S =(@ ol ral | ). (39)

Using the explicit form of the bound-state wave
function

<Ei_0_l_k I Qa> =(a® +k? +ﬂk)-1g(ﬁt)ggé1\_’a (35)
we find
S = lgkéﬁawglgo(—az—m)2|g>- (36)
It can be verified directly that
DS =1 @37
k

as is to be expected.

Thus it is possible to calculate the wave func-
tions and the spectroscopic factor from a knowl-
edge of the two-body parameters. The form fac-
tors can be chosen to enable these calculations to
be performed analytically.

T matrix. It can be shown by using the Lippman-
Schwinger equation and summing the Born series
that

T(z)=-|g)AD (2) gl (38)

from which the two-body scattering cross sections
are obtainable.

From this T matrix we can construct optical po-
tentials which reproduce the scattering in the inci-
dent channel. The potentials again are separable.
As we see below in Sec. V, this potential for par-
ticles incident on the ground state of the core is

Vopt = _)‘opl (Z) |g> (gl ’ (393)

where the strength parameter A, is a complex
scalar function of the energy z. The form factor
g is unchanged.

IV. THREE-BODY PROBLEM

Nuclear reactions are by their very nature many-
body and multichannel problems. A complete de-
scription of them is beyond the scope of current
theory because formal and numerical problems
abound. This has generally necessitated the intro-
duction of approximation methods such as the op-
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tical model, distorted wave, and impulse approx-
imation.

Scattering can be reduced to a simple two-body
problem through the introduction of phenomeno-
logical potentials. Genuine rearrangements, on
the other hand (such as stripping and pickup) must
be regarded as at least three-body problems, and
then only if the core is assumed to be inert.

Even in this simplified task one is confronted
by a number of difficulties. One can use little of
the intuition or methods developed for two-body
cases. For instance, when two of the three parti-
cles can bind, the Born-series expansion for the
three-particle collision matrix does not converge
at any energy.'®*!® Furthermore, the Lippmann-
Schwinger equations for three-particle systems
are not solvable by finite-matrix methods.

Faddeev'? developed equations which solved all
the formal mathematical difficulties. There were
two major difficulties associated with the Lipp-
mann-Schwinger approach: The integral equations
were homogeneous for cases where two of the
three particles are asymptotically bound, and the
equations contained disconnected diagrams. The
first was solved by using coupled-integral equa-
tions and the second by having the potentials occur
only in the three-body T matrices for two interact-
ing and one free particle. However, practical dif-
ficulties remained. The three-body solution re-
quired the complete solution to the two-body prob-
lem (on-shell and off-shell) and also involved, in
general, integral equations in six integration vari-
ables.

A. Solutions to the three-body problem
involving separable interactions

There are, however, some limited formulations
of the three-body equations which are tractable
because they reduce the number of coordinates
which are needed to specify intermediate states.
This treatment is exact if we use separable inter-
actions, but can be generalized since local inter-
actions can be expanded to arbitrary accuracy as
a finite sum of separable interactions.

These models thus allow exact treatment of the
specifically three-body effects but the price paid
is the inexact treatment of the two-body interac-
tion, particularly the high-energy behavior. How-
ever, our work is motivated by the desire to test
approximation schemes for bound states and low-
energy rearrangement reactions, and the proce-
dure is reasonable in the present case.

Mitra devised an exactly soluble three-body mod-
el™* in which he.solved the Schrodinger equation.
He used s-state interactions in the nucleon-nucle-
on and two nucleon-core pairs, and assumed iden-
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tical spinless nucleons and a static spinless core.
His solutions involved single-parameter functions
which obeyed coupled-integral equations. (This
feature is common to all such models.) He cast
DWBA into the form required by his model and,

on testing, found that it was valid within the model.

A similar model®® was derived by Amado which
was based on field-theoretic considerations. This
approach is equivalent to that based on the Faddeev
formalism if separable two-body interactions are
used.'® It has been generalized by Shanley® to in-
clude spin and isospin variables. Shanley tested
DWBA using the same phenomenology as is used
in realistic cases; the optical-model parameters
were derived for a potential of the Woods-Saxon
type and the stripping amplitude was evaluated in
the zero-range approximation. Whilst it was pos-
sible to reproduce scattering in this way (albeit
with rather unphysical parameters) the stripping
cross sections showed less agreement with the
exact calculations than that which characterizes
the comparison of realistic calculations to exper-
iment.

Beregi, Lovas, and Revai'® proposed a model
based on the Faddeev equations. This model con-
tained a sum of separable interactions describing
the two-body forces and thus allowed them to con-
struct a potential which could bind either of the
two identical fermions in one of two possible ener-
gy states, thereby providing in the elastic scatter-
ing channel a compound-type resonance. This
model, whilst suffering from the usual two-body
restrictiveness, included all the essential features
of nuclear reactions. Like the others it could be
solved exactly. It also allowed the application of
approximation schemes which could thus be com-
pared directly. In this way the authors treated
the isolated-resonance approximation and the cou-
pled-channels approximation with and without ex-
change. The approximate calculations differed
markedly from the exact results.

In the model presented here the three-body equa-

TABLE I. The three-body energy spectrum.

Three-body
energy Rearrangment threshold
0 n-p continuum (breakup threshold)
n-ay’ d continuum, excited core
-, d continuum (pickup threshold)
-a)? p continuum, excited neutron-core
bound state
- a;z n contipuum, excited proton-core
bound state
-a,? p continuum [(d,p) stripping threshold]
—a,z n continuum [(d,n) stripping threshold]

tions used are of the Faddeev type. The two-body
interactions are multichannel s-wave separable
potentials from which one can calculate the exact
optical-model potentials for neutron-core and pro-
ton-core scattering and the exact spectroscopic
factor. The sudden and distorted-wave theories

of deuteron stripping have been formulated within
the model in an effort to test not only the resulting
angular distributions but also the extracted spec-
troscopic factors by comparing the shapes and
normalizations against those of the essentially ex-
act treatment.

