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Generalized nuclidic mass relationships represent a link between mass equations and mass
relationships. They are partial difference equations which can be used recursively. The
quality of mass predictions, particularly for very neutron-rich or proton-rich nuclei, depends
essentially on our knowledge of the effective neutron-proton interaction I„&. The transverse
and longitudinal mass relationships of Garvey and Kelson which are special cases contain
smail systematic errors due to the assumed independence of I„& on the neutron excess or the
nucleon number. Information about the dependence of I„& on T and A has been extracted from
the experimental masses by a variety of X2 tests and was found in partial disagreement with
macroscopic and microscopic theories. Several procedure have been devised to test theoret-
ical expressions for I„& for their compatibility and consistency with the experimental masses.

NUCLEAR STRUCTURE Derived generalized nuclidic mass relationships
with solutions; consistency tests.

I. INTRODUCTION

The most commonly used procedures to esti-
mate masses of unknow'n nuclei are based on mass
equations' and on mass relationships. Nuclidic
mass relationships constitute recursion formulas
for estimating unknown masses from the masses
of neighboring known nuclei. ' Well-known ex-
amples are the transverse and longitudinal mass
relationships GKT and GKL derived by Garvey
and Kelson. ' ' Mass relationships may also be
considered as partial difference equations, and
functional forms for the solutions have been de-
rived. '

Several questions and problems exist. For ex-
ample, no obvious general connection between
ordinary mass equations and the above solutions
has ever been established. The generalized mass
relationships which are discussed in the present
work represent a link.

The relationships GKT and GKL reproduce the
known masses with a standard deviation of about
+200 keg. This result is better than for most
mass equations, and it is particularly important
for successfully predicting masses of nuclei ad-
jacent to the known nuclei. However, it is not
clear horn the accuracy of reproducing the known
masses, often achieved by introducing a great
number of adjustable parameters, is related to
the reliability of predicting unknown masses far

away from the line of P stability. It will be shown
in the present work that the latter depends en-
tirely on the underlying physical assumptions, and
the accuracy of reproducing the known masses is
by no means a sufficient condition. This statement
is substantiated by the result that any mass equa-
tion, given in analytical form or tabulated, can be
used to construct a partial difference equation
the solution of which mill essentially preserve the
(good or had) characteristics of the original equa-
tion for nuclei far away but will reproduce the
knomn masses with an accuracy comparable with
that of GKT or GKL.

The relationships GKT and GKL are based on
the same physical model, and they both reproduce
the known masses about equally well. ' Neverthe-
less, they are not compatible mith each other' and
lead to strongly diverging predictions' for the
masses of very neutron-rich or proton-rich nuclei.
The model does not explain this behavior, and it
is not obvious which of the two relationships should
be better far away from the line of P stability. In
addition to these problems there is increasing
evidence for systematic deviations between newly
measured masses of neutron-rich and proton-rich
nuclei (see for example Refs. V-10) and the pre-
dictions from GKT.

These and other considerations point to the need
for a reinvestigation of the physical assumptions
underlying GKT and GKL and, if possible, for



NUCLIDIC MASS RELATIONSHIPS AND MASS EQUATIONS 12'7'r

establishing new or modified procedures or tech-
niques. Also, it was considered desirable to ob-
tain additional quantitative evidence for systematic
errors which arise in a single application of the
relationships GKT or GKL and to determine their
magnitude and characteristics.

Both objectives have been achieved. A variety
of X

~ tests of the experimental masses have been
performed and small systematic errors super-
imposed on the more random fluctuations have
been established. Information about the dependence
on T and A of the effective neutron-proton inter-
action I„~ could be extracted (GKT and GKL assume
independence of I~ on T or A, respectively).
Generalized nuclidic mass relationships which
contain GKT and GKL as limiting cases have been
derived. A necessary condition for applying the
generalized relationships is certain knowledge
about the effective neutron-proton interaction I„~
which has been recognized as the quantity which
determines the reliability of extrapolations based
on mass relationships as well as mass equations.
Details of phenomenological, macroscopic, and
microscopic properties of I„~ have been investi-
gated and several tests have been devised to check
expressions for I„~derived from mass equations
or from other explicit theories for their com-
patibility and consistency with the experimental
masses. The assumption that I~ is independent
of T, and of A (separately for even-A and odd-A)
nuclei is not compatible with the experimental
data. No numerical applications of the above re-
sults are included in the present work.

II. GENERALIZED NUCLIDIC MASS RELATIONSHIPS

Three nuclidic mass relationships have been
reported by Garvey and Kelson' ' based on the
assumption of a nuclear model with fourfold de-
generate Hartree- Fock or Nilsson-model-like
single-particle orbits. These and other mass re-
lationships can best be formulated by defining

z 7(A, Tg)
—= M(A& T + 2) -M(A, T,) +M(A —1, T, + 2)

states that

z,(A, T,)= o (3)

for T, & 0 or T, =o, A=4n (n=integer). The longi-
tudinal nuclidic mass relationship GKL states that

z„(A, T,) = o (4)

Zt (A, T,) = I~(A+4, T,—)+I~(A+2, T ) (7)

with no restriction on T,. In these equations the
quantity I„~(A, T,) is defined by

I„p(A, Tg) = Bp(A, T,) + B„(A, T,) —B„~(A, Tg)

=-M(A, T,)+M(A —1, T,—2)

+M(A —1, T, +2)-M(A-2, T,), (8)

where B~, B„,and B„~denote the binding energies
for the last proton, neutron, or neutron and pro-
ton, respectively. It is the so-called effective
neutron-proton interaction, which will be dis-
cussed below in more detail. In the application
of these and the subsequent equations, phenom-
enological or theoretical expressions will be used
for I~~.

From Eqs. (6) and (7) one can derive several
generalized nuclidic mass relationship such as'

1+n,(A+1, T, + 2)
, Z &AT&

o. ,(A+1, T. +-,'),
Z (A 1 T+3) 0

1+a,(A+ 1, T, + —,')
(9)

with

for T, & —,
' or T, =O, A=4n (n=integer). The charge

symmetric nuclidic mass relationship GKS states
that

z,(A, T.) =o

for T, =-1.
The modified relationships which have been re-

ported recently can be written as

Z~(A, T,) =I~(A+1, T, + ~)-I„~(A+1,T, + ~) (6)

and

-M(A —1, T, + 2)+M(A+ 1, T, + ~)

-M(A+ 1, T, + ~)

)
I~(A, T,)-I~(A, T, —1)
I~(A+ 2, T,) —I„~(A, T,)

(10)

and

zi(A, T,) =—M(A+ 4, T,) -M(A, T,) +M(A+ 1, T, + 2)

-M(A+3, T, + 2)+M(A+ 1, T, -2)
-M (A + 3, T, ——,') . (2)

The quantities ZY(A, T,) and Z„(A, T,) represent
sums over subsets of masses.

The transverse nuclidic mass relationships GKT

The equation combines the masses of 10 neighbor-
ing nuclei. Three similar relationships can be
obtained from Eqs. (9) and (10) by replacing in

Zz and in the denominator of n, the arguments
(A, T,) by (A —2, T,) or (A, T, —1) or (A —2, T, —1).

One additional generalized nuclidic mass re-
lationship will be presented here because of
its special symmetry. Based on the definitions

:"~(A, T,)= Zr(A, T,) + Z r(A, T, +—1) (11)
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and

:-„(A,T.) = Z, (A, T.)+Z,,(A+ 2, T.) (12)

one obtains

"T(A, T,}= I„p(A+ 1, T, + ~}—I„p(A+ 1, T, + ~)

and

q(A, T,) =-I„p(A+6, T,)+I~(A+2, T,).

