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It is emphasized that the propagator-renormalized Brueckner-Hartree-Fock self-consistent
field theory (RBHF) is an improvement over the unrenormalized Brueckner approximation
plus rearrangement energy corrections for two main reasons: (i) through the renormaliza-
tion of the off-diagonal matrix elements of the single-particle potential in a fixed basis the
shape and size of the field are modified, leading to increased nuclear radii and improved
density distributions which affect the expectation values of all observables; (ii) through the
solution of coupled equations for the “true” occupation probabilities, occupancy-rearrange-
ment effects are calculated self-consistently rather than merely to lowest order. For an
accurate test of the RBHF approximation in light nuclei, center-of-mass (c.m.) corrections
to the calculated properties are quite important. Two ways of making the c.m. corrections,
discussed earlier, are applied and compared in calculations with the Reid soft-core and
Hamada-Johnston interactions for ‘He and 0. The RBHF equations are solved by matrix di-
agonalization in the harmonic-oscillator basis. The well depth of the oscillator reference
potential for virtual “particle” states is determined by requiring self-consistency, for the
low-lying “particle” states, with an average off-energy-shell RBHF self-energy. The bind-
ing energies are in good agreement with experiment, as is the radius of ‘He, while the radius
of 10 is about 8% too small. A careful comparison of separation energies with experiment is
made; c.m. corrections, the effect of spuriosity (presence of excited c.m. components) in the
0sy,, hole state in 1°0 or 1°N, and second- and third-order rearrangement energies calculated
earlier, are included. Details of density distributions and electron elastic scattering form
factors are given. The possible existence of a dip in the proton density at the center of the
o particle is discussed. The need for higher dimensionality in the calculation of form
factors and properties of unbound single-particle states is established.

NUCLEAR STRUCTURE Renormalized Brueckner-Hartree- Fock method;
c.m., rearrangement corrections. ‘He, !°0; calculated binding, SP E’s, sepa-
ration E’s, true occupation probabilities, p, e-scattering form factor.

1. INTRODUCTION relating nucleus A to nuclei A+ 1,%:°+¢ to reduce
these differences by generalizing the self-con-
The renormalized Brueckner-Hartree-Fock sistent field. The RBHF approximation involves
(RBHF) approximation for finite nuclei'™ is a modification of the field which takes into account
closely related to the simplest truncation®'® of the depletions of the normally occupied SP states
Brandow’s propagator-renormalized form’ of the resulting from two-nucleon correlations.
Brueckner-Goldstone series® for the binding ener- It has been shown both numerically*: !° and ana-
gy. It has several features which may allow it to lytically'® that in the RBHF approximation the
play for nuclear physics a role similar to that of analog of “Koopmans’s theorem” for the HF ap-
the Hartree-Fock (HF) approximation in atomic proximation' holds; namely, there is a near
and molecular physics. The great strength of equality between the SP energies and separation
nuclear forces renders HF theory inapplicable. energies. Both are theoretical quantities; the
The use of Brueckner’s reaction matrix® as an relation to experimental “centroids” is discussed
effective interaction restores the possibility of below. The theoretical separation energies of the
an independent-particle description, but the single- RBHF theory are defined as follows?'*' 1% we
particle (SP) energies and wave functions of the assume that the RBHF binding energies & of the
ordinary Brueckner-Hartree-Fock (BHF) approxi- nuclei A and (A % 1; v) have been calculated. Here
mation can differ greatly from those describing v labels the SP ‘“valence” hole or “particle” state
the removal or addition of a nucleon.® It is highly in nucleus A -1 or A+1, respectively. (We put
desirable, for economy in the calculation of the the word “particle” in quotation marks when it is
matrix elements of SP operators and of properties used in the sense opposite to “hole”.) The RBHF
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“addition” energy associated with a valence “par-
ticle” state v, is defined by

E(vP)Eg(A+ Lv,)- 8(4). (I.1)

Similarly, for a valence hole v, the negative of
the “removal” energy is defined as

E(vy) = 8(A) - 8(A-1;0,). (1.2)

The analog of Koopmans’s theorem is that, aside
from center-of-mass (c.m.) corrections,

E@)=e,, (1.3)

where e, is the RBHF SP energy of the valence
state. The “orbital rearrangement energy,” as-
sociated with changes in the SP wave functions
induced by the valence nucleon, is neglected in
Koopmans’s theorem and its analog. It is expected
to be small when A is a doubly-closed-shell nu-
cleus.'®

The main difference between the RBHF and BHF
approximations is that the RBHF SP potential Uggyp
includes along with the BHF contributions [Figs.
1(a) and 1(d)], which are factorizable by general-
ized time-ordering (g.t.0.),'2~15 also the contribu-
tions of Figs. 1(b) and 1(e), which are also g.t.o.
factorizable.!?'16:7 By “factorizable” one means
that in a ground-state diagram the insertion can
be placed on the energy shell relative to the skel-
eton in which it is inserted and, hence, can be
computed independently of the skeleton. In the

hy
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Goldstone diagrams® of the present paper we fol-
low the convention'® in which a jagged line repre-
sents an on-energy-shell antisymmetrized re-
action matrix element £, and a wavy line is used
for off-energy-shell matrix elements. Notice that
Fig. 1 includes contributions only to hole-hole and
hole-particle matrix elements of U. Similar in-
sertions in “particle” lines, which when present
in ground-state (closed) diagrams (e.g., Fig. 2)
are not factorizable by g.t.o., are discussed sepa-
rately in Sec. II.

In infinite nuclear matter the conservation of
momentum in each interaction makes the particle-
hole matrix elements, Figs. 1(d) and 1(e), vanish;
and it makes h=h’and h, =h{ in Figs. 1(a) and 1(b).
Figure 1(b) was discussed first by Thouless'? (see
also Ref. 13) for nuclear matter. He pointed out
its factorizability and estimated its value as about
-14% of the BHF potential, which is rather close
to the results of several modern calculations.
Brueckner, Gammel, and Kubis'® soon provided a
detailed calculation giving for Fig. 1(b) about -8.4%
of the BHF potential. Kohler obtained between
-9 and -17.5%"" (see also Ref. 18) and Brandow*?
and Wong?°® estimated it as —20% of the BHF po-
tential. The first discussions of rearrangement
effects in finite nuclei were given?! in the context
of the local density-dependent Hartree-Fock
(DDHF) approach.?® The first “global” calculations
of Fig. 1(b) for finite nuclei (i.e., calculations

(¢)

()

FIG. 1. Self-energy insertions contained in the RBHF-SP potential U. (a) Ordinary BHF insertion in a hole line,
(b) Third-order saturation potential for a hole line. (c) RBHF insertion in a hole line. Figures 1(c), (d), and (e) are
particle-hole creation diagrams resulting from a BHF insertion (d), a saturation potential insertion (e), and the full

RBHF insertion (f),
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employing Racah algebra and SP wave functions
appropriate for a finite nucleus) were carried out
by Wong,2° followed by Kohler and McCarthy.2?
Wong obtained for it about -25% of the BHF poten-
tial for light nuclei. Whereas most previous work
had emphasized the contribution of the short-range
repulsion in the nuclear interaction, Wong found
that the long-range attraction, mainly the tensor
force, gave a comparable contribution.

Let us consider next the effect on the binding
energy of the nucleus when Fig. 1(b) is included
in the SP potential.”*2**2 The presence of X=-U
in the residual interaction H- (T + U) leads to dia-
grams for the binding energy containing insertions
of X, e.g., that of Fig. 2(a). The part of U cor-
responding to Fig. 1(b), when substituted into Fig.
2(a) gives minus twice the contribution of the g.t.o.
diagram for the binding energy shown in Fig. 2(b).
In this diagram there are four energy denomina-
tors, each involving the SP energies of only two
holes and two “particles.” In contrast to this the
Goldstone expansion (without g.t.0.) for the binding
energy contains the diagrams of Figs. 2(c) and
2(d), in each of which two of the energy denomi-
nators involve the SP energies of four holes and
four “particles.” Summation of Figs. 2(c) and 2(d),
which is equivalent to one half the sum of Fig. 2(c)
over all four possible orderings of the interac-
tions, leads to the factorized energy denominators
of Fig. 2(b).122:1® When the bare interactions in
Figs. 2(c) and 2(d) are replaced by reaction ma-
trices, the generalized-time ordering also places
the starting energies of all four reaction matrices
on the energy shell.” In the summation of Fig.
2(c) over four orderings of the interactions each