B. Three-body formalism using multichannel
separable interactions

In the model developed here it is assumed:

(i) that only single-term multichannel s-wave
separable interactions operate in the three two-
body subsystems; (ii) that the core (A4) is infinite-
ly massive, spinless, and has internal degrees of
freedom that lead to a ground (E =0) and at least
one excited state (E =n;; ¢>1); (iii) that the two
nucleons (n; p) are equally massive (mass m) and
spinless. (As before we use units defined by #2/2m
=1.); and (iv) that nucleon-exchange and many-
body forces do not operate. Breakup is not cal-
culated explicitly.

These are the same conditions under which the
amplitudes in the approximation schemes, consid-
ered in Sec. V, are derived.

Hence, it is possible to describe the two-body
interactions: n+p—n+p; n+A—n+A; n+A
—n+A*; p+A—p+A; p+A—p+A*,

We will label the proton as particle 1, the neu-
tron as particle 2, and the core as particle 3.

None of the scatterings have angular structure
since the interaction is in the /=0 partial wave
only. Also obtainable are the bound states for d,
B, or B* (neutron core), and C or C* (proton
core).

In the three-body system the Faddeev equations
are used to relate the amplitudes of the processes
which lead finally to any of the six states:

d+A, d+A*, p+B, p+B* n+C, n+C*
from any of these states given initially. That is,
the following reactions can be studied: pickup:
(p,d), (n,d); stripping: (d,p), (d,n); exchange
scattering: (p,n), (n,p); elastic and inelastic
scattering: (p,p), (n,n), (d,d), for ground or ex-
cited targets and final-state nuclei.

Calculations based on this model, as well as
those based on approximative schemes, are pre-
sented for various parametrizations in Sec. VI.
The structure of the model is now discussed in

more detail.
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Two-body interactions. In the soluble model
used, only two-body forces are assumed to oper-
ate. The interaction between the nucleons and the
heavy excitable core were taken to be of the form

Z(za) - _A(zs) |2y (g (39b)

for the neutron, labeled as “2,” and the core “3.”
The proton-core interaction is likewise Z"”.

The neutron-proton interaction is taken to be
the s-state single-channel interaction

VD = N2 g02) (0], (40)
Sometimes, for formal convenience, we write
AP =1\ (41)
and
Kuz) = le) , (42)

where 1 is the unit #X» matrix, » being the num-
ber of channels employed (in our case n=2),

Three-body spectrum. Table I shows a schemat-
ic threshold spectrum for the case where there
are two-channel potentials each of which is capa-
ble of binding the nucleon to the core twice. Note
that this implies two states for the core. The
core excitation energy is taken to be n, =n. For
instance V®® binds the neutron at energies -a,’
and -a?. The second channel energy (core exci-
tation) relative to ground is 7.

Coordinates. The three-body states are labeled
as either IEI,EQ) or Iﬁ,ﬁ), where El is the momen-
tum of the proton referred to the core, Ez is the
momentum of the neutron referred to the core,

p=k +k;, (43)
k=3, +k;). (44)
Transition opevator. The two-body transition

operators embedded in the three-body space be-
come

@K T92() B, k) = -0 - BN2g (k)
xg (D (e - 1*/2)
(45)
and
(Eln E"z l Z(zs‘(z) I Eu 122 )
= =8(k; - k))g P (k))g * (k) A*®DE¥ (2 - k)7L,
(46)
The matrix element for T7®? is formally similar
to that for T%%,
Calculating the three-body veavvangement cvoss
sections. The following is an outline of the scheme
used to obtain expressions of these cross sections.

The Faddeev equations are written out in the form
of three coupled-integral equations which relate
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the wave functions of the three allowed configura-
tions (each consisting of two bound particles and
one free particle). However, if an n-channel in-
teraction is used, each wave function is itself an
n vector and the Faddeev equations are a set of
3n coupled-integral equations.

The number of integrations normally required
is six because the intermediate states are three-
body states. These integrations however can be
reduced through the use of s-state separable inter-
actions. At this stage, for convenience, the equa-
tions are recast in terms of coefficients W defined
in terms of the configuration wave functions and
the various form factors V of the constituent two-
body interactions. A separation in partial waves
is performed because the nature of the interac-
tions allows the partial-wave contributions to un-
couple. That is, the integral equations can be
solved separately for each partial wave and this
reduces the integrations required by intermediate
states. The contributions are added up later for
some finite number of contributing partial waves.
The transition amplitudes for the allowed reac-
tions are related simply to the coefficients W,
which in turn are the direct solutions to the sim-
plified integral equations.

Faddeev equations. The two-body bound states
within the three-body system are given asymp-
totically by

®, k| 22 ®,)) = pa(k)2; 6(5 - Ba) (47)

for an incoming deuteron. Here #4(k) is the wave
function of the internal motion of the deuteron,
5( - Pg) describes its center-of-mass motion, and
a; describes the state of the core upon which it is
incident.

In a similar way, for an incoming proton

(&, & | 832 (&) = 95° (K)o (k - K,) , (48)
where ¢3°(k,) describes the neutron-core state
and 6(k,, k,) the proton. A similar equation holds
for the incoming neutron.

The Faddeev equations yield the full wave func-

tion which is given as the sum of three configura-
tion wave functions:

V=915 +Yp5 +¥51 - (49)

If the particles 7 and j are initially bound then
the wave function is calculated by solving the 3»
coupled-integral equations for the configuration
wave functions as follows:

L 0 0 T T\ o
Qki 9 +§o(2) Z(ki) 9 zw—(hi) Qki

(%))
Pi; ®u

2(”) Z(”) 0 Qi}
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In this equation the Green function is given in
terms of the Hamiltonian H, [see Eq. (25)]. This
is the sum of a core Hamiltonian and the kinetic
operator. The transition matrices are the two-
body operators which are now embedded in the
three-body space. The operators for the single-
channel neutron-proton interaction are embedded
in the vector space of the core. That is, 7" and
D"? are now diagonal matrices given by

[Z(m)(z)]u = 6ijT(12)(z -Th) (51)
and
[2(*12)(2)]“ = 5uD(*12)(z - 771) . (52)

Reduction of the number of integrvations requived.

This is achieved in the first instance by the use of
separable interactions and later by restricting
their operation to the s state only.