(13)

(14)

Equations (13) and (14) can now be used to ob-
tain the generalized nuclidic mass relationship

=r(A, T,)+a(A+1, T, + ,'}=1,(A-—3, T, + ,') =0- 0

with

)
I„p(A, T, + 1) —I~(A, T, —1)
I (A+2, T,) —I„(A —2, T,)

(16)

This equation combines the masses of 16 neigh-
boring nuclei in a completely symmetric way.
Equations (13)-(16)are also shown in Fig 1ba.sed
on the schematic notation introduced earlier. '

lt should be mentioned that Eqs. (6), (7), (13),
and (14) as well as the generalized nuclidic mass
relationships (9) and (15) represent only identities
if the effective neutron-proton interaction I„~, its
partial differences with respect to T, and A, and
the ratio thereof are obtained from the known
masses. However, phenomenological or theo-
retical expressions will be used for I„~. There-
fore, the generalized nuclidic mass relationships
represent an intermediate step between a mass
relationship (difference equation) and a mass
equation.

III. MODIFIED TRANSVERSE AND LONGITUDINAL

NUCLIDIC MASS RELATIONSHIPS

A seemingly sensitive check on the internal con-
sistency of any theory for the effective neutron-
proton interaction I„~ is based on the modified
transverse and longitudinal mass relationships
(6) and (7). Given a phenomenological or theo-

FIG. 1. Schematic representation of Eqs. (13)-(16).
The fields represent nuclei from the nuclidic chart with
N horizontal and Z vertical. The signs and encircled
signs represent I and I„&, respectively. The third
equation is a generalized nuclidic mass relationship.

retical expression for I~, both equations can be
used as recursion relationships to extrapolate
from the region of known nuclei into the regions
of unknown neutron-rich or proton-rich nuclei.
Clearly, each extrapolation should lead to a pre-
diction which is reasonably consistent with the
other. This consistency test (test 1; two other
tests will be presented later) constitutes a neces-
sary condition for the quality of the expression for
I.p.

The extrapolated mass values MT(A, T,) and

M„(A, T,) can be expressed in terms of the pre-
dictions'M(GKT;A, T,) and M(GKL;A, T,) of the
transverse and longitudinal Garvey-Kelson mass
relationships in which the right-hand sides of
Eqs. (6) and (7) are assumed to be zero. The

result for neutron-rich nuclei is
Ap

MT(AO, T~) =M(GKT;Ao, To)+ Q [l„~(A, To —1 —~(AO —A)) —I~(A, Tf(A))]
&=&mm

and

&ma

+ Q [I„p(A, T~ —2(A —Ao)) —I~(A, Tg (A)))
A=Ap+ 1

Mq(Ao, T, o) =M(GKL;Ao, T, o)+ Q [I~(AO —2(T~ —T), T) —I„q(A (Tg), Tg)].
T =Te e min

(18)



Similar expressions exist for proton-rich nuclei.
The correction terms of Eqs. (17}and (18}are
shown schematically in Fig. 2. The quantities A
and T, are, of course, integer or half integer,
respectively, and —',Ao+ T„,—,'A a Ts(A), and

~(T,) + T, are integer. Furthermore: TB(A)
=value of T, nearest the line of P stability for a
given A; AB(T,) =value of A nearest the line of P
stability for a given T„A - =minimum value of
A with —,'A —T~(A)~ —,'A, —T„+2; A,„=maximum

=minimum value of T, with —,'A8(T ) —T ~ —,'Ao- T~

lf the quantity I~ were constant or distributed
randomly about a constant value (separately for
even-A and odd-A), the correction terms of Eqs.
(8), (7), (17), and (18) would not contain system-
atic contributions. In this case the extrapolated
mass values M~ and M~ are, of course, those ob-
tained from GET and GKL. It has been shown
earlier6 that the two relationships lead to strongly
diverging results and the above assumption about
I~ must be rejected. However, test 1 does not
exclude the possible independence of I~ on T, Os
A. which are the underlying assumptions for the
validity of GKT or GKL, respectively

It will be shown later that any mass equation
given in analytical or tabular form can be used to

obtain an expression for the effective neutron-pro-
ton interaction I„&. Thus, test 1 makes it possible
to test an important aspect of any mass equation.

IV. CHARACTERISTICS OF THE EFFECTIVE
NEUTRON-PROTON INTERACTION I„

DERIVED FROM EXPERIMENTAL MASSES

It has been shown earlier that certain knowledge
about the effective neutron-proton interaction I~
is essential for an application of the generalized
nuclidic mass relationships. Therefore, the be-
havior of I„~derived from the experimental masses
according to Eq. (8) will be discussed first.

Figure 3 shows a plot of about 500 values for
I„~calculated from Eq. (8) and the 1971 atomic
mass evaluation. " The data have been plotted
separately for even-A and odd-A nuclei. %e find
I„'~'~~ & I~~d " and both exhibit a general decrease
along the line of P stability. Thus, I~ must de-
pend on the nucleon number and/or on the neutron
excess.

Based on Fig. 3 or related plots, "'"a phenom-
enological study of the dependence of I~ on A and
T, becomes possible. Such a study has already
been performed'4 for the isospin doublets and
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FIG. 2. Sehematie representation of the correction
terms in Eqs. (17) and (18). The fields represent nuclei
from the nuclidic chart with N horizontal and Z vertical.
The encircled signs represent I„& for the respective nu-
clei. The correction terms consist of certain I„& differ-
ences summed over ranges of A or T~, respectively.

FIG. 3. Plot of the effective neutron-proton interaction
I„& derived from the experimental masses as a function
of A for even-A and odd-A nuclei. Only data with A —30
and with experimental uncertainties less than 200 keV
are included. The lines are calculated from the liquid-
drop-model, equation (29) for nucl. ei along the line of p
stabl llty.
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FIG. 4. Plot of the experimental differences
I„p(A, Tg+2) —I„p(A, Tg) and I„p(A+4,Tg) —I„p(A, Tg) for
even-A and odd-A nuclei as a function of A. Only data
points with experimental uncertainties less than 2QQ keV
are included. The horizontal lines represent the average
values obtained from the g~ analyses.

triplets, i.e., for T, =+-,' and +1. It has been found

empirically that at least for small values of T,
the quantity I„~depends on A and I T, I rather than

T, which shows that the charge-symmetric mass
'relationship GKS Eq. (5) is not, or not strongly,
affected by the present considerations.

To show the dependence of I„~on A and T,
separately, a three-dimensional plot becomes
necessary. However, the "fluctuations" make it
practically impossible to separate the dependence
on A and on T, . Therefore, another approach has
been taken.