L0—7p 00070
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FIG. 2. Brueckner-Goldstone diagrams for the bind-
ing energy: (a) X= —U insertion in a hole line; (b) the
g.t.o. contribution associated with the saturation poten-
tial, Fig. 1(b); (c) and (d) Goldstone diagrams contained
in Fig. 2(b); (e) the ordinary BHF diagram; (f) contri-
bution associated with the BHF potential, Fig. 1(a).

topologically distinct Brueckner-Goldstone dia-
gram is counted twice. Consequently, Fig. 2(b)

of the g.t.o. form of the Brueckner-Goldstone
series, which has Figs. 2(c) and 2(d) as its lowest-
order contributions, contains the factor 3 shown
in the diagram. We may now compare the binding

-energy in two different formulations,?*2* both of

which give ~1 MeV/nucleon more binding'?2: 16
than the BHF approximation by including Fig. 2(b):
(i) If U does not contain Fig. 1(b), then Figs. 2(a)
and 2(f) cancel each other, so the binding energy
contains the BHF term [Fig. 2(e)] plus Fig. 2(b).
(ii) If U contains Fig. 1(b), then Fig. 2(a) includes
minus twice Fig. 2(b), so the binding energy con-
tains the BHF term, with more attractive matrix
elements than before,”* 2% 224 and minus Fig. 2(b).
In comparing (ii) with (i) the explicit difference,
(-2) x Fig. 2(b), which is positive and small

(~2 MeV/nucleon), is canceled’ 2! to first order
in Aey/ey, by the change in the value of the BHF
term when the energies of the normally occupied
states e, are raised by Aey, by the inclusion of
Fig. 1(b) in U. Thus, (i) and (ii) give nearly equal
binding energies. An intermediate formulation
also has been suggested??:

(iii) If U contains 3 of Fig. 1(b), then Fig. 2(a) in-
cludes minus Fig. 2(b), so the binding energy con-
tains only the BHF term, the value of which lies
nearly midway between the BHF terms of (i) and
(ii). This method of including the effect of Fig.
2(b) on the binding energy has been employed by
Kohler and McCarthy.?® The auxiliary SP energies
of this method lie halfway between the BHF and
[BHF + Fig. 1(b)] energies.

We believe that is was an important contribution
of Brandow'® to urge that the “saturation potential”
[Figs. 1(b) and 1(e)] be included in the self-con-
sistent field where it would “renormalize” the BHF
term, rather than be calculated only perturbatively
as a “rearrangement” correction to various quan-
tities. In the perturbative approach only the hole-
hole part [Fig. 1(b)] has been calculated. It con-
tributes directly to separation energies. But as
a part of the field U,,, especially the particle-hole
part [Fig. 1(e)] contributes to the SP wave func-
tions and, hence, to all observables.® We shall
see below that the inclusion of Fig. 1(e) results in
a desirable increase in the radius. It is far sim-
pler to include an extra contribution in the field
than to calculate separately the corresponding
corrections to a whole set of quantities such as
the radius (or, more generally, the charge dis-
tribution), the form factors for stripping and
pickup, electromagnetic moments, etc.®:®

Later, Brandow’’2® obtained a more general
formulation amounting to a thoroughgoing renor-
malization of the entire perturbation series. The
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starting point for this development is Thouless’s
observation!?? that the negative of Fig. 1(b) is
equal to Fig. 1(a) times the second-order contri-
bution to the depletion,* dy, =1- P,, of the nor-
mally occupied state h. Here P, is the “true”
fractional occupation probability in the perturbed
ground-state wave function as opposed to the
“model” occupation probability (the occupancy of
the SP state h in the unperturbed ground state,

the RBHF Slater determinant), which has the
value unity. Brandow’ discovered that occupation
probability insertions are factorizable by g.t.0.12~!*
in general, i.e., all of them can be calculated in-
dependently of the “skeleton” in which they are
inserted. Consequently, in the linked-cluster ex-
pansions each diagram containing no SP insertions
can be generalized so as to include along with the
original diagram a certain class of higher-order
diagrams containing insertions associated with
occupation probabilities. The contribution of the
renormalized diagram is formally that of the orig-
inal diagram multiplied by “line weighting” fac-
tors, which are P, for each normally occupied
state h and 1- P, for each normally unoccupied
state p.”

Brandow’s formulation also implies a specific
definition of the SP potential, namely the sum of
all self-energy insertions which are factorizable
by g.t.0.}?~* His scheme leads to a grouping of
terms in “compact clusters,”” 25 suggested by the
work of Rajaraman and Bethe on the three-body
cluster.?® In the resulting propagator-renormal-
ized series for the binding energy there are terms
which compensate for “over counting” certain
terms of the original series.”*?®* An example was
given above in connection with Fig. 2. The over-
counting corrections involve only the SP potential
and the occupation probabilities and, consequently,
do not require additional computation.

In the RBHF approximation!~ the SP potential
for hole states is that of Fig. 1(c), which includes
Figs. 1(a) and 1(b) and higher-order contributions
to the occupation probabilities of the normally
occupied SP states P,. The occupation probabil-
ities of the normally empty SP states Pp have been
found to be small in doubly-closed-shell nuclei
but to decrease slowly with excitation energy?’
(see Sec. IV). In the RBHF approximation the Pp’s
do not enter into the calculation of either the SP
potential or the P,’s. (They do affect these quan-
tities in higher approximations.®) This decoupling
of the P;’s and P,’s in the RBHF approximation
has the important consequence that in finite nuclei
the P,’s satisfy a finite set of coupled algebraic
equations.?** The solution of these equations en-
ables one to take into account occupation-rear-
rangement corrections self-consistently to all

orders of perturbation theory. The resulting de-
pletions differ* by 20-30% from those calculated
to lowest order. It has been found especially con-
venient in RBHF calculations, where in order to
achieve self-consistency one requires knowledge
of the reaction matrix elements as a function of
the “starting energy” E to calculate the P,’s in
terms of d#(E,)/dE,."'*®* The coupled equations
take the form?®

e[ o]

(1.4)

with ey = e, + ey, the sum of the SP energies.
The matrix elements are antisymmetrized, as
indicated by the subscript A, and the SP states
are in the m scheme, h=(nyl,jym, 1) =(hm, ).
If one sets the P,,’s equal to one and expands the
right-hand side, one obtains

oce
P, =1+ 2: hh’ dt,(E,) hh' . (L5)
dE -
h’ s Es-ehhl

With this approximation for P, in Fig. 1(c), one
obtains the contributions of Figs. 1(a) and 1(b).

It is, however, relatively easy to solve Eq. (I.4)
exactly, given the reaction matrix elements.
This has been done in all the RBHF calculations
cited in the paper. Typically, the calculated P,’s
have values from 0.75 to 0.90 in the closed-shell
nuclei.

In the lowest approximation® to the renormalized
Brueckner-Brandow series the particle-particle
matrix elements of the SP potential {p’|U|p) are
zero. In defining the RBHF approximation, !™*:8
however, an insertion in “particle” lines, which
is a generalization of the HF particle-particle
interaction, has been included. In the Brueckner-
Goldstone series, with or without g.t.o., the BHF
insertion in “particle” lines is off the energy shell.
However, as has been discussed by Becker and
Jones,?® by rearranging the Goldstone linked-
cluster expansion one can replace off-shell in-
sertions by on-shell insertions plus correction
terms which are represented by folded diagrams.
Similarly, off-shell insertions can be replaced
by average off-shell insertions plus correction
terms. As in unrenormalized BHF calculations
(e.g., Refs. 15 and 30), similarly in RBHF
calculations in order to obtain sufficient binding
it has proved essential to include an attractive
potential for low-lying excited SP states. The
potential employed in the present work is fully
specified in Sec. II.