To formulate the Faddeev equations in a way
-

may be expressed in terms of the coefficients W:

which emphasizes the separability of the interac-
tions, it is convenient to define operators W as
follows:

W)= [ dBug B Bl Y &) + 457 E).
(53)

The momentum variables span the full three-
body space: P, is the relative momentum for par-
ticles i and j and §, is the center-of-mass momen-
tum of the pair. The momentum of the incident
particle is k, asymptotically. The 4, j, and k are
cyclic indices. The initial configuration is de-
scribed by the superscript (Im)=(12), (23), or
(31). Henceforth, the label (&) and the parame-
ter '12,, will often be regarded as implicit since both
characterize the given initial state. They are not
variables to be summed over.

Thus terms used in the Faddeev equations (50)

By Tu | 72200 + s = =A“PDE (2 - ,2) g “ P Br)W “2(G,) (54)

Also needed are the operators, defined by

AP@ T =g 16318:89)

(55)

and the source terms with the form factors projected out. These are defined for a given initial configura-

tion (Im) to be

_Ijl(lM)(‘iz) =(q, ™| 2‘,5"") ’

(56)

where u labels the initial bound-state energy and I, m, n are cyclic. With superscripts denoting the initial

state omitted, the Faddeev equations become:

‘i,(lz)(i) = _f ds?[/l(f)(i, ‘}7)/—\(23)2(33)(2 - yz)-lLV(za)@) +‘i(-1-)(§’ ‘i) *A(mll(fn(z - yz)-lw(sl)@)] +£3&) (57)

and similarly, by cyclic permutation, the equations for W ¥ and W “* are obtained. The six integration
variables which are required in the general case have been reduced to three. These can be reduced still

further.

Uncoupling the partial waves. The various partial waves of the Faddeev equations uncouple because the

potentials act only in the s state.

The matrix elements of A are dependent only on the magnitudes x, y and the angle between the vectors
X,7. This is because the form factors depend only on the magnitude of their parameters for s-state inter-

actions
£2(R) =g ),

Hence, the Ith partial wave of A is given by

where k=|%]| .

AP, 9) = [[ BT RYTEALE, ).

(58)

(59)

In addition, because the incident beam is chosen to lie along the z axis, we may partial-wave analyze

F, and W“? in terms of the coefficients

Fl(x)= f HBYE)F®,

K/(”)I(X) __:f dj?Y(t)(sE)E(H)(x)

(60)

(61)
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and obtain equations for the partial-wave components. These are

Ii’(lz”(x) = _f yzdy[é(f"(x, y)é_(zs)]__)_(fs)(z _y2)-1‘i,-(23)l(y) +§‘f”(y, x) */_\(ang(fn(z —y”)v_V (am(y)] +E‘3(x) (62)

and similarly for the (23) and (31) configurations.
These equations do not couple different partial
waves.

Transition amplitudes. Using the identity

VO 1w*) =(2 =H) | §4y)

the transition amplitude for the (n, j) process be-
comes

710 =(889(R,) 1 (2 ~Ho) Y1 ) + ¥ &)
= SNSRI OIE K s L) (64)

for all &, (63)

(here by definition N}®=N"?q,, o, being the core
state).

As before (Im) is the initial bound pair and (k%)
the final.

In practice the coefficients W are directly calcu-
lated, not the wave functions. From these the the-
oretical cross sections can be simply derived.

V. APPROXIMATION SCHEMES

This section details the description of the sud-
den-approximation and distorted-wave theories
of stripping. It begins with the derivation of the
optical potentials because these are required as
data for the theories.

The optical model provides a means of describ-
ing the scattering of a particle from a nuclear
core whose degrees of freedom are more than sim
ply those of center-of-mass translation. It may,
for instance, have internal degrees of freedom
associated with its deformations and vibrations.
In these cases the incident particle could excite
one of the core energy levels and scatter inelas-
tically. The elastic beam is thus attenuated and
this effect can be simulated by the use of a single-
channel potential which contains an imaginary part.

Optical potentials can be calculated exactly from
the separable multichannel interactions that the
model uses. Thus, errors due to the uncertainty
of phenomenological derivations can be eliminated
and the physical approximations of different reac-
tion theories can be tested without these compli-
cations.

Historically the first theory to deal with direct
nuclear reactions was one due to Butler. This is
a plane-wave Born approximation with a radial
integration cutoff designed to simulate the effects
of absorption in the nuclear interior. Although no
more than qualitatively correct, it did provide
some information on angular momentum transfer
and spectroscopic parameters.

r

A modification of this theory, DWBA,'” takes
into account the effect of distorting the incident
and final waves. The assumption involved here is
that deuteron scattering from the core dominates
and so the incident wave function may be approx-
imated by the product of the internal deuteron
wave function and a “distorted” wave function rep-
resenting the scattering of the deuteron from the
core. It is usually assumed too, that the core is
inert and that the scattered wave function can be
derived from an optical-model potential fitted phe-
nomenologically to (d, d) data.

Although DWBA works remarkably well, little
attempt has been made to justify its basic assump-
tions from a purely theoretical viewpoint, since it
is an approximation to a completely incalculable
many -body amplitude. Its success in predicting
angular distributions is certainly surprising con-
sidering the apparent unreasonableness of using
deuterons which suffer no internal distortion. It
is precisely for these reasons that the sudden ap-
proximation was investigated as an alternative.

The BHMM theory* provides a different physical
picture of the direct process but still gives rea-
sonably good agreement with experimental angular
distributions.? It differs markedly in its predic-
tions of the spectroscopic factor over those of
DWBA. Hence, this attempt to determine the va-
lidity of these theories within our model.

A. Optical potential derived from multichannel
separable interactions

An optical potential'® provides the same elastic
scattering in the ground channel and has an imag-
inary part describing the loss of flux to the excited
channels. The ground channel is labeled 1; the re-
maining vector of channels is labeled I.

Vopt = Vi +Vy1(2 = T = Uy +1€)7'Vpy, (65)
where
VuVh
KE<K11K11>
and
Uij=Vij+06;m;. (66)

If, as assumed earlier, the potential has the
form V=-A|g)(gl, then the optical potential as-
sumes the shape

Voptz—kopt(z)|g><gl ’ (67)
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where A, (2) is a complex number dependent on
the energy z.