Figure 4 shows a plot of the differences
I„~(A, T,+ 2) —I„~(A, T,) and 1~(A+ 4, T,) —I~(A, T,)
for even-A and odd-A nuclei. There are no
striking systematic deviations from zero; but
nevertheless, a closer inspection of the strongly
fluctuationg data points show a slight preference
for negative values of I~(A, T,+ 2) —I„~(A, T,) for

light even-A nuclei and a definite preference for
positive values for odd-A nuclei, particularly light
odd-A nuclei. It thus appears that I~ decreases
with increasing T, for light even-A nuclei but in-
creases with increasing T, for odd-A nuclei. To
further substantiate these findings, the residuals
of Fig. 4 as well as many other differences were
subjected to a )I

' analysis. The systematic contri-
butions to the differences were assumed to be
constant, and a search was made to find those
constant values which minimize X2. The searches
were performed separately for nuclei with Z = N
=even, Z+1=N+1=even, Z+1=N=even, and
Z =N+1 =even. The light nucl. ei with Z & 8 were
excluded from the analysis as were all nuclei with

T, &0 or T, =O, N=Z=odd. The remaining 500-
600 mass combinations were treated jointly or
they were subdivided into three groups with in-
creas1ng A Rnd with Rn approximately equRl num-

ber of combinations. 1t was hoped that from such
a subdivision additional information about the A
dependence of the various quantities could be ob-
tained. By quadraticaOy adding 100 keV to the
experimental uncertainties of the individual
masses, a more even distribution of the weight
factors is ensured. The results differ only little
from those where the 100-kev term was not added.

Table I shows the results of the X' analyse
The results for the individual differences of Fig.
4 can be found in the lines labeled by (1C), (1F),
(2C), and (2F). The average residuals of column

(3) are displayed in the figure as horizontal lines.
The differences of Table I are grouped into four
categories according to their dependence on T„
A, N, and Z. Many of the listed values are com-
patible with zero. Several, however, deviate
markedly from zero such as the values in column
(3) labeled (ld), (lf), (1E), (1F), (4E), and (4F).

The presence of small systematic deviations
from zero is substantiated by the internal consis-
tency of the results. For example, most of the
values listed in the lines labeled (A) and (8) or
(D) and (E) have the same sign and are of similar
magnitude. Altogether there exist 20 equations
which should hold such as (in an obvious notation)
(la) +(lb) = —'(lc) =(1A) =(18)=(1C), (la) +(2b) =(3A),
or -(la)+(2a) =(4A). These equations are satisfied

remarkably well and they are consistent with

I~'" (ItIO+ be, Zo+ AZ)= ID"" (No, Zo)+ a~[2(AItI+ 1)]+a2[g(~+ 1))+a~5~ ~

I~~ +(N + 1+dN, Z + AZ) =I@ "(II + 1,Z )+ b, ['(bN+ 1)]+b [—,'(nZ+ 1)]—+b, b,„,„ (20)

I~~"-"(Ao+~, T~+ aT) = Io " "(A„T~)+ ,'(s, + a)~+ —,'(a, —a)aT + (-,'(a—,+ a) + aj b~, ~,
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(6)
Z =63-100

(2)
Partial I„& difference

{5)
Z =41-62

(3)
Z =8—100

(1)
No.

T« dependence:
la Io„p (A, T +1} +1S+26 (S3)

+10+27 (45)

+5+ 19 (9S)

+45+ 17 (57)

+15~28 (48)

+35~15 (105)

-&0+ 26 (46)—40+ 51

35~56

-40 + 37

+90 ~32

-15+19 (138)

-5+21 (122)

-10+14 (260)

+60+14 (148)

+5+ 19 (121)

+35+12 (269)

-20 + 31 (73)

-I~p (A, T«)

+10~ 27 (42)-P
p (A, T«)

Ieven-A{A T
I~p(A, T«+1)
Ieven-A{A T + 1) —5 ~1S (88)lc
I~p (A, T«+1)

Iep (A, T +1)
Iodd-A(A T +1)

(45}

—I~p (A, T«)

-P„',~A(A, T, )

-10+ 26 (42){31)le

+25 + 19 (SS)

lA I~p (A, T«+2) -35 + 88 (20) —55 + 35 (28) +30+39 (25)

-Pop (A, T«)
Ieven-A{A T

X~p (A, T«+2)
Xeven-A{A T +2}

-35~ 28 (77) -170~ 71 (20) + 10+32 (31) +20+ 40 {26)

-25+ 21 {150) —105 ~ 57 (40) —20 ~24 (59) +25 ~ 28 {51)

+65+ 27 (79) +150+64 (23) -25 +41 (26) + 70+ 32 (30)

+ 95 + 25 (75) +205 + 66 (18) + 20 + 30 (32) + 100+39 (25)

-I„",{A,T, )I„",(A, T, +2)

Io~p (A, T«+2)
Hd-A(A, T, +2)

1D

-I„p (A, T )

-S„",~A(A, T, )

1E

+80+18 {154) +175+68 (41)

A dependence:
2a Pp (A+2, T«) —85 +43 (54} + 10+ 23 (52)-30+ 1S (159) -10+23 (53)

+25+ 1S (64)

+10~ 14 {117)

-I~p {A,T«)

+10+17 (180) + 15 +40 (64) —25 + 24 (52)-I~p {A,T«)
Xeven-A{A

I~p (A +2,T«)
Xeven-A(A+2 T ) -10+13 (339) -30+30 (118} -10+17 (104)

+20+15 (158) +25+34 (49) +10~23 (53) +20~22 (56)Ines {A T«)I~p (A +2,T«)

Iep~ (A +2,T«)

I (A+ 2,T «)

-80 +40 {52) —25 + 25 (55)

-30+26 {101) -10+17 (108)

-55 +49 (46) + 15+ 26 (42)

-40+ 54 (52} + 20+ 24 (47)

-45+37 (98) +15+17 (89)

-45+ 16 (165)

-15+11 (323)

-15+21 (137)

-15+23 (142)

-15+16 (279)

-15+17 {151)

-10+18 (140)

-IO+ 13 (291)

-I„~p(A,T )

Iodd-A(A T )

-25 ~ 1S (58)

-5+ 15 (114)

-5 ~ 28 (49)

-15~26 (43)

-10+19 {92)

-25+ 17 (57)

-5~ 20 (43)

-15~13 (100)

—I~& (A, T«)I~p {A+4,T«)

-I„~p (A, T«)
Icvcn

I~p (A +4,T«)
Icvcn A(A +4 T )

-Ie~p(A, T )I„",{A+4,T, ) -15+41 (54) 0 + 24 (40)2D

I„(A+4,T )

P„p~ A(A+4, T«)

-I (AT )

Iodd-A(A

0+41 (50) —20+27 (47)

-10+ 29 (104) -10+ 18 (SV)

2E

2F

N dependence:
3A I~p (A+ 2,T +1) Ice& (AIT«)

Io„op{A T«}
Ieven-A{A

-I (A T

-15+19 (136)

-30+ 18 (138)

-20+13 (274)

+15+ 16 (147)

+40~14 (135)

+25+11 (282)

-45+47 {4O) -15~23 (44)

-9S+SO (41) -10+» (46)

-70 z 34 (Sl) -15+16 (90)

+4S*42 (46) —30+25 (44)

+ 75 + 32 (36) + ls + 22 (49)

+5+ 26 (52)

+5~ 20 (51)

+sa 1V (103)

+25*16 (57)

+30+ 19 (50)

+30~12 {107)

I~p(A. +2,T«+1)
Icvcn A(A + 2 T ~ 1)

Ie~p (A +2,T +1)

Io„;(A+2,T, +1)
Iodd-A(A+2 T +1)

3D

-I„~p (A, T«)
-Wd A(A, T«)

3E

+60 + 27 (82) —5 + 16 (93)

TAB&.E I. Residuals in keV for the partial I„& differences obtained from g minimizations. The number of mass
combinations used in the calculations are given in parentheses. Column (3) shows the results for the complete range of
nuclei, while columns (4)-(6) show the results for the subranges characterized by Z.
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TABLE I (Continued)

(1)
No.