The initial renormalized calculations!'?'* were
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done for *He, ?C, 'O, and “°Ca with pure har-
monic-oscillator wave functions. These may be
referred to's'*! as single-oscillator-configuration
(SOC) calculations, or3® as “Brueckner”, as op-
posed to BHF, calculations. Relative to the un-
renormalized Brueckner approximation, the re-
normalized Brueckner approximation gives* a
significant raising of the SP energies in *He, °O,
and ‘°Ca, as expected from the calculation of Fig.
1(b) as a perturbation.?°*2®* The renormalized
Brueckner approximation also gives some ad-
ditional binding energy (~3 MeV /nucleon in %0)?*
because, as explained above, the renormalized
formulation contains a contribution which corre-
sponds to including in the unrenormalized g.t.o.
series a generalization of Fig. 2(b). This contri-
bution in RBHF is expressible in terms of de-
pletions of the normally occupied states as

23 dudy (B[ tylew) b7 . (1.6)
b’

Because the average depletion d increases with
the nuclear density'®’ 1®:2° (i.e., with decreasing
nuclear radius), the contribution of Eq. (I.6) [or
Fig. 2(b)], which is negative, tends to decrease
the self-consistent radius relative to that given
by ordinary BHF calculations which only include
Fig. 2(e) and not Fig. 2(b). However, once Fig.
2(b) is included, we have seen that it makes es-
sentially no difference in the binding energy wheth-
er the hole-hole matrix elements of the SP poten-
tial are renormalized or not. [Wong®® had in-
cluded the effect of Ug,, on the BHF term by raising
the starting energies, but omitted consideration of
its contribution to Fig. 2(a), and so predicted a
decrease of radius on shifting the SP energies by
Fig. 1(b).]

Renormalization of the self-consistent field does
give rise to a significant change in the predicted
radius through the particle-hole matrix elements
of the saturation potential Fig. 1(e).? (This effect
does not occur in infinite nuclear matter where
(p|U|h) =0.) The existence of the shift of radius
by renormalization can be inferred from SOC
calculations of the second-order contribution to
the binding energy'®'? 6E with and without renor-
malization. Curves of 6E for 'O as a function of
the inverse oscillator range parameter o are
shown in the upper part of Fig. 3, reproduced from
Ref. 2. The oscillator shell-model radius is pro-
portional to a@~* and 6F is a measure of the devia-
tion of the SOC wave functions from BHF (or
RBHF) self-consistency. In the unrenormalized
calculation (solid curve in Fig. 3) |6E | attains its
minimum at « =0.47 fm~!, corresponding to a
nuclear radius (uncorrected for c.m. motion or
proton size) of 2.26 fm. The renormalized calcu-

lation (dashed curve) gives 2.41 fm, 63% larger.
The latter lies very near the minimum of the
first-order renormalized Brueckner energy, shown
in the dashed curve of the lower part of Fig. 3,

as expected from a stationary property of the
RBHF approximation.”*® The increase of the self-
consistent radius by the renormalization of the
particle-hole matrix elements of U has been con-
firmed in true RBHF calculations® (see Secs. III
and IV) in which the orbitals are allowed to
deviate from pure oscillator ones. [See also Ref.
36 cited below in which Table III shows an in-
crease of the radius of the neutron distribution

in %°Ca by 5% as a result of renormalization and
Fig. 4 (Ref. 36) shows the proton and mass den-
sities vs 7 for the unrenormalized and renormal-
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FIG. 3. SOC calculation of the second-order energy
and the first-order energy per nucleon in %0 as calcu-
lated in Ref. 2 from the Hamada-Johnston interaction
(Ref, 56). The solid and dashed curves are for unre-
normalized and renormalized calculations, respectively.
The dotted curve is the unrenormalized BHF energy
plus Fig. 2(b). The dashed-dotted curve is a renormal-
ized calculation with Urpyr = (Py)U pur, i.e., in which
the shift of starting energies by renormalization is
ignored.
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ized calculations—the density at the origin is
reduced by about § by the renormalization. ]

The calculation of Brueckner reaction matrices
in a harmonic-oscillator basis has been shown to
have several advantages.'® Moreover, a growing
body of calculations has demonstrated the utility
of carrying out nuclear “matrix-HF” calculations
by expanding the SP wave functions in a harmonic-
oscillator basis, both for spherical®’3® and de-
formed®* states. Provision for energy dependence
of the effective interaction in the matrix-HF meth-
od made possible (unrenormalized) matrix- BHF
calculations for spherical nuclei.?®'3® The im-
provement of the radial SP wave functions over
those in the SOC calculations leads to significant
changes in the SP density distribution and to more
accurate SP energies, particularly for SP states
near the Fermi level.

The first renormalized calculations going beyond
the SOC renormalized Brueckner approximation®2*
were those of Ref. 3. The present paper includes
a more detailed presentation of those RBHF cal-
culations for “He and '®0 together with more re-
cent work. An extensive RBHF calculation for the
heavier spherical nuclei has recently been com-
pleted.®® The initial BHF and RBHF results for
deformed states also have been obtained.?”

As discussed above, a chief merit of the RBHF
approximation is that it provides a way out of the
impasse, which occurs for the unrenormalized
BHF theory, of requiring large rearrangement
energies. Another probably closely related way
out of this difficulty is the density-dependent
Hartree-Fock (DDHF) approach?? in which the
effective interaction is regarded as density-de-
pendent. The DDHF SP potential then contains a
Brueckner-Goldman “rearrangement potential’’ ??
in addition to the usual HF term. Impressive
DDHF calculations have been performed recently
for the spherical nuclei by Negele®® with an ef-
fective interaction obtained by modifying the nu-
clear-matter reaction matrix elements calculated
from the Reid soft-core interaction® by Siemens,*°
and applying them to finite nuclei in the local den-
sity approximation.*! Deformed DDHF calcula-
tions for 12 < A <40 have been made with a linear-
ized version of Negele’s effective interaction by
Zofka and Ripka.*? Although the underlying justi-
fication for the DDHF ansatz?? is still partially
lacking, the effect of the rearrangement potential
in DDHF is similar to that of the saturation poten-
tial in RBHF. The elucidation of the exact con-
nection between the “global” RBHF and the “local”
DDHF approaches should be quite instructive.

For the light nuclei ¢c.m. corrections to the cal-
culated ground-state properties are quite im-
portant. Recently, we have given a detailed dis-
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cussion of possible treatments of ¢.m. effects in
self-consistent field theories.3!

The main purpose of the present paper is to com-
pare the results of RBHF calculations for the
lightest spherical closed-shell nuclei with experi-
ment so as to provide a stringent test of the RBHF
approximation. To establish accurately the re-
sults predicted by the RBHF theory, we have cal-
culated ¢c.m. corrections and have included second-
and third-order rearrangement energy corrections
obtained earlier.®'?” In Sec. II the RBHF equa-
tions are reviewed. A detailed discussion is given
of the prescription adopted for the excited state
spectrum. Two ways of making c.m. corrections,
referred to®! as methods I and IIC, are presented.
Sections III and IV contain the results for “He and
%0, respectively. Of particular interest are new
results on the convergence with dimensionality of
the electron scattering form factor of “He, and the
comparison of separation energies, including re-
arrangement energies, with experiment.

II. RBHF EQUATIONS WITH CENTER-OF-MASS
CORRECTIONS

In any independent-particle model for finite
nuclei the c.m. is not at rest. This is the case
for all self-consistent field theories: HF, DDHF,
BHF, RBHF, etc. For light nuclei ¢.m. cor-
rections are of sufficient magnitude to be im-
portant in comparing theoretical and experimental
quantities such as ground-state binding energies,
separation energies, and radii. The basic equa-
tions of the RBHF approximation, including c.m.
effects, were described in Ref. 31. Among sev-
eral possibilities two “methods,” denoted by I
and IIC, were favored.

Method 1

In method I the self-consistent field and deter-
minantal wave function are calculated without in-
cluding any correction for c.m. motion. However,
the binding energy, separation energies, and radii
are corrected for ¢c.m. motion.

The RBHF SP potential* has matrix elements in-
volving hole states given in the RBHF basis by
(for the symmetrization see Refs. 15 and 43):

(h'l U’h> =Z ¢h'h” I‘é[&(eh'h")* tA(ehh")] '1_11;1”>Ph" ,
hll

(II.1a)

(plUIMY =(h|U|p) =" (ph’|t4(eny) |Bh") Py,
.
(I1.1b)
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where normally occupied states are labeled h, h’,
etc., whereas states labeled p or p’ are normally
empty. We recall that underlined labels of SP
states refer to the m scheme; e.g., h=(hmy,7y)
with h = (nylpj4)-

The “particle-particle” matrix elements of U,
which are critical for the determination of the
spectrum and wave functions of virtual “particle”
states, require some discussion. In the Brueck-
ner-Brandow series”’ 24:25:% only those self-
energy insertions which are exactly factorizable
by g.t.o. are included in U. The BHF (“bubble”)
insertion in “particle” lines does not factorize by
g.t.o., so Brandow’s (p’|U|p) does not contain a
contribution of first order in the reaction matrix.
On the other hand, in the earlier propagator-un-
renormalized work on nuclear matter*s * and
finite nuclei'® an average-off-shell BHF contribu-
tion was included, the average being taken with
respect to the lowest-order (third-order) diagram
(for the ground-state energy) in which it appears,
Fig. 4. In connection with the more recent and
satisfactory cluster ordering of the Brueckner-
Goldstone series (the “hole-line” expansion®®),
Bethe has suggested defining the potential energy
of “particle” states from the propagator-unre-
normalized full three-body cluster, rather than
from its third-order terms, thus generalizing the
concept of an average-off-shell potential. An
alternative, propagator-renormalized expan-
sion,*® %7 involving an extension of g.t.o.,%° con-
tains an on-shell RBHF potential for “particles”
together with an RBHF contribution to the line-
weighting factors for “particles.” This expansion
also can be cluster ordered, and there is no con-
flict between including an RBHF potential for
“particles” and evaluating the full renormalized
three-body cluster.*” The various approaches to
the “particle”-state potential have been reviewed
in Ref. 6 and, more extensively, in Ref. 47.