Calculation of V,,, from the T matrix. Optical
potentials are calculated by requiring that they
provide the same scattering as the elastic channel
of the multichannel potential. The one-channel op-
tical 7 matrix is

Topt(z)z“‘g>7\opt(z)D+opt(z)_x<g| , (68)
where
D, opt (2)=1+(g| Go(2) | &) Aot (2) - (69)

From Eq. (38) for the multichannel case, the
elastic 7 matrix becomes

Ty(2)= o T(2)e,
== g)[AD; ()] lg] - (70)
Comparing Eq. (68) with Eq. (70) the require-
ment becomes
Xopt (20D, o5 (2) 7 =[AD ()], - (71)

From a two-channel potential we obtain the op-
tical-model parameter

A, +LA

Aopt(2) = T+LA,,° (72)

where in this case
Andye

=L oona)
and we have written

A =detA (74)
and

L=(glGs(z-m)lg). (75)

Note that I, and hence Mop(2) are real unless
zZ=1,. This is because the only resonances to
which the potential gives rise involve the excita-
tion of the core whose second energy ievel (there
are only two) lies at an energy 7, above ground.
Thus no averaging is needed for z <, and the po-
tential is real in this region.

Also note that

Xopt(2) —= Ay, . (76)

In practice, Aopis very close to A,, at energies
greater than about twice the inelastic threshold
energy 7,.

B. Sudden approximation (BHMM)

The BHMM cross section for (d, p) stripping is
given by

do _gmymy k S

de = @R p, (1-SP @m°Ims |2,

(s#1), (17

2
where for given incident-detiteron momentum Py
and final proton momentum k,

Mo= [ [ diydR (o v 10ED V)
X @EOVRS VD [0, (78)

In Eq. (78) ¢, is the final bound state of the neu-
tron and the core which is found by solving the
Schrédinger equation using the form of the neu-
tron-core optical potential but with a real strength
parameter A?® fitted to reproduce the appropriate
binding energy. (This is called the “well-depth
prescription.”) The n and p scattered states are
calculated using the optical potentials whilst that
for the deuteron is approximated to by using the
sudden approximation.

The numerical procedures involved are:

(i) Calculation of the neutron overlap

CALLIOF

(ii) Calculation of the proton overlap (or proton
S matrix)

@RI OE™);

(iii) Evaluation of the transition amplitude
( 2 d

WP 9 (VO [y40)
using the sudden-approximation deuteron trans-
form; and
(iv) Integration over k; and k;.
Yamaguchi forms are used throughout.

The neutron bound state, as mentioned, is gen-

erated by the “well-depth prescription.” This is

equivalent to a one-channel calculation using the
same form factor as the optical potential.

[9a) ==Gl=ay MO [g) N, (19)
where for the single-channel case the strength is
4
A@3) =7 Bas(0t 3 +Bas)? (80)

and the normalization is

Ta vz
Ne) =[——_za_4323(023+3zs)] . (81)

The continuum wave function for the neutron is
generated by the full optical potential

1982 =[1 = XomG3(k*) |8 D opu (ke ) (g 1K7)

(82)

and a similar expression pertains to the wave
function for the proton.

The deuteron transform is used to evaluate the
last term in Eq. (78). The transform is evaluated



9 DEUTERON STRIPPING: A STUDY... 1319

for the interaction V@2’ described in terms of the
separable interaction whose form factor is g?’,
This interaction gives rise to the Hulthén form of
the internal wave function for the deuteron:

N e N2" — g~ Br2”

and
Vi =Q,2/2. (85)

The net result is an expression for the BHMM

C. Distorted-wave Born approximation (DWBA)

The cross section for the DWBA formulation of
the stripping problem is given by

do 27 \* P

o (Z) ey 1, (89)
where

TPY =(o, X [ V92 |ax{P), (90)

ax{" is the distorted incoming deuteron incident
on the core state o, and ¢,X{? is the distorted
outgoing nucleon incident on the neutron-core
bound state ¢, .

This form of the stripping amplitude can be con-
sidered as the result of three distinct approxi-
mations to the exact amplitude, which is

Ty =(Pnky [ VD +VED [ (). (91)

Here (d, p) stripping is to the final state de-
scribed by the neutron bound to the core ¢, with
the proton free, having asymptotic momentum f(,.
The full solution for scattered deuteron is ex-
panded by inserting a complete set of deuteron
and core states:

[ =" [ bauy ) (e dau, [ T7). (92)
ij

The first and most important approximation!® in
DWBA consists of taking only the first term of the
expansion, consisting of bound deuteron and

= cross section for (d, p) stripping.
Dy, () “an’ p , (83) ping
where ﬂ =_S? o Ry (N@®) N2(B,,2 _7‘22) [ T,+T, 12,
L1 9 1 aQ (1-S) Da
Nisrre - ——— - —— (84)
27, Yi2tBiz 2B, (86)
J
where
- (A2 = 2GR0 (ke )| (DI (e, )] foe ik :
I T (0pe® +Ep 2)(Bag? +Rn 2 Pg2 /4 +ky2 = pyk, cOSO + Byp2) Kn=Pa =k, (87)
"and 6 is the angle between k, and B, and
AT (U1 deose’[ 2 - )88 () D& () B X680 (2, (D 28) (8, )] (@)
22 ), (0‘232+q2)(3232+qz)(pa2/4+kp2'pdkp COSG’+[3122) (3312+kp2) ’
4=~ &, |k;
and 6 is the angle between E,, and P, These terms ground-state core:
correspond, respectively, to the momentum and
energy b functions in the proton S matrix. [W§7) = f dp|o.pa,) (o,dpdg [¥47). (93)

This is the many-body approximation employed in
most direct-reaction theories and it is thought
that the basic direct-reaction characteristics are
embodied in it.

The second approximation, as in BHMM, con-
sists in calculating the final-state scattered pro-
ton from the optical potential.

The third approximation consists of calculating
the incident scattered deuteron wave function
from the optical-model potential for deuteron-
core scattering V,. That is

(a,pdq [¥47)=(BIX{"), (94)
where
(E-T=Vy)|x§")=0. (95)

From the formalism it is possible to make the
first two approximations. The third approxima-
tion cannot be made unless further assumptions
are made concerning the shape of the deuteron-
core optical potential. This potential cannot be
a single s-state potential such as that assumed
for the proton-core and neutron-core scattering
cases because these could never preserve the
calculated structure of the exact (d, d} calcula-
tions. Thus this approximation can only be made
by using the same phenomenology as is used in
realistic DWBA calculations—using the calculated
(d, d) curves as the “empirical” data and fitting
the parameters on the basis of either a potential
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well formula or a formula consisting of the sum
of separable interactions.