(2)
Partial I„& difference

(3)
Z = 8-100

(4)
Z = 8-40

(5)
Z =41-62

(6)
Z =63-100

Z dependence:
4A I~p (A +2,T8

—1)

4B P~p (A +2,Tg
—1)

4C &(A +2,T 1}

4D I„(A+ 2,T —1)

4E I„p (A+2, Tg
—1)

4F I p" (A+2T —1)

-Ic~p (A, T )

-I„~P (A, TE)

0~24 (111)

+10+24 (117)

Ine&o (A Tg )

-I„",(A, T, )

-40+ 18 (120)

-50~17 (113)

Iodd-A(A, T ) -45 y 12 (233)

-I„"p" (A, T ) +5+ 17 (228)

—20 + 58 (37) +45 + 25 (37)

+40+ 55 (42) + 15+ 27 (40)

+10+40 (79) +25+19 (77)

-80 +40 (42) + 20 + 28 (36)

-65 + 36 (37) —50 + 27 (41)

-70+ 27 (79) -20+ 19 (77)

-25+ 32 (37)

-25 ~ 34 (35)

-25 + 23 (72)

-45 + 18 (42)

—30 + 25 (35)

-35 ~ 15 (77)

and

I~~~ ~(AO+ 1+nA, T~+ ~ + aT) =I0~ "(Ao+ 1, T~+ g) + « (b, + b2)nA+ 2 (b, —b,)&T + [~(b, + b2) + b~) b,„,„,g~ ~

(22)

Here, N, and Z, are assumed to be even and A,
=No+Z„2T„=NO —Z, . The square brackets [x]
denote the largest integer less or equal to x; and

5~~ ~~ = 1 for N and Z odd, and =0 otherwise. Oth-
er 5 symbols are defined accordingly.

These equations represent the leading terms of
a Taylor expansion with the major splitting between
I„'~" "and I~~ ", as evidenced by Fig. 1, given by
the respective first terms. Table II contains the

6 quantities a, and b, obtained from a y' adjust-
ment to the respective 36 quantities of Table I.
Both I~ " and I~~~ "decrease with increasing A
at about the same rate (a, + a, and b, + b,). The de-
pendence on T„however, differs considerably for
even-A and odd-A nuclei (a, —a, and b, —b,). While
I~" "decreases, I~ "increases with increasing
T, . This result explains the relatively fast de-
crease of I~'" "along the stability line and the
relatively slow decrease of I~' " (see Fig. 1).
The decrease of I„~ is enhanced by the decrease
with T, for even-A nuclei, but it is slowed down

by the increase with T, for odd-A nuclei. Even
though the dependence on A seems to be weaker
than that on T„one has to remember that the
range in A values is much bigger than the range
in T, values.

The quantity b, differs from zero. Oscillations
in the T, dependence of I~~ "are therefore indi-
cated. Columns (4)-(6) of( Table II show further
that the deviations from zero are more pronounced
in the light nuclei.

When averaged over all even-A and odd-A nuclei,
the observed corrections to the nuclidic mass re-
lationships GKT and GKL are + (12 s4.5) keV and

-(16+ 7) keV, respectively Thes. e systematic
contributions which appear in a single application
of the relationships are indeed small compared to
the "fluctuations" which are of the order of +200
keV (see also Fig. 3). One might therefore ask
what the significance of the systematic contribu-
tions is. There does indeed exist a major dif-
ference between the two. The "fluctuations" lead
to contributions which are practically random in
character. They should therefore remain es-
sentially the same as the recursive process is
applied in repeated steps away from the line of
P stability. On the other hand, the systematic
contributions lead to errors which propagate in
a multiplicative way. It is the latter contributions
which are responsible for the differences in the
predictions between GKT and GKL. Since these
differences amount to' about 11 MeV (A = 60) and
4 MeV (A = 120) for isobars which are located only
five units in T, beyond the most neutron-rich known

isobar, one has to conclude that the systematic
errors increase very strongly with neutron excess.
A difference equation which approximately de-
scribes the increase of the systematic contribu-
tions suggests a dependence on hT, of the third or
perhaps even the fourth power.

Since I~ decreases with increasing A and since
the increase with T, of I,'~ " seems to exceed the
decrease with T, of I~'" ", one is lead to the con-
clusion that GKL [Eq. (4)] and GKT [Eq. (3)]
probably underestimate the masses of very neu-
tron-rich nuclei. This preliminary conclusion is
supported by new experimental results" on light
neutron-rich nuclei.
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V. MACROSCOPIC THEORIES OF I„,

Macroscopic theories of I„~ are based on the
liquid-drop or related models. Any mass equation
derived from such a model contains explicitly or
implicitly an expression for the effective neutron-
proton interaction I~. The theory underlying the
expression is of course that used in the derivation
of the respective mass equation. The quantity I~
can be calculated directly from the mass equation
by using the defining equation (8). The correction
terms in Eqs. (6), (7), (13), and (14) as well as
the quantities at(A, T,) and ot(A, T,) of Eqs. (10) and

(16) can then be obtained from I„~. Thus, any
mass equation, urhether given in analytical form
or tabulated, provides us svith a theoretical ex-
Pression for I~ to be used in the modified trans-
verse and longitudinal mass relationships and in
the generalized mass relationships.

lt is obvious that the above method for obtaining

I„~ is applicable not only to mass equations based
on macroscopic models but also to mass equations
based on shell-model or other microscopic theo-
ries and on combinations thereof.

In a practical application of the above method it
is advisable to use Eq. (8) together with a com-
puter program that calculates M(A, T,) or B(A, T,).
However, as an illustration and as basis for a
discussion we have calculated explicit analytical
expressions for I~ for a simple liquid-drop-

model mass equation. The calculations are
simplified if, for not-too-small values of A and

T. , one separates B(A, T,) and I„~{A,T,) into
continuous and discontinuous contributions (such
as contributions from pairing energies) according
to

T ) Bcont (A T ) + Bditcont(A T )

i„(A, r,) = I-"t(A, r.)+ I„", "'(A, r.) .
Then

(23)

{24)

(25)

I„-"'(A,r, + ,') —I„","'(-A, T, ——,') = I'„',"'(A, r.),1 ~ cont

I~"t (A+ 1, T,) —I„~"t(A —1, T,) = 2 I„~"t(A, T,).

(27)

We recognize the quantities n, and a essentially
as ratios of certain third partial derivatives of
B(A, T,) with respect to A and T, .

The Bethe-Weizsacker semiempirical mass
equation" can be written in a slightly modified
form as

Icoltt (A T ) Bcont (A 1 T )
t Bcolt't {A 1 T )

TABLE II. Coefficients of Eqs. g9)-(22) and of the
equations in Fig. 7 in units of keV derived from the
results of Table I.

B(A r)=. A .A" 4.

a'" + a"'

(1) (2) Q) (4) (5)
Coefficient Z =8—100 Z =8-40 Z =41-62 Z =63-100

-20+ 8 -70+21 —8+ 10 +7+ 10

+4+ 9 +17~22 +17+10 -12+12

z(z-1)-ac
Abois

+ '

a'"
+ ~„, , even-odd

{3)
odd even

—5+10 +1+14 -15+13
—16+ 11 -53+ 27 + 9+ 13 —6+ 14

a'" —a"'
odd-odd .