In the calculations of the present paper the ma-
trix elements (p’|U|p) involving low-lying virtual
“particle” states, i.e., those involved in the ma-
trix-HF diagonalization procedure, are defined
by an RBHF self-energy.'™'% In the RBHF basis

®'|Ulpy=3" (p'hl3[talEy +en) + 1 4(€; +ey)]Iph) Py,
b

(II.1c)

where 2, (in the notation of Refs. 30, 35, and 36)
is an energy which, for virtual states, differs
from the SP energy e, by an average excitation
energy of the medium.!s

Equations (II.1) were given in the RBHF basis.
The form which they assume in the oscillator
basis has been discussed in Refs. 30, 35, and 37.

The dependence of the reaction matrices on the
starting energy, ey =e,+ey etc., is the greatest
source of difficulty in carrying out BHF as com-
pared with HF calculations. It complicates the
transformation of U into the oscillator basis and
also necessitates storing many more two-body
matrix elements. The SP wave functions of the
normally occupied (hole) states satisfy

[T+Uley) - en]¢y=0, (11.2)

where T is the SP kinetic-energy operator. In the
matrix-BHF work these equations are solved as
matrix equations in the oscillator basis. For the
virtual “particle” states

[T+U(E,)-e,]¢p,=0. (I1.3)
In our work

e,=e,-de,, (I1.4)

where de,, is the average excitation energy of the
remainder of the nucleus when state p is virtually
occupied.® The matrix elements in Eq. (II.1c) are
said to be off the energy shell.

For the calculation of “addition” energies we also
calculate the SP energies and wave functions of
valence “particles” in nucleus (A +1)2+#'5+1 which
satisfy

[T+U(E,)-E,,=0. (1L.5)

The matrix elements of U occurring here are on
the energy shell and can be regarded as satisfying
Eq. (II.1c) with e,=E,.

We hasten to add that in the present calculations,
as in the other matrix-BHF and RBHF calcula-
tions performed up till now,30: 3:35+28,36,37,48,49
the virtual excited-state spectrum is not calcu-
lated completely self-consistently. The energies
e, of the virtual RBHF basis states are not fed
back into the reaction operator. Such a feedback
would require recalculation of the reaction ma-
trix elements in the oscillator basis. Instead, a
reference excited-state spectrum of fixed form,
but with an adjustable parameter, a well-depth
C, is used.!® The reference SP potential for

FIG. 4. Diagram for the binding energy containing an
off-energy-shell BHF insertion in a “particle” line.
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excited oscillator states is

UR(r) ==C + 3muw?r 2, (I1.6a)
resulting in the reference spectrum
ems=eny = C. (IL. 6b)

This has the advantage'®: ®° that the energy de-
nominators in the reaction matrices take the form

E;—(e,+ey)=E{~(eg* +ep’ ), (I1.7a)
with the shifted starting energy
E!=E +2C. (I1.7Db)

The well depth C was determined so as to make the
energies e, ,;; of the SP states of the lowest two
normally empty major shells self-consistent on the
average: (e)=(e®). The self-consistency con-
dition was that of Eqs. (II.1c), (I1.3), and (II.4).
For the average excitation energy [6e, in Eq.
(I1.4)] an approximation recommended by Morris
and Becker®! and employed in Refs. 1-4, 30, 35,
and 10 was used, namely

Gep=2(ep—(eh)), (I1.8a)

where (e} is the weighted average of the energies
of the normally occupied states. In this approxi-
mation

g,=2ep)~-e,. (I1.8b)
Calculations by Morris®" 5 have shown that the
use of Eq. (I1.8a) yields results which differ only
slightly from the exact evaluation of the Brueckner-
Goldstone diagram of Fig. 4 for low-lying particle
states p. The intermediate reaction matrix ele-
ment in Fig. 4 is off the energy shell by an amount
which varies with the other “particle” and the two
holes present in the virtual excitation. In the re-
normalized theory the BHF insertion is multiplied
by an occupation probability P, for the hole. The
choice of excited-state spectrum employed here
and in earlier work!%'17*1° ig somewhat analogous
to that of Brueckner et al.*® (see also Ref. 14) in
the early nuclear-matter work, but differs in that
the average-off-shell self-consistency is imposed
only for low-lying states. As mentioned before,
our reference spectrum differs strongly from the
prescription, {p’|U|p)= 0, of the “compact-clus-
ter” expansion’* 2% e.g., our (p|U|p) is negative
for low-lying “particle” states and is increasingly
more positive for higher-lying ones. The upper
part of the spectrum is not self-consistent. How-
ever, the results of the calculations have been
thought sensitive primarily to the lower part of
the spectrum.!® McCarthy®* has introduced a

comes modified by ¢.m. corrections to

A
E'vp)~ el =4+ 1) [, T]vp) ~m™ 3 e 110 I = (T (4)| S, 197 4]
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downward shift 2B, of only the low-lying part of
the spectrum for pairs of virtual “particles.”
(The “particle” spectrum affects the reaction
matrix only in pair states. If the entire “particle”
spectrum is shifted downward by C, then the
entire “particle”-pair spectrum is shifted by 2C.)
In Table IV of Ref. 36 one can see that a shift of
N-8=18 pair shells gave in *°Ca an increase in
binding of about half as much as the same shift of
all “particle”-pair shells. An effective mass m *
for the virtual “particle” states of the oscillator
basis has been introduced by Becker, Morris,

and Patterson.’® By varying both C and m * one
can vary the high-lying part of the spectrum while
preserving Eq. (II.1c) for the low-lying part. Such
a refinement has not yet been incorporated into
the matrix-RBHF calculations.

It was noticed in our calculations?® that the ¢,’s
and e;,’s (of normally occupied states) were inde-
pendent of whether the normally empty states were
treated as virtual or valence ones. This fact is
explained® as a consequence of the fixed reference
spectrum. If the propagator in the reaction oper-
ator were defined in the RBHF basis, rather than
by the fixed reference spectrum, the RBHF occu-
pied-state wave functions and energies would vary
with the prescription for 2,. A related effect, the
dependence of the e;’s on the well depth C has
been studied.®®'%* Also, the effect of shifting C
on the radii, including the contributions of some
diagrams of higher than first order, has been
investigated.*®

The binding energy with c.m. corrections is
given in the RBHF basis by several alternative
forms, e.g.,

1
87=3 (kIT|ky+5 27 (bh’|#4(eyy) hh )Py Py
h b

+ 2. (1=P)n|Uh) = (¥ g [¥T) (I1.9a)
h

=Y (1= 4P| U|h) +(2 1| g4 [T T (I1.9b)
h

DO et

> (1-dydy)bh’|t,(en) |Bh7) + (¥ 1| g, [¥Ty,
hh’

(I1.9¢)
as discussed in Ref. 31. The internal kinetic-ener-
gy operator g — g, is denoted by §,,. The occu-

pation probabilities are calculated from Eq. (I.4).
The analog of Koopmans’s theorem [Eq. (I.3)] be-

(I1.10a)
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and

El(vy) = eulh' @“a-n- [(UhIT]UrQ-m_! i [{vy IB|h%) |2-(‘1’I(A)|3c.m. l‘I’I(A»]

=1

which are Egs. (6.2) and (6.4) of Ref. 31.