Shanley® in fact worked with a fitted Woods-
Saxon-type well but this is in no clear way re-
lated to the constituent separable interaction in
the neutron-core subsystem.

By contrast, the method employed here is to
make the first two approximations of DWBA. This
is done by projecting out the ground-state core
and the internal (undistorted) deuteron wave func-
tion from the exactly calculated wave function
¥4, The optical-model wave function for proton
scattering is also used for the final state.

Tow = f Ap(pa X7 | VO |Bpaa,) (@ 045 E4")
=—7\“2’N“2’S”2fd§(¢,, X7 g9 )

x(a, 045 95). (96)

The results should show DWBA in its best possi-
ble light since this theory usually makes further
approximations to obtain the deuteron wave func-
tion for the calculation. Our approximations here
are similar to those made by Johnson and Soper,?°
who go on to derive different equations for the
projection of ¥{".

VI. RESULTS

This section details the comparison of exact to
approximate calculations. It includes the param-
eters used, an outline of the numerical solution,
and a discussion of the results obtained.

A. Parameters of the neutron-proton interaction
It is assumed that the separable interactions
act only through the s state and that they have the
Yamaguchi form, i.e.:
(k|g) =g(k) = Y3(k)h (k) = (4m)"12(8* +£2),  (97)
where
(k'|VIRy =-XK'[2)(gk).

The neutron-proton interaction (one channel) is
chosen!! so as to reproduce the low-energy data
for the triplet case; namely binding energy a,,’

|

TABLE II. The standard neutroﬁ-proton potential.

Binding energy a,’ 2.225 MeV
Shape parameter Byo? 43.527 MeV
Strength parameter A 216.226 MeV/fm
Overlap Ny, 0.864 fm
Total zero-energy

triplet-scattering } T ot 3.63 b

cross section

=2.225 MeV and triplet scattering length a,=5.38
fm.

The parameters are listed in Table II. This
potential leads to the Hulthén form of the internal
deuteron wave function [see Eqs. (83)—(85)].

B. Parameters of the nucleon-core interaction

These were chosen to be s-wave Yamaguchi in-
teractions acting in two channels which could be
coupled. The parameters were similar to those
employed by Shanley® except that allowance was
made for a finite final-state proton-core inter-
action. (Identical neutron-core and proton-core
parameters were used throughout.) The only
restriction was that 8>a, for otherwise the bound-
state wave function would not have had the appro-
priate asymptotic form which is

e~

dor)~ (98)

2
The parameters could be found numerically on
the basis of four pieces of data: «? is the binding
energy of ground-state nucleon-core combination;

7 is the second-channel excitation energy, i.e.,
core excitation energy relative to ground; o, is

the total zero-energy elastic scattering cross
section; and c¢ is the percentage coupling of the
core-ground and core-excited states through the
interaction. In general this is defined, for core
states 7 and j as:

Ay Ay
i Ayj

x100% . (99)

Ciy =

In the case of the real symmetric matrix used
here, where the elastic scattering in both channels
is identical (A}, =A,,),

2
212 %1009 . (100)

11

C=Cypp =

The main calculations were based on a standard

TABLE III. The standard nucleon-core potential V.

Binding energy a? 7.0 MeV

Shape parameter B 14.914 MeV

Strength matrix A 36.860 11.656\ MeV/fm
11.656 36.860)

Overlap N 1.566\ fm
<1.285)

Coupling c 10%

Total zero-energy
elastic scattering » oy 1.0b
cross section

Core excitation n 2.5 MeV
Spectroscopic

factor for } S 0.651
ground state
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potential V, whose parameters are listed in Table C. Optical-model parameters
III. This potential imitated the neutron-?°pPb in-

s . . These parameters were calculated along the
teraction in some respects. Notice the following: . . .
208 - . lines set out in Sec. V and checked by reproducing

Pb has a core state (3°) at 2.614 MeV; a ground the elastic scattering of the full potential. Po
eutron-bound state at 3.93 MeV; an imagi Lo
neutron-boun & ev; an imaginary tertial V, binds a neutron only once although it is

component in the optical potential which is ap-
proximately 10% of the real strength; and a
BHMM-estimated spectroscopic factor of 0.65. 100
The corresponding values for this separable po-
tential are 2.5 MeV, 7.0 MeV, 10%, and 0.651,
respectively.

Other potentials were found as variants of V,
derived by altering one input datum at a time.
One interesting feature of the model is that the
spectroscopic factor is dependent almost entirely
upon only two of the variables—the ground-state
binding energy and the core excitation energy.

It is virtually constant (+5%) over three orders

100:
coo EXACT

— BHMM
--. DwBaA

0°

°
000000°

dg/d (mb/s r)

of magnitude of both the assumed zero-energy 1033 35 Mev
scattering cross section (0.1 to 100 b) and the
assumed percentage coupling (0.1 to 100%).
1033 100 b\
] cd,p) — d,d)
! 30 6‘0 QLO G‘O
103 30 MeV 103 25 MeV
—~ ooo EXACT
‘v', — BHMM
} 1 d 0.1 o = L J __. DWBA
E
o % 1073
% j Cp,P) b (p,n)
©
E
] =
v ‘o
P :
E
< 103
R
>
©
o e T 1 T 368650720
8c.m. (deg)
FIG. 1. The calculated differential cross sections for
three-body rearrangements using potential V; and a °,
center-of-mass energy of 25 MeV. The solid curve rep- °,
resents the direct (d,p) calculation whilst the dotted °fg.-
curve is the (d,p) cross section as calculated from the ) L °ﬂ‘o
(p,d) cross section. This is an indication of the numeri- 8. . (deg) 80 :
cal accuracy of solution. The remaining rearrangement em
cross sections are also shown except those which are ob- FIG. 2. The comparison of the exact and approximate
tainable by time reversal and charge conjugation (neu- solutions for (d,p) stripping at various energies and as-

tron and proton parameters being the same). suming nucleon-core interaction V;.
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possible to derive potentials which have another
bound or quasibound state. The potentials were
required by the sudden-approximation calcula-
tions. For a (d, p) reaction the proton potential
was required at the energy of the final proton and
the neutron and the neutron potential at a range
of energies (approximately 0-100 MeV).