-23 ~ 13 -87+ 35 —25+ 16 + 19+18

+28+ 7 +55+18 -1+10 +29+ 8 (28)

b)+ bg

bt —b2

2«i+ bi)

2«2+ b2)

2«~+ a~
+ b(+ b2)

2(at —ag
+ bg —b2)

+65+ 9 +107+22 +29+ 15 +52 +11
-16+ 9 —17+21 -15+ 13 -11+ 10

+ 72*11 +127~29 +13~16 +70+13

—27~14 +2+ 7 -26+ 7

-16~ 7

+24+ 9 +20~23 -6~» +44+»

The symmetry energy is taken as proportional to
T(T+1) rather than T' to agree with various shell-
model expressions obtained with the use of the
isospin formalism. This modif ication eliminates
the need for the so-called Wigner term. The pair-
ing energy is also slightly modified to account for
a finite neutron-proton pairing energy (a term
with attn') and to account for possible differences
between the neutron and the proton pairing ener-
gies (a term with a~t"). Generally, a~t" and a~t

'
are assumed to be zero. Using Eq. (28) with Eq
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(25) gives

1 „»+r „» z. 2aq" 2 a, 2 a, 12T,+1 T,(T, +1)
1)3»+9 (A 1) z +9(A 1)i» 2 A 1 (A 1

(29)

where 5r o is the Kronecker symbol. Equation (29)
Z

shows that only the symmetry and the pairing
energies contribute significantly to I„~. The last
two terms in Eq. (29) are very small corrections
due to the curvature of the mass surface from the

surface and Coulomb energies.
The pairing energy terms in the binding energy

expression introduce an oscillatory behavior.
With a~" = 11 MeV and a~"' = a~"' = 0, one obtains
oscillations for I~ which are in total disagreement
with the experimental I~ of Fig. 1. It is therefore
concluded that the analytical form of the term
+ a~"/A'» is not correct and should be replaced
by two pairing terms which depend separately on
the number of neutrons or protons. No contribu-
tions to I~ will result from such terms. They
can be simulated in Eq. (29) by setting a~" = 0.
(See also the discussion in Sec. VI. ) One might
expect that the same argument applies to the term
with a~". This is not quite correct though, since
it is known theoretically and experimentally" "
that the Coulomb pairing energy depends on T and
thus on the number of protons and neutrons. Be-
cause of these complications but mostly because
the term with a~"' in Eq (29) is. presumably quite
small, it will be neglected. The only oscillating
term which remains is that due to a~"'. This term
generates an oscillatory structure in good agree-
ment with the observed splitting of I„~ for even-A
and odd-A. nuclei. A value of a~"'= 1.5 MeV is
required. The quantity I„~ from Eq. (29) for nu-
clei along the line of P stability is included in
Fig. 3 as a solid line and compared to the ex-
perimental I~. The general trend of the data and
in particular the splitting for even-A and odd-A
nuclei is well reproduced. The following coef-
ficients have been used: a„=14 MeV, a, =13 MeV,

MeV, a~"=0 MeV. Similar good agreement, ex-
cept for the even-A/odd-A splitting, is obtained
with other liquid-drop-type mass equations. '

The effective interaction I„~ from Eq. (29)
(a~"=a~"=0 will be used from now on) decreases
with increasing A approximately inversely with A.
lt also decreases with increasing

~ T, ( and, except
for the small Coulomb energy term, it depends
on (T, ~

rather than T, . The dependence on T, is

approximately quadratic. The quantity I~ ap-
proaches zero for N-0 or Z -0.

Based on the liquid-drop-model equation (29),
one can now derive theoretical expressions (not
given here) for the correction terms in the modi-
fied mass relationships (6), (7), (13), and (14)
and for the coefficients a, and n in the generalized
mass relationships (9) and (15).

The partial difference I„~(A, Z;+-;) —I„~(A, T, ——,')
is antisymmetric about T, =0 except for a small
Coulomb energy term. This behavior is expected
and necessary to satisfy charge symmetry of
nuclear forces. The difference is negative for
positive T„and shows no oscillations but in-
stead a discontinuity near T, =0. The magnitude
of the term is approximately proportional to T„
a result which is particularly significant in con-
nection with mass predictions for very neutron-
rich nuclei. It decreases with A approximately
as A '. The sign of this expression disagrees
with the experimental results of Tables I and II.
Also, the experimental results exhibit a very pro-
nounced even-A/odd-A effect which is not repro-
duced.

The partial difference I„~(A+ 1, T,) —I„~(A- 1, T,)
is negative. It decreases with increasing A ap-
proximately as A '. A weak oscillatory contribu-
tion for even-A and odd-A nuclei is indicated.
Except for a small Coulomb energy term the dif-
ference is symmetric about T, =O, as is expected
and necessary to satisfy charge symmetry of
nuclear forces. A comparison of these predictions
with the experimental results of Tables I and II
shows basic agreement.

The two partial differences are plotted in Fig. 5
as a function of A for nuclei along the line of P
stability. Also plotted in the figure are the same
partial differences obtained from the liquid-drop-
type mass equations of Cameron et al .,"Myers
and Swiatecki, "and Seeger." The use of slightly
different parameters" in the equations for the
droplet model of Myers and Swiatecki has only
little effect. The curves represent calculated
correction terms for the mass relationships GKT
and GKL for nuclei along the line of P stability.
The hatched areas represent the result for the A-
averaged differences of Tables I and II obtained
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from the y2 analyses of the experimental mass
combinations.

There exists good agreement between the experi-
mental and calculated partial differences of I„~
with respect to A as shown by the lower curves in
Fig. 5. Poor agreement exists between the ex-
perimental and calculated partial differences I„~
with respect to T, as shown by the upper curves.
None of the four curves describes the observed
splitting for even-A and odd-A nuclei. Also, the
calculated, mostly negative, values for this partial
difference disagree with the slightly positive
average experimental value.

The above comparison between the experimental
and calculated partial I~ differences constitutes
another test (test 2) of certain aspects of a given
mass equation. Information about the T, depen-
dence is of particular importance since it strongly
affects the extrapolations into the regions of un-
known neutron-rich or proton-rich nuclei, par-
ticularly for the light nuclei.

The T, dependence of I„& obtained from the
mass equations is strongly affected by the presence
of higher-order contributions to the symmetry
energy. The leading volume symmetry energy
term is proportional to I' [with I = (H Z)/A];-

higher-order terms are proportional to I4. In
the droplet model, "for example, the sign of the
latter term is determined by (ME-I,'), where K,
I., and M are three expansion coefficients (K=
compressibility coefficient; I.= density-symmetry
coefficient; M = symmetry anharmonicity coef-
ficient). It requires a considerable change in the
listed parameters I. and/or M to change the sign
of that term.

The charge-symmetric relationship (GKS) is ob-
Mined from Eq. (29) as a special case. Even for
T, =0, there remains a small residual due to the
fact that the Coulomb interaction is not charge-
independent. If instead of the simple Coulomb
energy expression of Eq. (28) one uses the iso-
baric multiplet mass equation, the general result
ls

1„,(A, T, =+T)-I (A, T, =-T)
8 1 82

, h(A —1, T) —,Kt —1, T))RT

+ b(A —1, T)

Z"&(A- 1, T). (30)

i
keV'

cK

I

+

«K

f-™
«x

echMI /
'g/

II
II
I

I

IOO

—Bethe-Neizsbcker

Meyers-Swigtecki

Seeg~
l

200

Here b(A, T) is the coefficient of the linear term
and E'"(A, T) is the vector Coulomb energy. Equa-
tion (30) shows that the charge-symmetric re-
lationship GKS requires a small correction term.
The modified relationship becomes

82 1 82
2 ~4', -1)=(,—

4 ~.— ~) z'"(A -1,—,').