Method IIC

In method II the RBHF equations are derived
from the internal Hamiltonian, 3¢, =¥ ~J, , SO
that the SP wave functions and energies contain
c.m. “corrections.” In the version of method II
referred to as IIC *! the nuclear interaction is
treated in renormalized fashion, but the two-body
part of ..., which involves p(1)-P(2), is treated
as in unrenormalized BHF. The reason for not
renormalizing the contribution of H(1):P(2) is that
in RBHF the lack of a sum over the normally
empty states with weighting factors P,, while
weighting the sums over normally occupied ones
by P, could lead to serious errors. For the
terms containing nucleon-nucleon interactions, on
the other hand, the off-energy-shell propagation in
excited states greatly weakens the terms con-
taining states p, and the effect on the energy of
terms involving P, appears to be small in doubly-
closed major shell nuclei.?” However, the question
of the magnitude of the leading corrections to the
RBHF approximation® warrants considerable ad-
ditional study.

In method IIC the effective SP potential is
(=h or p)

R'NU|R) =R |U+ U, |R),

where U is as defined by Eqgs. (II.1) for method I,
and

(I1.11a)

(k*|Uem. [k =(Am)™ Y~ k' |B|h7) - 1" [Blk) .
1_1_"
(I1.11b)

For k=k' Eqs. (II.11) are Eqgs. (5.23) and (5.24) of
Ref. 31. The SP wave functions and energies satisfy

[(1=A )T +U+ Uy - e 1ou€ =0. (I1.12)
The binding energy is given in the RBHF basis by
§"=3 (1-AM@|T|h)

h

+2 3 [0 | hew)lBb") By By + (4m) ™ [ 510 )
b’

+3 (1= P)Xh|U|h) (I1.13a)
h

= 3" (1= $R)1 | U[h) + ("C| 8, [¥7€) . (IL.13b)
h

1229

(I1.10b)

L

Notice that Eq. (I1.13b) is formally the same as
Eq. (I1.9b), but that the SP wave functions, the
starting energies in the reaction matrices ap-
pearing in U [Eqs. (II.1)], and the occupation
probabilities are different from those of method

“He, REID SOFT CORE

AEg (MeV)
—

§

/
/
I

t/

BE, /A (MeV)
4

& -
-

\
10N
_8 ‘
Qa — =
EXPT ’Zs" 1.00
== 5, <1,CALCULATED AS A
FUNCTION OF a
s | !
0.4 05 0.6 0.7 0.8

FIG. 5. Second-order contribution to the binding ener-
gy AEg and first-order binding energy per nucleon
BE,/A for 4He calculated in Ref. 2 in the unrenormalized
(solid line) and renormalized (dashed line) SOC,
Brueckner approximation. The Reid soft-core inter-
action (Ref. 39) was used. The unrenormalized BE;/A
does not include Fig. 2(b).
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I, so that &' and " will not be exactly the same.

The SP energies in method IIC differ from those
of method I because e} contains essentially a
fraction 1/A of the kinetic energy of the center of
mass, whereas this has been removed from e}’.
As mentioned in Ref. 31, if we can ignore the

tween methods I and IIC, the SP energies are re-
lated by

A 2
el ef -4 (k1718) -mt 3 [eI5ID) ).
h=1

starting energy and wave function differences be- (I1.14)
Then Eq. (II.10) can be rewritten as in Eq. (6.4) of Ref. 31:
E'(0)=e,+(A£ 1)7 (¥ (A) [em ¥ T () 2 (e] - €€)]. (I1.15)
The separation energies in method IIC are given by
A
EI(0) =l + (42 1) (41| g, [97€) £47 (0] T 0yt 3 b)), (11.16)
h=1
or, when (II.14) holds,
A
E'C ()= e, +(A11)"(<\P e XY = @I T[0) +m™ Y Ko [B]|h) lz) (Ir.17)
h=1
~E'0)+ (A2 1) (T |Gem [T 1) =¥ T[S, [ET)). (11.18)

IIl. CALCULATIONS FOR “He WITH THE REID
SOFT-CORE AND HAMADA-JOHNSTON
(HARD-CORE) INTERACTIONS

The lightest closed-shell nucleus, *He, provides
a stringent test of any self-consistent field ap-
proximation because there are so few particles
that the virtual excitation of even a single nucleon
considerably alters the field felt by the others.
Another way of expressing this is to remark that
terms of order A™!, where A is the nucleon num-
ber, are important for “‘He. We have included
c.m. corrections, which are of order A~', but
have not included several other refinements of
this order.

Figure 5 (from Ref. 2) shows the BHF and RBHF
binding energy per nucleon of “He calculated with
SOC wave functions as a function of the inverse
range parameter of the oscillator potential

a=(@> 1/, (1.1
27

The Reid soft-core interaction®® was used. The
renormalized calculation exhibits § to 3 MeV
greater binding per nucleon than the BHF calcu-
lation, which does not include Fig. 2(b). The
value of @ which would yield the experimental
value of the rms radius of *He (in the independent-
particle-model approximation) is denoted by @ ecxy -
The minima of both the BHF and RBHF curves

are seen to occur at a =@y, . The SOC wave func-
tions do not exactly satisfy the RBHF self-con-
sistency condition [Eq. (II.1b) for RBHF and Eq.
(I.1b) without the factor P, for BHF]. This con-
dition plays the role of the Brillouin condition of
HF theory. As mentioned in Sec. I, a measure of
the failure to satisfy the self-consistency con-
dition is the second-order energy'® denoted here
by AEy. It is seen in the upper part of Fig. 5 that
AEp is small in the neighborhood of @ =0.5 fm ™
both for BHF and RBHF, indicating that SOC wave
functions are nearly self-consistent for @ ~ 0.5
fm~!. A slightly larger radius is indicated for the
renormalized calculation.

In Table I we present results of the matrix-
RBHF calculations of ‘He with methods I and IIC.
For each method both the Reid soft-core® and
Hamada-Johnston®® (hard-core) interaction (HJ)
have been used. In general we expand the RBHF
wave function for a state ¢,,,;, where v is a radial
quantum number, in terms of oscillator wave
functions ¢,;;. With the expansion coefficients
denoted by CZ(1j), we have

Ys= D CLU) Py (111.2)

In “He only the 0s,,, RBHF state is occupied. The
oscillator basis for the matrix-HF diagonalization
contained s states with n»=0 through 3 (a “dimen-
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sionality” D of 4). Table I lists the Os,,, neutron
and proton SP and removal energies; the coef-
ficients C2(0,,,) of the neutron and proton wave
functions; the “true” occupation probability P,;
the binding energy per nucleon; and the rms radii
(corrected for the spread of the position of the
center of mass®') of the mass distribution (as-
suming point nucleons) 7, of the distribution of
point neutrons 7,, and of charge (assuming a pro-
ton mean square radius of 0.64 fm?) r,.

By comparing the results of methods I and IIC,
we see that the occupation probabilities change
only slightly, but that for IIC the Os,,, neutron
and proton energies are lowered by 4-5 MeV, and
the rms charge radius decreases by about 7% to a
value in much better agreement with experiment.
These changes occur because in method IIC we
have included c.m. corrections directly in the
self-consistent part of the calculation. In both
methods the binding energy has been corrected
for c.m. motion; the small difference in the
binding energies for the two methods is due to

the differences in the self-consistency conditions.
The Os,,, wave functions obtained in method IIC
appear to be closer to the pure 0s,,, oscillator
wave functions (for a=0.65 fm-!) than those ob-
tained in method I; this corresponds to the smal-
ler rms radius, which results from the reduction
of the kinetic-energy part of the SP Hamiltonian in
method IIC.

The calculations with the Reid interaction give
greater binding and lower SP energies than those
with the HJ interaction. Some of this increased
binding is produced by the slightly larger “self-
consistent” value of the oscillator well depth C
for the Reid interaction; but the Reid matrix
elements entering into the potential energy of the
0Os,,, state are also a little more attractive than
those of the Hamada-Johnston interaction at the
same value of E;. The generally greater attrac-
tion of the Reid interaction, associated with the
soft core, has shown up in previous calculations.*

Table II gives results concerning the normally
empty 0p,,, and 0p,,, shells. Just as for the nor-

TABLE I. RBHF calculations of the ground-state properties of ‘He for methods I and IIC.
The dimensionality is 4; o =0.65 fm™!; C=63.0 MeV for the Reid (soft-core) interaction, and
C=60.3 for the Hamada-Johnston (HJ) interaction. Here and in all other tables of this paper
energies are in MeV and radii in femtometers. The binding energy per nucleon (8/4) and
radii of the mass, neutron, and charge distributions (7,,7,,7.) contain ¢c.m,. corrections,
RBHF-SP energies are denoted by e, separation energies by E, and “true’” occupation prob-

abilities by P.