D. Numerical solution of the three-body equations

The equations could be written such that the dif-
ferent angular momentum contributions uncoupled
as shown in Sec. IV. These coupled equations
could be solved by matrix inversion provided the
integrals were replaced by finite sums. This was
made difficult by singularities which occur in the
A matrices and the propagators D™,

The bound-state singularities could be made
explicit by using the pole-dominance form of the
propagator for energies near the bound states:

detD, (-V*)~(y—a —i€)f(a), (101)

where z=-9% and a? is the energy of the bound
state and parametrizes the remaining function f.
The logarithmic principal parts and the residues
were also functions of o but could be distributed
as the weighted sum of terms each of which de-
pended on one of the mesh points of the matrix.
(The mesh points of the matrix had been deter-
mined by a quadrature formula which replaced
the well-behaved part of the integral by a finite
sum.) In this way the singularities could be in-
cluded within the finite matrix.

H. J. McKELLAR

|©

The calculations were performed on the IBM
7040 and the English Electric KDF 9 computers
belonging to the Basser Computing Department of
the University of Sydney. The calculations were
checked in various ways:

Convergence in l. The sum of the contributions
from each of the angular momentum states con-
verged. Contributions from

1> max >~ k7 s

amounted to less than one part in 10°%. In practice
! max was small (around 5 or 6) and could be reli-
ably estimated from the incident momentum % and
the rms radius of the bound-state wave function

7 m? = 41 f” 7| 6(F) [2dr . (102)

Stability of numerical integration and inter-
polation procedures. A priorvireasonable alter-
ations in the integration mesh or interpolation
procedure did not alter the cross sections by more
than about +1%.

Time-reversal invariance. The calculations for
the forward reaction were compared to those for
the backward reaction which are based on an en-
tirely different source vector and matrix. (That
is, the calculations were not trivially identical.)
This comparison, carried out for a number of
data sets, yielded an over-all estimate of the ac-
curacy of the numerical procedure of +3%. See
Fig. 1 for an example.

It should be remembered that normalization of

TABLE IV. Potentials used to test BHMM.

Shape Strength
Differing parameter parameter Overlap Spectroscopic
Data set datum 2 B/ (MeV) A1/ (MeV/fm) N/fm factor
vy cee 14.914 36.860 (1.566 0.651
1.285)
V, a’?=10 MeV 31.546 95.685 (1.175) 0.602
1.033
Vs a?=5 MeV 5.436 11.288 (2.328) 0.723
1.711
V, c=5% 42.572 130.841 (1.012) 0.648
0.827
Vs c=2% 137.013 607.118 (0.603) 0.646
0.490
Vs c=0% 41.955 150.868 (1.265) 1.000
0.000
(0.773)b 1.000
0.000
\Z 7n=1.0 MeV 33.646 89.819 1.035) 0.556
(0.968

2 The potentials are the same as V (see Table III) with respect to three of the four input

parameters, a2, 7, 0., and c.

b These values are for the second bound state at a?=4.5 MeV.
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real experimental data could be uncertain to at
least +5%. Small normalization errors in this
work will not significantly affect the BHMM spec-
troscopic estimates because of the relatively weak
dependence this has on the ratio of BHMM to
“exact” amplitudes, nor will they affect the DWBA
estimates very much since any error will be com-
municated to the DWBA in the same way through
the use there of the “exact” deuteron wave func-
tion.

The calculations were also done in the single-
channel limit using the parameters of Shanley.®
The distributions were in good agreement. As
also noticed by Shanley and by Noble,® the effect
of the proton-core interaction in the final state
is very small.

The results of calculations for all the forward
(incident-deuteron) and all the backward (incident-
proton®!) reactions for the standard potential at
25 MeV are shown graphically in Fig. 1. Note the
fairly unstructured distribution for proton scatter-
ing. (For protons scattering directly off the core
there is no structure because the interaction is
in the s state.)

A STUDY... 1323

E. Comparison of the approximate
with the exact calculations

The results for various center-of-mass ener-
gies in the stripping reaction using potential V;
are shown in Fig. 2. Typical results for various
other potentials (which are listed in Table IV)
are displayed in Fig. 3. The extracted spectro-
scopic factors are given in Fig. 4(a) for both
DWBA and BHMM.

Enevgy dependence of spectroscopic factors.
The BHMM distributions improved with energy
although the spectroscopic factor overshot the
exact value. In fact there was only a very small
region around 25-MeV center-of-mass energy
where the extracted S was close to the real S.
(See Fig. 4.) Calculations using potentials with
different spectroscopic factors also yielded fairly
good predictions. (See Fig. 3 and Table V.) This
problem is discussed more fully in Sec. VIII.

Spectroscopic factors near unity. A test was
made of a speculation®? that BHMM would fail for
potentials with spectroscopic factors close to unity
because of compound-nuclear contributions. This

103; Vi 103, Vo 103, Vs
i 00 EXACT
— BHMM
N
A
_ °9°o° o °o°°° o
“7’ | n A o‘ J | A°°°°? ) | I I
s .
2 0 30 60 9 120 0 30 60 9 120 0 30 60 90 120
g |o3§ Va |o33 Ve 103y V7
N 3 000 EXACT
3 ] ] — BHMM
ES
o
ODOO
o
°° %00
A Q A 1 J A A A J i " " A O, 1 )
103060 90 120 'O 30 60 90 120 '0 30 60 90 120

6¢.m. (deg)

FIG. 3. The (d,p) stripping cross sections for various potentials (listed in Table IV). The potentials were constructed
with different assumptions as to the binding energy, core excitation, or channel coupling. The spectroscopic factors
(exact and BHMM extracted) are listed in Table V. Total energy is 25 MeV for each reaction, and the calculations are

done exactly and also in the sudden approximation (BHMM).
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Sto.5 I EXACT Stos x /° ---- EXACT
L 0 BHMM A o o BHMM
| . DWBA

»*
25 50 [ .25 .. 50

)

| S XACT o' |
slos / : 'EWBA sYs

E (MeV)