(31)

Equation (31) predicts negative contributions of
the order of a few keV for a homogenous charge
distribution. Indeed, the analysis of the experi-
mental I„~ for the mirror nuclei" shows a slight
preference for negative values. However, the
presence of the Thomas-Ehrman shift and related
effects probably precludes Eqs. (30) and (31) from
becoming useful tools for studying finer details
of the coefficients of the isobaric multiplet mass
equation.

FIG. 5. Calculated corrections to GET and GKL for nu-
clei along the bne of P stability. The estimates were ob-
tained from several liquid-drop-model mass equations,
namely Bethe-Weizsacker f Eq. (28)], Cameron (Ref. 18),
Myers-Swiatecki (Ref. 19), and Seeger (Ref. 20). The
hatched areas represent the A-averaged results of the
g2 analysis of the experimental masses. The compari-
son between calculated and experimental values consti-
tutes test 2.

VI. MICROSCOPIC THEORIES OF I

Comments about three microscopic descriptions
of I~ will be presented in this section. One ap-
proach involves the use of fourfold-degenerate
Nilsson-like or Hartree-Fock single-particle
orbits. This model was used originally by Garvey
and Kelson' '; it is related to the quartet model. '
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The other approaches involve shell-model mass
equations such as equations based on the seniority
or supermultiplet scheme. " '~

Theoretical studies of the quantity I~ have been
performed in the past on the basis of special as-
sumptions or models. One of the earliest works was
that of de-Shalit" who used a single particle shell
model with an odd number of neutrons and of pro-
tons in the same shell. He derived the expression
I„~=ID+(-1)"I'. Here, 10 represents a spin-
averaged interaction energy and I' accounts for
the increased binding in the ground state of an
odd- odd nucleus. The expression reproduces the
observed splitting between the even-A and odd-A
nuclei (see Fig. 1).

A. Fourfold4egenerate single-particle orbits

Based on the extreme single-particle model
with fourfold-degenerate levels, the effective
neutron-proton interaction I„~ can be schematically
represented as shown in Fig. 6. The distinction
between even-A and odd-A nuclei can clearly be
seen. A comparison between Eqs (19)-.(22) and
the representations of I~ according to Fig. 6
leads to the equations schematically shown in Fig.
V. The numerical values of the various quantities
are those of Table II. The figure displays the
dependence on N, Z, A, and T, of I~" ", I~~d ", and
of —,'(I~'" "+I~&' "). All three quantities decrease
with increasing A at about the same rate. Such a
behavior is reasonable because the radii are in-
creasing with A, and I~ involves overlaps of
neutron and proton radial wave functions. " The
dependence on T, is unexpected. The quantities

~-—Oo. +~ ~ -- +

I I,
" " and ,'(I„~'—"+I~'")decrease/increase with

T, at roughly the same averaged rate. No expla-
nation can be provided. The quantity a, is prac-
tically zero due to the cancellation of the spin-
averaged interaction energies. Unexpectedly, how-
ever, the quantity b, is different from zero. This
noncancellation is probably due to another in-
adequacy of the model. The Coulomb pairing
energy between proton pairs, for example, shows
a dependence on T of the form T ' which is defi-
nitely not satisfied by the representations of I~
of Fig. 6. Other pairing contributions may also
not be satisfied by the representation. The Nilsson
model (see for example Brink and Kerman") or
the quartet model" provide natural extensions of
the above considerations and may result in an im-
proved description of the various findings.

B. Shell model with neutron and proton seniority

Other microscopic theories for the effective
neutron-proton interaction I„~ are based on the
shell model. The procedure to obtain I„~ from a
mass equation is of course that used earlier in
Sec. V. Assuming that proton seniority and neutron
seniority are good quantum numbers, the binding
energy of a nucleus with g neutrons and p protons
outside a core (No, Z,) is written as' '"
B(A', +n, Z, +p) =B,(N„Z,)+na„+ ,"s(n 1-)p„+[--,'s]v„

+pQp+ 2p(p —1)pp+ [&p]vp+ BIO

The coefficients can be expressed in terms of two-
body interaction matrix elements. The above

1
oe ~-~+~-~
np -eao- —eo —ao- -eao-

odd-even

1
e Q ~+~
np

~ven-odd

+Ieven-A
tlP

N-dependence - J = e,

t. i ---:, -:(, (g. III
((a (t

A-dependence - = o,eos - - " = bi+be $ p+ele+geblebf~
i I

edd-odd T-dependence -I = a,-o,

FIG. 6. Schematic representation of the effective neu-
tron-proton interaction I„& using an extreme single-par-
ticle shell model with fourfold degenerate Hartree-Fock
or Nilsson-model-like single-particle orbits. Four types
of nuclei are considered with N and Z even or odd. The
arrows indicate effective interactions between the re-
spective nucleons. The first term for odd-A nuclei rep-
resents the sum of two interactions which are averaged
over the respective spine. {The superscripts odd-even
and odd-odd have tg be exchanged. )

FIG. 7. Comparison between the difference of effective
neutron-proton interactions I„& based on the model of
fourfold degenerate single-particle orbits with the coeffi-
cients of Eqs. {19)-{22).The numerical values of the
various coefficients which were obtained from the experi-
mental masses are given in Table II.



equation is useful when neutrons and protons are
in different shells. The term I'6~~,dd aeeounts
for the energy difference in an odd-odd nucleus
between the centroid of the lorn-lying states
(coupled to the same seniorities as the ground
state) and the energetically favored ground state
(Nordheim rules" ). The energy difference I'
depends on J. If it is assumed that all coefficients
in Eq. (32) are constant with a given shell, one
obtRlns

of odd-A nuclei (v = 1, I=-,'), but only the average
or centroid energies of the lom-lying states with
'U=2, I=1 (Tgt 0) ln odd-odd nuclei. It ls for this
reason that the term I'6~d ~d is again added to
describe the energy difference between the cen-
troid and ground-state energies. If the coefficients
in Eq. (35) are again assumed to be constant within
a given shell, one obtains (except for a possible
small Coulomb energy correction term C.E.)

(36)

I~d-A
nP 0

Thus, I„~ would indeed be constant (separately for
even-A and odd-A nuclei) and GKT and GKL would

both hold. A comparison between Eq. (33) and

Fig. 3 shows thRt I ls definitely finite Rnd of the
order of 200 keV.

Zeldes et al. '8' o have shown long ago that I' in

Eq. (33) should be written with an explicit de-
pendence on n and p of the form

Equation (33) has to be modified accordingly and

I„~ becomes dependent on A and T, . The experi-
mentally observed over-all dependence on A and

T, is still not x'epx odueed. However, the above
modification 1+ds to different signs for
8/8T, (I~'" "}and 8/8T, (I'„~~d-") in agreement with

the experimentally observed signs. An oscillatory
dependence of I~~ "on T, is also predicted but
appeax's to be out of phase mith the observed one.
Despite these shortcomings, it is interesting to
see that an explicit dependence on T, or T of the
term I'6~d ~d in Eq. (32} generates different signs
in the T, dependence for even-A. and odd-A. nuclei
as mell as oscdlations.