Method I nc
Interaction Reid HJ Expt. Reid HJ
-8/A 7.26 6.76 7.05 7.08 6.48
Vm 1.54 1.53 1.41 1.41
Vn 1.54 1.53 1.41 1.41
7, 1.73 1.73 1.63+0.042 1.62 1.63
Neutrons
Posip 0.88 0.87 0.87 0.85
—€0s 41y 18.4 17.1 23.2 21.5
~Eg ~19,8° 20.6°¢ ~18,9°
Ci(s1p) 0.9438 0.9455 0.9722 0.9707
Cl(syp) -0.3059  —0.3039 —0.2235  -0.2307
CY(syy9) 0.1146 0.1089 0.0615 0.0606
Cl(s1p) -0.0495  -0.0423 —0.0332  -0.0292
Protons
Pos, 0.88 0.87 0.87 0.85
—C0s ;5 17.7 16.5 22.4 20.8
19.8¢
~Eqs ~19.05° 204 +0.3¢ ~18.1°
CY(s 1) 0.9434 0.9447 0.9715 0.9700
C(s 1) -0.3080  —0.3059 —0.2260  -0.2331
Cl(sy) 0.1159 0.1102 0.0627 0.0618
Cisyp) -0.0501  —0.0429 ~0.0337  —0.0297

2H. Frank et al., Phys. Lett. 19, 391, 719(E) (1965).

b Differs from the SP energy by a c.m. correction, Egs. (II.15) and (I1.18).

¢ Eigenseparation energy, BE (He) — BE (He) or BE(H) — BE (He).

dCentroid in (p,2p) spectrum, H. Tyren et al., Nucl. Phys. 79, 321 (1966).
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mally occupied Os,,, shell, the energies of the
normally empty states are lower (by ~2 MeV) for
method IIC than for method I. They are also
lower for valence “particles” than for the corre-
sponding virtual states by ~2.5 MeV. The valence
0p5,, SP energies in method IIC are, nevertheless,
higher than the resonance energies obtained from
nucleon scattering by about 4 MeV. 1 to 2 MeV of
this difference is due, undoubtedly, to the trun-
cation of the oscillator basis to three radial func-
tions. This can be inferred from the variation of
the SP energies with the number D of radial oscil-
lator functions admixed. For example, for the
neutron valence 0p,,, state in method IIC, €(MeV)
=11.8 (D=1), 6.5 (D=2), and 9.3 (D =3). More-
over, close agreement between the RBHF valence
energies and the resonance energies is not to be
expected because the valence orbitals are not
coupled to the “continuum.”

The reason that a virtual state lies higher than
the corresponding valence state is that the starting
energy is less, which implies that the virtual
excitations (in the ladders of interactions which
are summed by the reaction matrix) occur with
greater excitation energy. The matrix elements

», AND PATTERSON

of ¢ are therefore smaller in magnitude. Since

the matrix elements are attractive they are less
negative for off-shell than for on-shell interac-

tions.

The wave functions of the 0p states tend to be
closer to pure oscillator wave functions the lower
their energies. Thus, the wave functions of meth-
od IIC are “purer” than those of method I, and
those for valence states are less admixed than
those of the corresponding virtual states. Recall
from Table I that the Os states had amplitudes of
~95% in the Os oscillator state. Inaccuracies from
truncation of the basis become more severe for
higher-lying states and for properties which em-
phasize the surface as opposed to the nuclear in-
terior.

The “He point proton or “body” densities, pg(7),
obtained from the RBHF determinants in methods
I and IIC, with 7 the distance from the center of
the SP potential U (not from the ¢.m.), are dis-
played in Fig. 6 for the case of the Reid inter-
action. The volume integral of py(7) is the charge
Z=2. A striking effect of correcting the self-
consistent field for ¢.m. motion is again clearly
demonstrated: The curve for method IIC has a

TABLE II. RBHF calculations of the normally empty virtual 0p states in ‘He and the “va-
lence” 0p states in He and °Li performed with the Reid soft-core interaction, with C =63.0

MeV and @ =0.65 fm™1,

The dimensionality used was 4 for the s states and 3 for the p states.

The results for ¢c.m.-correction methods I and IIC are compared. For virtual “particles” e
=2(ep)-€p [Eq. (ILb)] and for valence “particles” e_p= e,. Energies are in MeV. Esand I'
are the resonance energy and width measured in nucleon scattering from ‘He.

Valence
Virtual Expt. 2
Method I IIC I IIC E s r
Neutrons

%05 14.0 11.9 11.5 9.3 ~3.6+0.4 421

€053/, 10.3 7.5 8.1 5.0 ~1.0 0.6
CY(P12) 0.7904 0.7787 0.8378 0.8422
CY(p ) —0.5620 —0.5783 -0.5039 -0.5011
CY (D) 0.2437 0.2433 0.2101 0.1989
C(p3/3) 0.8353 0.8568 0.8722 0.9022
Ci(p3/2) -0.5071 -0.4802 —0.4521 -0.4023
CY(p3s) 0.2125 0.1877 0.1867 0.1555

Protons

€, 15.0 12.9 12.4 10.2 ~9.5+2.5 421

€054, 11.4 8.6 9.1 6.0 ~2.0 1.5
CY(p 1) 0.7878 0.7750 0.8360 0.8397
Cl(p ) —0.5647 -0.5819 -0.5061 —0.5043
Cl(p ) 0.2460 0.2466 0.2118 0.2013
CY(pss2) 0.8325 0.8530 0.8704 0.8998
CS(p3/2) —0.5106 -0.4857 —0.4549 -0.4067
C(py/2) 0.2150 0.1912 0.1885 0.1580

2 T. Lauritsen and F. Ajzenberg-Selove, Nucl. Phys. 78, 1 (1966).
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much higher central maximum and then drops off
more quickly for large values of » than does the
curve for method I. The density shown in Fig. 6
is not to be directly compared with an “experi-
mental” density inferred from elastic electron
scattering.®” A meaningful comparison requires
(i) correcting the density of the independent par-
ticle model for the distribution of charge within
the proton,®® (ii) referring the theoretical density
to the c.m. and (iii) including a modification of the
theoretical single-proton density resulting from
correlations between nucleons. Moreover, an
empirical charge distribution cannot be uniquely
determined from the measured absolute square

of the form factor for elastic electron scattering
IFChg (g?) Iz. Even in the Born approximation, which
is quite accurate for a nucleus with such a small
charge as *He, ® direct Fourier transformation
from the measured |F,,(q?)| to the charge density
relative to the c.m., Dy(r’) with ¥/=F ~ R, is pre-
vented by the limited range of momentum transfer
for which the form factor is known, by the experi-
mental errors for data in this range, and by the
ambiguity in the sign of Fu(g?) for all but small
values of g. Consequently, an “empirical” charge
density is customarily obtained by assuming one
or several analytical forms®® for Dyy(7’) and de-
termining the parameters as those for which the
calculated |F,(¢g?)| is in best over-all agreement
with the measured |F.,(¢2%)|. Inthe Born approxi-
mation

F ?ﬁé“(q’)=% f sin(gr \Dy, (r Yr'dr’ . (II1.3)
4]

A prejudice concerning the nature of Dy,(r’) is
contained in the choice of analytical forms con-
sidered. This fact has been emphasized by Fried-

0.16

AN
008 '\
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R (fm)

DENSITY

FIG. 6. Proton densities from RBHF calculations of
“He using the Reid soft-core interaction (Ref. 39). The
dimensionality is 4, @ =0.65 fm~!, and C=63.0 MeV.

The solid curve is for c.m. method IIC, the dashed curve
for method I.

rich and Lenz,*! who have shown that the experi-
mental data leave room for considerable uncer-
tainty in the central density and in the presence or
absence of oscillatory structure in Dy, (r’).

Over the range of momentum transfer for which
electron-nucleus scattering has been carried out,
the electric (or charge) form factor® of the pro-
ton Gg,(¢?) has been measured accurately and
fitted rather closely by the “double pole” or “di-
pole” form factor®®

Gza?) ~ Gplg?)=(1+0.0556 ¢2) 2, (TI1.4)

which corresponds to an exponential charge dis-
tribution in ». Here ¢ is in inverse Fermis. In
reducing electron scattering from a relativistic
to a non-relativistic formalism,* there occurs
a factor in F,(q?), referred to as the Darwin-
Foldy factor,

Fpe(g?)=1-0.0042¢2, (I11.5)

which is almost negligible for the existing experi-
ments. Because Gg, and Fpp are reliably known,
it is convenient to compare experiment and theory
through the values of a nonrelativistic-body form
factor defined by

Fylq®)= F,(¢%)/Gg)(q?), Ggp=GpFpy. (IIL.6)

In general F is complex, but for “He the imagi-
nary part of Fy is expected to be significant only
near the diffraction dip, ¢%~ 10 fm™2, where the
Born approximation to Fg has a zero, and for
values of g2 larger than those measured so far
(g2=220 fm=?),

The structure of the proton is very important in
analyzing the data. While it can be removed sim-
ply from the form factor, it cannot be unfolded
easily from the charge density. Because of the
smearing property of the convolution a great
variety of body densities can lead to nearly the
same charge distributions and, hence, nearly the
same charge or body form factors over the mea-
sured range of q. Consequently, success in fitting
the data by means of a certain D g(r) does not im-
ply that the distribution of proton centers is ac-
tually that of Dy. Fitting F, is a necessary con-
dition for the validity of Dg, but is by no means
sufficient.