FIG. 4. These figures illustrate the point that the energy dependence of the BHMM S is characteristic of the theory
and due to the use of optical-model neutron wave functions as described in the text. The first three figures show (1)
the exact spectroscopic factor for potential V; calculated directly from the two-body data; S=0.651, and (2) the spec-
troscopic factors extracted by BHMM from a comparison of the approximate and exact (d,p) calculations worked out
with V;. The points are at 5-MeV intervals and the curve is fitted by inspection. The corresponding angular distribu-
tions are given in Fig. 2. The energy E is the reaction center-of-mass energy. (a) BHMM and DWBA spectroscopic
factors are compared for the same potential V; and the same energies 15(5)50 MeV. (b) BHMM spectroscopic factors
extracted from real experimental (d,p) cross sections (marked *) for a 2®Pb target show a similar energy dependence
to that found in the model calculations. (c) The spectroscopic factors extracted from manipulated plane-wave calcula-
tions are compared to the exact spectroscopic factor, S=0.651 for V;. These plane-wave calculations use the BHMM
manipulation but not the sudden approximation. Refer to Eq. (107). (d) The ratio of the extracted spectroscopic factor
S’ to the exact spectroscopic factor S as a function of three-body energy for various potentials which bind the nucleon
to the core by different amounts. The calculations were done with a plane-wave matrix element as in Eq. (107) and as

depicted also (for Vy) in Fig. 4(c). The binding energy is the dominant parameter determining the approach to the symp-
totic value.

was found to be true only for those potentials which
provided a quasibound state for the neutron at
some positive energy (that is, where there was a
singularity in the analytically derived optical po-
tential for neutron scattering). No reasonable
attempt to treat this singularity exactly or phe-
nomenologically could bring the BHMM shape pre-
dictions into agreement with the exact calculations.
However, the forward peak, essentially unaffected
by the pole term, still provided a spectroscopic
estimate which was close to the real value, pro-
vided this was done for energies close'to 25 MeV.
The potential V¢ which has two bound state, has

be calculated from the shape term alone or by
taking the limit of the full calculations as the cou-
pling tends to zero.

Stability of BHMM calculations. The sensitivity
of the BHMM calculations to changes in the pa-
rameters was tested. Changes in the Hulthén
parameter for the neutron-proton interaction pro-
duced negligible difference in both the shape and
normalization of the BHMM predictions for the

TABLE V. Spectroscopic factors predicted by BHMM
at E; =25 MeV.

S =1 because of zero coupling (see Table IV). Data set S (exact) S (BHMM)
The BHMM curves are still comparitively good

and the spectroscopic factor extracted is also Vi 0.651 0.68
unity. The sudden approximation factors into a V2 0.602 0.47
shape term and a normalization term which, be- 53 g'gig 3'3(2)
cause it depends on the difference between the V‘; 1 1
optical and single-channel strength parameters, 12 0.556 0.56

vanishes for zero coupling. The BHMM can thus
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range 5<B,,/v,,<7. The actual value used in the
exact calculations was B,,/y,, =6.258. The sensi-
tivity to the optical potential was tested by using
various two-body potentials which reproduced the
same low-energy data (binding energy, core ex-
citation, and scattering cross section). These
potentials could be generated by changing the
assumed coupling between ground and excited
channels. The shape and strength of the potentials
were then adjusted to preserve the low-energy
two-body predictions. The change in the actual
spectroscopic factor (that is, as calculated ana-
lytically) was slight, although the change in the
strength and shape parameters was large, pro-
ducing correspondingly large changes in the opti-
cal potentials. The BHMM (d, p) predictions using
these potentials differed negligibly in shape from
those using the “correct” potential and changes

in the extracted spectroscopic factor were slight.
See Table VI.

VII. CRITIQUE OF THE BHMM APPROACH

The inadequacy of BHMM can be shown empir-
ically in the energy dependence of results ob-
tained for spectroscopic estimates. The reason
for its failure is the incorrect assumption that
the bound state and the optical-model scattered
wave functions for the neutron incident on the core
are complete. Moreover the essence of BHMM
cannot be preserved as will be demonstrated.

A. Energy dependence of BHMM spectroscopic
factors

The energy dependence of the spectroscopic fac-
tor extracted by the sudden approximation has
been the subject of some discussion.?® The de-
pendence derived by comparing extracted to exact
spectroscopic factors is illustrated for our stan-
dard “?°®Pb-like” potential V, in Fig. 4(a). This
behavior is very similar to that found with realis-
tic calculations® on 2°®Pb as shown in Fig. 4(b).
Thus the inaccuracies in the spectroscopic-factor
extraction cannot be simply ascribed to errors in
experimental normalizations, but reflect a very
real weakness in the BHMM approach. The DWBA
calculations are also shown in Fig. 4(a) for com-
parison. It should be remembered however that
these latter calculations were based on the “real
wave function,” not one derived from deuteron
scattering and thus involved one approximation
less than realistic calculations. This may not
necessarily have been “advantageous” as it meant
that there was no ambiguity in the wave function
and the fits could not have been improved by sim-
ply opting for another deuteron potential which
satisfied the scattering data. On the other hand,
the calculations presented were less reliable

(£15%) than either the “exact” ones (+3%) or the
BHMM (essentially analytic) because they involved
many meshed numerical integrations. No valid
inference may be derived concerning the extraction
of the spectroscopic factor by this method unless
a phenomenological deuteron-core interaction is
derived or unless the integration mesh is made
finer. (The mesh in the DWBA calculations was
limited to that of the exact calculations which in
turn was severely limited by considerations of
space and time.)

B. Intermediate neutron states

It was possible to show that the energy depen-
dence of the BHMM extraction of S was linked to
the use of intermediate neutron states generated
by the optical potential rather than to the use of
the deuteron transform. This was done by in-
serting the neutron states into the plane-wave
matrix element and subtracting the bound-state
term in the manner of BHMM.