C. SheB model with semority and isospin

Another shell-model mass equation is"

+ [~AA]w+I'6~d, dd+ C.E.

with T= ~T, j. Neutrons and protons are assumed
to be in the same j"configuration outside a
doubly magic core with NO=ZO= ~A.O. The seniority
coupling scheme is assumed in the isospin for-
malism. The Coulomb energy is not included ex-
plicitly. Without the term I'5~d ~d, Eq. (35) de-
scribes the gx ound-state energies of even-even
nuclei (v =0, t =0) and the ground-state energies

with

Here, Vo, V„and V, are the tmo-body matrix
elements for nucleons coupled to 4=0, avex'Rged

over odd 2 or even J (+0), respectively. Again,

I„~ is constant (separately for even-A and odd-A
nuclei). It is interesting to note, however, that the
splitting between I„',"' " and I~~~ " is due to the
above energy I' and to the nucleon pairing energy m.

It is an extreme simplification to assume that
the coefficients in Eqs. (32) or (35) are constant.
Zeldes and co-morkers' "'"'"found it necessary
to introduce within major shells a linear depen-
dence of all coefficients on n and p (for light nuclei
even a quadratic dependence) to describe the ex-
perimental masses. More x'ecently Liran and
Zeldes" introduced a dependence of the form A '.
Terms to account for configuration mixing and for
deformations had to be added also. It is interesting
to note that the use of Zeldes's earlier mass equa-
tion leads to constant values within major shells
for the parameters o., and o. in the generalized
mass relationships (9) and (15).

Clearly, the above simple shell-model equations
do not account fox' higher-order perturbations.
While the true nucleon-nucleon intex'action is pre-
sumably a tmo-body interaction, the effective
interaction between nucleons outside a core in-
cludes three- and more-body interactions due to
particle-hole excitations out of the core. There-
fore, higher-order terms and corrections are
generated.

The symmetry energy term with T(T+ 1) may be
considered as the leading term of a Taylor ex-
pansion. Hecht" has actually shown that seniority
mixing will introduce a term with T'(T+1)'. We
thus add a term XI,T'(T+ 1)' to Eq. (35). Simi-
larly, the tmo terms with m and I' may have to be
modified, the latter, according to Zeldes, "'o
even in first oxder. To study the effect such per-
turbations may have on I„~ and its dependence on
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A and T„we substitute in Eq (.35)

Io -ID{1+AT(T+ 1)}, w w {1+Q, (b A, T}}i I'-I'{1+p2(aA, T)}. (38)

Here T=
i T, i, and g, and P, are as yet undetermined functions of aA and i T, i. The result is

I~p(A, T) =Io{1+a4A+6XT(T+1)}+w{1+Q,(b A, T)}+2{1+Q,(b A —2, T)},
I"(A, T ) = Io{1+a4A + 6kT(T+ 1)}+ w {1+p, (4A —2, T)}+I'{1+$2(&A, T)},
I~ (A, T ) = ID{1+A 3 + 6k T(T+1)}—w {1+Q, (nA —1, T —~)}—I'{1+$2(AA —1, T+ w')},

I„'q(A, T)=I 0{1+ +4' +%6. T( T+1)}-w{1+$,(nA-1, T+~)}—P{1+$2(AA- 1, T+ w)} .

(39)

(40)

(41)

(42)

The average nonoscillating contributions from Eqs.
(39)-(42) to the partial difference I„~(A, i T, i+-,'}
-I„~(A, i T, i

——,') become 12M,(T+-,'). Thus, the
sign of X determines whether there is an average
increase or decrease of I„~ with increasing T.
The experimental data (see Sec. IV) require X) 0
while essentially all mass equations predict A, & 0.

The observed differences for even-A and odd-A
nuclei require 5g, /BT ( 0. It appears that no such
T dependence has ever been included in a mass
equation, and a term I' has been included only
occasionally. "'"

Another required modification in Eqs. (36) and

(38} is, of course, a decrease with increasing A
of the coefficients assumed to be constant so far.
All interaction energies involve overlap integrals
for neutron and proton radial wave functions which
decrease with increasing nuclear size. Ferguson"
found decreases with A '" or A '.

The quantity I~ appears to present the key for
obtaining reliable estimates for the masses of
unknown neutron-rich or proton-rich nuclei. It is
interesting to find that higher-order terms in
shell-model mass equations play an important role.
Such terms have not been included in the equations
based on the seniority coupling scheme" or the
Wigner supermultiplet coupling scheme. " It would
be very desirable to have such terms included in
shell-model mass equations or shell-model theo-
ries of the effective neutron-proton interaction
I~. The fluctuations" in the experimental values
of I„~ which are of the order of +200 keV, how-

ever, cannot be reproduced unless much finer de-
tails of the wave functions are included in the cal-
culations.

VII. SOLUTIONS OF THE GENERALIZED
NUCLIDIC MASS RELATIONSHIPS

It has been pointed out earlier that any mass
equation, whether given in analytical form or tabu-
lated, can be used to obtain expressions for
I~(A, T,) and the parameters o.,(A, T,) and a(A, T).
With these, the modified transverse and longi-
tudinal mass relationships and the generalized

mass relationships can be used as recursion re-
lationships and become tools for predicting masses
of unknown nuclei. A more general approach will
be presented below.

The generalized nuclidic mass relationships as
well as the relationships GKT and GKL represent
partial difference equations. The functional forms
of the solutions constitute mass equations. Garvey
et a/. ' have given the solutions for GKT and GKL.
The relationship GKT is satisfied by any mass
equation M*(A, T,) of the form

M*(A, T.) =g, (N}+g,(Z)+g, (A)

and GKL is satisfied by

(43)

M*(A, T,) =f (N}+f (Z)+f.(T,). (44)

The authors constructed these functions in tabular
form by minimizing the deviations from the known
masses. The use of such tables is simpler than
the use of relationships. Also, the accuracy of
predictions of nearby masses should be improved
because use is made of all known masses.

If the parameters o.,(A, T,) and n(A, T,'} of the
generalized relationships Eqs. (9) and (15) are
derived from some given mass equationM(A, T,),
this very same mass equation will, of course,
satisfy the partial difference equations. However,
the solutions M"(A, T,) are more general than the
original mass equation. A very general solution
can be obtained with the ansatz

M*(A, T,) =M(A, T,) +F,(N)+ F,(Z) +F,(T ) + F~(A) .

(45)
ln addition to M(A, T,), arbitrary functions F,(N)
and F,(Z) will always satisfy the difference equa-
tions. The functions F,(A) and F4(T,), however,
are not arbitrary because they have to satisfy a
coupled difference equation. One can show that
quadratic contributions as well as certain pairing
expressions satisfy this equation independent of
n, (A, T,) Thus.

F3(T ) + F4(A) = 2q,NZ + @25,„,-„,~„

+q,5 +y, (T,)+y, (A) (46)
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with N = —,'A + T, and Z = —,'A —T, . The quantities q„
q, and q, are constant. The functions P,(T,) and

ge(A) represent higher-order contributions which
can only be determined if cd, (A, T,) is given ex-
plicitly. It should be added that Eq. (45), with Eq.
(46), satisfies all the generalized nuclidic mass
relationships of Sec. III.

Two cases deserve special attention. If we as-
sume a mass equation which can be represented
as a sum of functions of N, Z, and A, it follows
that a,(A, T,) =0, P,(T,) =0, and Pe(A) is arbitrary.
Similarly, if a mass equation can be represented
by a sum of functions of N, 2, and T„ it follows
that u, (A, T,) =~, p, (T,) is arbitrary, and pd(A) =0.
We thus recognize the functional forms for GKT
and GKL of Eqs. (43) and (44} as special cases of
the more general solution, Eq. (45}.