Rather extreme examples are provided by point-
proton distributions with a hole in the center,
such as the “double Gaussian”®®

DYS(r") = N'e=*r"*(1 = ="/ 7%) (1.7

This density together with the corresponding
charge density are shown in Fig. 12 of Ref. 65 for
a?=0.644 fm™2 and v2=0.190. The point-proton
distribution peaks at about 0.7 fm and decreases
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rapidly for smaller ». The charge density on

the other hand, looks very much like a normal
distribution (single Gaussian) with a peak at the
origin. The difference between Dy and D, in the
example cited is an oscillatory function. But we
know [see Eq. (IIL.6)] that Fe,(q?) = Fp(q?)Gg,(q?)
in which G, (¢?) [Eqs. (II1.4)-(II1.6)] is smooth and
monotonic. Thus, rather complicated differences
between Dy and D, are transformed into simply
and slowly varying differences between Fg(g?) and
Foy (g?).

Successful fitting of F;,, by models with a hole
in the center, such as the double Gaussian already
cited,® or the densities obtained from a square-
well SP potential with a hard core,®® or a Morse
potential®” does not imply the existence of such a
hole in the actual point-proton distribution. The
repulsive core in the nucleon-nucleon interaction
has led to speculation that such a hole might exist.
For example, on p. 1186 of Ref. 65 the case of
“four strongly attractive billiard balls” is cited.
Classically, these “have a tetrahedron as their
lowest-energy state and this has zero density in
the middle.” But one expects that quantum me-
chanically there is a great deal of zero-point
motion. The self-consistent field approach leads
one to believe that the zero-point motion almost
entirely wipes out the classical tetrahedral struc-
ture. Even if the body density were to have a
significant hole in the center, the dip in the charge
density would not be pronounced. Tang and
Herndon®® have employed a trial wave function of
the form

'p = IIf(rU) ’
i<y
which does not have dependence on the c.m., an ad-
vantage over the wave functions in self-consistent
field theories. When f was calculated from a cen-

tral exponential interaction with a hard core by
means of the variational principle, the charge
density did not have a dip at the origin, but rather
a peak. Moreover, the peak was reduced only by
~13% when the hard-core radius was increased
from 0.5 to 0.6 fm. (The core radius of the real-
istic Hamada-Johnston interaction®® is 0.485 fm.)
This is understandable if we recall that the rms
charge radius of the proton is 0.8 fm, which is
nearly twice the hard-core radius. Unfortunately,
the body (proton) density was not given in Ref. 68.
Let us now turn to a major difficulty in all ap-
proaches which do not eliminate the c.m., in par-
ticular the self-consistent field approach. Given
a nontranslationally invariant wave function such
as the Slater determinant of the HF or RBHF
theory, one must construct an “internal” (trans-
lationally invariant) wave function. This con-

(111.8)

struction is not unique. For example, Lipkin®®
and Friar” have defined infinite families of in-
ternal wave functions &, obtainable from a given
nontranslationally invariant one, ¥. Here u is a
continuously variable parameter. Friar’s trans-
formation, which is closely related to Lipkin’s,
is expressed by

& ,2({r})=N f d°R e FR({F}), (111.9)

where

4
- =
F{=F,-R, R=A"'Y"F,.
50— R, i
i=1

(II1.97)

The limiting cases =0 and « correspond to the
well-known Gartenhaus-Schwartz (GS)"™ and fixed-
c.m. (e.g., Refs. 65 and 72) transformations, re-
spectively. Radhakant, Khadkikar, and Banerjee™
have shown that the form factors |Fu,(q?)| calcu-
lated from a certain shell-model density by means
of the GS and fixed-c.m. transformations differ
considerably from one another, both in the position
of the diffraction minimum and the peak following
the dip. The shell-model density was that of the
s* configuration in which the radial function was a
linear combination of Os and 1s harmonic-oscil-
lator functions ¢,,, i.e.,

R =(1—;;2T§[¢08(7)+B¢u(7)]. (I11.10)
Such a linear combination occurs in the D=2
(D =dimensionality) case of our work. Radhakant,
Khadkikar, and Banerjee™ simply varied 8 in order
to produce a best fit to the form factor, finding a
fair fit with 8=-0.32 and the fixed-c.m. trans-
formation; the GS curve for =-0.32 gave a much
worse fit. CiofidegliAtti, Lantto, and Toropainen™
produced, on the other hand, an excellent fit with
this model [Eq. (III.10)] and the GS transformation
when 8=-0.82 [a huge admixture of ¢,,, giving a
hole in the center of pg(r)], whereas the fixed-
c.m. transformation gave a very poor |F,(¢?)|.
Other distributions with a hole in the center also
give large differences between the form factors
obtained with the GS and fixed-c¢.m. transforma-
tions. Friar’ confirmed this strong sensitivity
for the double-Gaussian density®® [see Eq. (II1.7)]

v2({F,}) = [] o3¢, (1m.11)
i=1

and also showed that |F,,| calculated with other
values of u, between 0 and «, lay between the GS
and fixed-c.m. curves. Frosch’s excellent fit®®

had been obtained with a SP potential consisting of
a hard core followed by a deep narrow well, and
with the GS transformation. CiofidegliAtti, Lantto,
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and Toropainen™ found that the fixed-c.m. trans-
formation applied to Frosch’s shell-model density
(which has a hole 1 fm in radius) gave an extreme-
ly poor fit.

At the opposite extreme is the nontranslationally
invariant body density of the s* configuration of the
harmonic-oscillator shell model, for which the
corresponding translationally invariant density is
the same for all values of u because the wave
function factors

WO L, ) =RROR)B(r), ..., 7).

(I11.12)

Tassie and Barker™ showed that the form factor
calculated with & is that calculated with ¥H©
divided by

®&0.> =e-azq2/44, b=(V3a)-!.

(I11.13)

@5 ®) et

In our work the proton density (Fig. 5) can be fit-
ted very closely by a harmonic-oscillator density.
(The value of the inverse range parameter « is
different from the value of « for the basis func-
tions, ¢,;.) Thus, we have calculated Fy from the
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FIG. 7. A traditional semilogarithmic plotof |Fyeay(g?)|
for *He vs ¢° for a dimensionality D of 1 (SOC), 2, 3,
and 4. c¢.m, method IIC was employed.

pp obtained by employing the Tassie-Barker c.m.
correction factor. This does lead to inaccuracies
for large g values,” but in view of inaccuracies in
the data, in the use of the first Born approximation,
and in the truncation employed in performing the
RBHF calculations it appears accurate enough for
comparing the RBHF calculation with experiment.
Campi, Martorell, and Sprung™ have used the
Tassie-Barker correction in their form-factor
calculation based on a DDHF proton density.