The plane-wave matrix element is

T =(K, 0, |V |pgDsary) - (103)

It contains no compound-nuclear terms (that is
ground-core projection on initial or final states
does not alter its value). Its value upon insertion
of complete intermediate neutron states and the
ground-state projection operator glgf becomes

+

™= § (K, 0, le,a]vf, ) (Ui VO |0y 06B0) -
'l:,,',i
(104)

The ground-state projection of the final state
can be done without approximation since V%
does not couple core states and because the deu-
teron is initially incident on the ground-state core
a,. In the above expression the integral over k,
includes all continuum states and the bound state
¢,. The sum over ¢ refers to the incident core
state on which the neutrons are scattered. It is

TABLE VI. Sensitivity of BHMM to optical potentials.

Data set S (exact) ? S (BHMM) P
Vs 0.646 0.68
v, 0.648 0.67
v, 0.651 0.68

2 The spectroscopic factor calculated exactly for the
optical potential used in the BHMM calculations. The
values for the exact (comparison) curves, which are
generated by the Faddeev equations using V, are all
$=0.651.

b The spectroscopic factor extracted by comparing the
BHMM (which used the altered potential) to the exact
three-body calculations.
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only if incident cores that are not in their ground
states are neglected that the BHMM approximation
is obtained. For then, using optical wave func-
tions (which are found by projecting out the
ground-state core from the scattered wave func-
tion for the neutron incident on the ground-state
core)

92, =] 19,0 (105)
and the expression
af[¢n) =582[ ¢,) @)

(relating the single-channel “well-depth prescrip-
tion” neutron bound state to the multichannel
bound state) we obtain the BHMM assertion that
the approximate equality (below) holds:

T 5 [ dR (K, 60 0ES™)

+(opt)

X(Win V92 [0gBa) +ST ™.
(106)

The last term results from the insertion of the
neutron bound state ¢,, which is one of the inter-
mediate states required in Eq. (104).

Thus the manipulation, if valid, implies that

TP~ sz 7 BHMM

— , (107)

where

T [ k(R @ [9E) (W1 VO 9 Be)

(108)

The cross sections derived from the two matrix
elements TPV and TBHMM were compared in order
to estimate S which in turn was compared, for
various energies, to the known value [Fig. 4(c)].
This procedure was analogous to the extraction
of S in realistic cases where, instead of a cross
section derived from TPV, the experimental one
was used. Thus T *¥ was calculated from Eq.
(103), which was equivalent to using the exact
spectroscopic amplitude, in order to preserve
the analog. The comparison of |T V|2 to |7 BHMM |2
via Eq. (107) yielded an extracted estimate for S
whose degree of closeness to the exactly calcu-
lated value provided, in turn, an estimate for the
validity of the BHMM manipulation [Eq. (106)].

The parameter which largely determine the en-
ergy at which the BHMM value of S approaches
the exact value is a®. This is shown in Fig. 4(d)
for potentials yielding different binding energies.

Thus, it is the failure of the optical-model wave
functions to provide complete intermediate states
for the neutron in the continuum that leads to the

failure of BHMM to predict the spectroscopic
factor at low incident energies. This is in addition
to the fact that the sudden approximation is a high-
energy approximation and so cannot be expected

to predict low-energy proton distributions from
stripping reactions.

C. Conclusion

This work highlights a major difficulty asso-
ciated with the BHMM theory, which manifests
itself in two ways.

(1) Empirically it has been shown that although
BHMM can give good predictions as to the shape
of the resulting proton angular distribution, the
estimates it yields for the spectroscopic factor
of the final state are energy-dependent to a sig-
nificant extent. BHMM depends on the sudden
approximation (a high-energy approximation) and
so it is not expected to work at low energies;
however, one can find an energy above which the
shape predictions are fairly acceptable. The
same is not true of the spectroscopic estimates
which vary from “too low” to “too high” and do
not approach the correct value asymptotically
with increasing energy. Moreover it is not known
how to select that narrow range of energy within
which the spectroscopic-factor extraction could
be expected tobe accurate.

(2) Theoretically it has been demonstrated that
the intermediate neutron wave functions used by
BHMM are inappropriate. The theory relies on
the sudden approximation and thus requires inter-
mediate neutron and proton states as described in
Sec. II.

The matrix element M, is divided into two by
separating the sum over intermediate neutron
states. In the first part only the neutron bound
states are retained whilst the second part contains
the remaining (scattered) states.

The theory therefore requires that these inter-
mediate neutron states be chosen so that the over-
laps of the bound and scattered states with the
final bound state can be calculated in a straight-
forward manner.

In practice, the intermediate and final neutron
bound states are assumed to have the same form
and the overlap is just the spectroscopic amplitude
in the case where both the wave functions repre-
sent the same state, and zero otherwise. Optical
potentials are used to generate scattered inter-
mediate neutron states. However, the interme-
diate states so generated do not form a complete
set. States representing the effect of neutrons
being scattered off an excited core have been
omitted and this leads, as shown above, to the
energy dependence of the spectroscopic factor.
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If the prescription used to generate the bound
state is retained then there is at present no ade-
quate way of generating the continuous states
needed for completeness and vice versa.

A good theory of deuteron stripping would pro-
vide us with reliable spectroscopic information.
If the shapes of the predicted angular distributions
are in accordance with experiment they give us
confidence in the theory but no new information.
BHMM will not be able to provide unambiguous
spectroscopic information until a theoretically
sound and numerically feasible method can be
devised for including the effect of the neglected
neutron states or a procedure can be developed
for determining the energy range over which good
values are obtained. At present we can only say
‘“use high energies and expect to overestimate S.”
In both realistic and model calculations, the angu-
lar predictions of DWBA are more acceptable
and the extracted spectroscopic factor displays
no great energy dependence. However, this does
not mean that the theory is any more useful since
the spectroscopic estimates can still vary by up
to a factor of 2 depending on the parameters
used.?® This work suggests that DWBA over-
estimates the spectroscopic factor and that the
good agreement with experiment which is often
reported may be due in part to ambiguities in the
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deuteron wave function. It may well be advanta-
geous to explore DWBA more thoroughly using a
model similar to that used here in the hope that
these problems concerning spectroscopic informa-
tion can be clarified. Solvable models which do
not include an excitable core are not able to throw
light on this aspect of the theory and are thus in-
conclusive.

The fact that high-energy BHMM and DWBA are
more or less in agreement and both overestimate
S suggests that two-step processes may be re-
sponsible for the discrepancy. They are clearly
contained in the exact solution, but further work
is required to extract their explicit contribution
and decide this point.
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