The above procedure of adding functions F,(N)
and F,(Z) to a given mass equation had been used
many years ago by Burbridge et al."as a purely
empirical method. The terms with g„g„and q3
were not included. They used a simple liquid-
drop-model mass equation. More recently,
Cameron and co-workers" employed a more
elaborate liquid-drop-model mass equation. They
added empirical functions E,(N) and F,(Z) which
they separated into shell and pairing contributions.
The addition of these functions improved the
standard deviation for reproducing the known
masses from a few MeV to a few hundred keV.

The terms F,(T,) and F,(A) in Eq. (45) represent
contributions from the effective neutron-proton
interaction I„~. However, the better the true I~
is represented by the respective terms in the mass
equation M(A, T,), the smaller the contribution
from E,(T,)+F,(A) will be. It should therefore
generally suffice to use

Me(A, T,) =M(A, Tn) + F,(N)+ Fn(Z)

ql(N Z} + 45even, even 45edd edd '

(47)

Here, the term with q, has been rewritten and the
functions F,(N) and F,(Z) have been redefined in
an obvious way. The corrections to a given mass
equation M(A, T,) can easily be constructed from
the known masses by introducing about 150+ 100+1
parameters which represent the functional values
of F,(N) and E,(Z) and the three parameters q„
g„and g, . Actually, the number of parameters
is reduced by two because instead of F,(N), E,(Z),
q„q„q, any new set E,(N)+ c, + ( 1)"c„-
F,(Z) c, +(-1)~c, ,-q„q, —2c„q,+2c, will lead
to identical results for arbitrary c, and c,. It is
therefore practical to require g, = g, and to re-
quire the two functions to agree for certain argu-
ments, for example F,(20) =F,(20). The approxi-

mately 250 parameters can be obtained for any
given mass equation by minimizing

M*(A, T,)-M„n(A, T,) '
@N',„gA, T,)

(48)

VIII. SUMMARY AND CONCLUSION

The Garvey-Kelson nuclidic mass relationships
have been modified and generalized nuclidic mass

This procedure results in a simple system of 250
linear equations for 250 unknowns.

There are two important aspects to this pro-
cedure: It provides a test for the quality of a
given mass equation and it generates correction
terms for a given mass equation.

The three parameters g„g„and g, should be
zero if the effective neutron-proton interaction is
well described by the mass equation M(A, T,).
Thus, the smallness of g„g„and g, provides a
test (test 3) for the quality of M(A, T,) in de-
scribing I~. Furthermore, the functions F,(N)
and F,(Z) should satisfy F,(i ) = E,(i ). A strong
deviation from this requirement indicates a mis-
representation of the electrostatic energy in the
mass equation M(A, T,). Finally, the smallness
of the ratio of y',-„over the number of degrees of
freedom characterizes the goodness of fit. The
procedure can be applied to the region of all known
nuclei or only to smaller regions.

The procedure based on Eqs. (47) and (48)
generates additive correction terms for any mass
equation M(A, T,). The terms due to the inter-
action among the neutrons or the protons need not
be described well at all by M(A, T,). Terms such
as the volume energy in a liquid-drop-model mass
equation could actually be left out altogether. The
better M(A, T,) with q„q„and q, describes the
true effective n-p interaction, the better will
M(A, T,) wi th F,(N) and F,(Z) describe the true
effective n-n and p-p interactions.

The mass equation M*(A, T,) combines the ac-
curacy and reliability of the mass equation M(A, T,)
and of a mass relationship in the following way:
While M*(A, T,) is expected to reproduce the known

masses with a standard deviation similar to that
of GKT or GKL, the reliability in predicting un-
known masses far away from the line of P stability
will still be mostly determined by the expression
for I„~ implicitly contained in the mass equation
M(A, T,). The added correction terms in M*(A, T,)
may lead to some improvement. The important
conclusion, however, is that the three tests pre-
sented earlier in this work make it possible to
actually judge the reliability of the mass equations
M(A, T,) and M*(A, T,).
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relationships have been introduced. It has been
shown that generalized nuclidic mass relationships
represent a link between mass relationships and
mass equations. They are partial difference equa-
tions and they can be used as recursion relation-
ships to estimate ma, sses of unknown nuclei. A
necessary condition for the use of the modified or
the generalized relationships is certain knowledge
about the effective neutron-proton interaction I„~,
particularly about its dependence on T, or T and
on A. Such information can, in conjunction with
phenomenological studies of the existing data, be
obtained from macroscopic theories, such as the
liquid-drop model, or from microscopic theories,
such as the shell model. It has been found that

I„~ depends on A and on T. Solutions of the partial
difference equations have been obtained for the
case where I„~ is derived from any mass equation
M(A, T,) given in analytical or tabular form. The
result is a mass equation M*(A, T,) consisting of
the original mass equation (used in the derivation
of I„~) and correction terms The. correction terms
can be constructed from a X' minimization to the
known masses.

A variety of y' tests of the experimental masses
have been performed and information about the
dependence of I„~ on T, and A has been obtained.
The dependence on T, was found to be in disagree-
ment with theoretical expectations. It has been
further established that the mass relationships
GKT and GKL contain small systematic errors
superimposed on the more random fluctuations
which are of the order of +200 keV. The magni-
tude of the systematic deviations is generally
quite small but reaches 200 keV for certain types
of light nuclei. The deviations accumulate at a
rapid rate in the repeated application of the re-
lationships.

The reliability of any mass equation or relation-
ship for predicting masses of nuclei far away from
the line of P stability depends on the quality of the
expression for I„~. Three tests have been devised
to check expressions for I„~ derived from a mass
equation M or other explicit theories of I„~ for

their compatibility and consistency with the ex-
perim ental masses.

Test 1 makes use of the modified transverse and
longitudinal nuclidic mass relationships of Eqs. (6)
and (7) or, in the more general form, of Eqs. (17)
and (18). The two respective equations give two
independent estimates of the mass of any unknown

nucleus. The two extrapolations should be rea-
sonably consistent. It is felt that this consistency
requirement constitutes a very sensitive test of
the expression for I„~.

Test 2 requires agreement between the calcu-
lated partial differences of I„~ for nuclei along
the line of P stability with the experimentally
determined values of Tables I and II and of Fig. 5.

Test 3, finally, concerns the solutions M*(A, T,)
obtained from the procedure defined by Eqs. (47)
and (48). The effective interaction I~ which is
implicitly contained in a mass equation M(A, T,)
depends essentially on the symmetry energy and
on certain pairing energy terms. The smallness
of the parameters g„g„and q, obtained from the
above procedure is a necessary requirement for
the true I„~ to be well represented by M(A, T,).
The smallness of F,(k) —F,(k) reflects on the
quality of the Coulomb energy terms in M(A, T,).

Many numerical applications of the ideas repre-
sented in this work become possible. The most
important problem still to be solved is the ap-
parent discrepancy between the experimental and
theoretical T dependence of the effective inter-
action I„~. An application of the three tests to
various mass equations should provide additional
insight. Ultimately, of course, one wants to pre-
dict unknown masses near and far away from the
line of P stability based on the solution of a gen-
eralized mass relationship which incorporates a
theoretically sound expression for I„~. While this
approach is not possible at the moment due to the
above discrepancies, only phenomenological ex-
pressions can presently be used.

Thanks are due to K. T. Hecht and J. P. Draayer
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