Our body form factor for *He is shown in Figs.
7 and 8. Figure 7 gives the traditional plot of
In| Fg(q?)| for RBHF calculations with c.m. meth-
od IIC and dimensionality D (number of admixed
harmonic-oscillator functions ¢,,) equal to 1
(curve labeled SOC), 2, 3, and 4. For D=1 and
3 there is no diffraction dip, but for D=2 and 4
there is a dip at g2~ 13 fm ™. The experimental
dip occurs at about 10.5 fm~2. It seems to us that
the convergence of the form factor with increasing
D is shown more clearly in the nonlogarithmic
plot of Fy(¢?) (Fig. 8). Only the absolute value of
the experimental Fg(g?2) is known, but from the
theoretical values it seems reasonable to assume
that F5*(¢?) is nearly real and positive for g2
below 10 fm 2 and real and negative for 11< g2
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FIG. 8. A replotting of the curves of Fig. 7; Fyoay(q?)
is given. “Experimental” values, calculated using Eq.
(3.6) from the data of Ref, 57 are also shown. Figg,is
taken to be *|F{38,| with the sign chosen in agreement
with the RBHF value.
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<20 fm~%, Near the diffraction dip F§® cannot be
assumed to be nearly real. It is clear from Figs.
7 and 8 that we have not used a large enough num-
ber of radial oscillator functions to have achieved
convergence with D to the correct RBHF form
factor. Before becoming greatly concerned with
correlation corrections to the RBHF approxima-
tion, one should improve the accuracy with which
the RBHF self-consistency conditions are satisfied
by increasing D. Alternatively, one could evaluate
the one- particle-one-hole correction terms for
p(7) in perturbation theory.® This has been done
starting with a SOC (D =1) Slater determinant by
Ciofi degli Atti and Kallio.” By increasing D in
matrix-RBHF calculations we eliminate the con-
tributions to these graphs from successively higher
low-lying “particle” states. We believe it is more
accurate to increase D than merely to calculate
the 1p-1h graphs, because other aspects of self-
consistency are also improved. In particular the
SP energies change with the dimensionality. It
was found in Ref. 78 that contributions from oscil-
lator s states up to the 5s were important. Our
D, = 4 calculation only included s states with
n<3.

Finally, we mention that for an accurate calcu-
lation of Fp(g?), contributions from correlation
corrections to the RBHF determinant should be
included. All the graphs through third order (sec-
ond order in ¢ and first order in the density oper-
ator) have been listed in Fig. 4 of Ref. 6. The
low-g behavior of the form factor is

Fglg®)=1-3(r®q?+0(q*).

Kallio and Day™ have calculated two of the correla-
tion-correction diagrams for (»2). These contain
diagonal 72 insertions in particle and hole lines,
respectively, in the second-order 2p-2h excita-
tion graph. It was found that the contribution from
the insertion in the hole lines is roughly equal and
opposite to that from the insertion in the particle
lines, with the sum of the two contributions of the
order of —0.09 fm?. Later Ciofidegli Atti and
Kallio™ calculated the same graphs for the full
form factor (e‘a'r insertions). The resulting con-
tribution to |Fy| is small (<10~2) and positive for
all g. The 1p-1h corrections mentioned above are
10 times larger,” as can be seen also by com-
paring our results for D=1 and D=4.

We may summarize by saying that RBHF 3 or
DDHF " calculations which give a good repre-
sentation of the energetics of “He are also capable
of giving a fairly good charge form factor. How-
ever, it should be emphasized that in the oscil-
lator-basis matrix-RBHF approach, accurate
calculations of the form factor and the excited
states require a considerably higher dimension-

ality than do the binding energy and the hole-state
energies. The primary reason for treating ‘He by
the RBHF method is that, because so few doubly-
closed- L-shell spherical nuclei exist in nature,
namely ‘He, 'O, and “°Ca, it is important for the
assessment of the method to calculate properties
of “‘He. We have found that when c.m. corrections
are included, the RBHF method describes ‘He
rather well. However, for highest accuracy, other
methods, which employ translationally invariant
wave functions, should be preferred.

IV. RBHF CALCULATIONS FOR '°0 WITH THE
HAMADA-JOHNSTON INTERACTION

In Tables III-V are presented results of RBHF
calculations of properties of 0 obtained with
c.m.-correction methods I and IIC. By comparing
with the corresponding quantities for *He, con-
tained in Tables I and II, we see that there is
much less difference in '°0O than in *“He between
the values given by methods I and IIC. For ex-
ample, the calculated charge radius in *%O is
about 1.2% smaller with method IIC than for meth-
od I, whereas it was about 6% smaller for “He.
This behavior is expected from the A~! dependence
of the c.m. corrections for the quantities con-
sidered. We may conclude that for nuclei heavier
than oxygen, method I should be sufficiently ade-
quate for binding and separation energies and
true occupation probabilities.

Table III shows first of all that with the average
off-energy-shell RBHF-self-consistent condition
(Sec. II) for the well depth,s'*+% which led to
C=48.63 MeV, the binding energy and removal
energies are in generally good agreement with
experiment. Notice that most of the SP energies
are slightly more attractive for method IIC than
for method I. The exceptions are the Os, ,, neu-
tron and proton energies, which can be explained
as follows. The c.m. contribution tends to make
the energies lower in method IIC than in method I.
On the other hand, if the starting energies are
lower in method IIC, then the reaction-matrix
elements are less attractive and this tends to
make the SP energies higher. These two effects
are roughly equal in '°O and, in the case of the
most deeply bound states, the starting-energy ef-
fect dominates, thus giving SP energies which are
slightly higher for method IIC than for method I.
The difference in binding energies in Table III is
due to self-consistency effects, just as in *He.

The binding per nucleon?® for %0 is very close to
the experimental value®® of 7.98 MeV. It is similar
to those of SOC calculations with the same pre-
scription for C%:1+2:4:10 byt it is significantly
greater than the binding obtained in other BHF 3°
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and RBHF 28:38:48 cajculations. The greater
binding occurs because the gap between occupied
and unoccupied states is substantially smaller.
However, the charge radius listed in Table III is
somewhat further from the experimental value® of
2.666 +0.033 fm than the results obtained in Refs.
30, 28, 36, and 48. (It should be pointed out that
the radius is less sensitive than the binding energy
to the parameter C.%®) This illustrates the general
problem of correctly calculating both the binding
energy and charge radius with presently available
two-body interactions.3¢'4®

The removal energies E! in method I [Eq. (II.10)]
differ by only a small c.m. correction from the

SP energies e!. In going beyond the nondegenerate
perturbation theoretic formulation of Brueckner
theory, employed in the present work, to a de-
generate formulation** (e.g., the Bloch-Horowitz
or the linked-valence expansion), the single-hole
states can be mixed with two-hole-one-particle
(and more complicated) states, resulting in a
splitting of the single-hole strength.®2:6:8 The
fractionation of single-hole strength becomes
large when the hole is deep enough that there are
two-hole-one-particle states which are quasi-
degenerate with it.’% This does not occur for the
p shell in %0, but does occur for the s shell. The
c.m.-corrected SP energy E, then corresponds to

TABLE III, RBHF calculations for 'O of the binding energy per nucleon; rms radii of the
mass, neutron, and charge distributions; true occupation probabilities; Coulomb energies;
and proton SP energies, removal-energy centroids, and eigenseparation energies. Neutron
(v) energies may be obtained by subtracting Aec,, from the proton (r) energies. The nucleon-
nucleon interaction used is Hamada and Johnston’s (Ref. 56), a =0.45 fm~!, C=48.63 MeV,

and the dimensionality is 3 for all SP states.

c.m, method I Expt. IIC
~8/A (binding per nucleon) 7.9 8.0 8.0
7, (mass) 2.33 2.29
7, (neutron) 2.33 2.29
7. (charge) 2.47 2.666+0,0332 2.44
Pop g “Pop o 0.80 0.80
P“’m" zp“’m" 0.81 0.81
Pos v Pos jym 0.79 0.79
Ae oy (001/5) 2.7 3.53° 2.8
Aecou (0932 2.7 3.34b 2.7
Aecou (0817 2.9 2.9
€0p 1 -15.0 -15.6
Egp,jpm ~-14,9 ~12.4%y3¢ ~-14.9
E®, (0py) 2,44
E® (0py,m) -12.5 -12.13°
€op g -18.5 -19.3
Egpypn ~-18.6 ~19.0%9:5¢ ~-18.6
E(rze)a: (0p3/) 2.14
E®,, (0p,m) ~16.5 -18.46"
s, -39.5(~46.5 ©) -39.3(—46.3¢)
Eos ), ~-38.5(~45.5°) -42  x5°¢ ~-38.5(—45.5°)
E@, (0sy)) 13.7¢
EQy (0s1/5m) (31.8°) —(28,29.5,32,34) ¢

aH. A. Bentz, Ref, 81,

b From energies of eigenstates in N and !°0.

¢H. Tyren et al., Ref, 85.

4S0C calculation by R. L, Becker and M. R. Patterson as quoted in Ref. 6.
€ Includes a correction for ¢.m, spuriosity in the (0 sm)'1 hole state, Refs. 6 and 83.
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the strength-weighted centroid of the energies of
eigenstates of sharp 7, j, and parity inthe A-1
nucleus.®’® These centroids have been extracted,
somewhat crudely so far, from (p, 2p) and (e, e’p)
experiments and have been cited in Table III. For
deep-lying holes an additional ¢.m. correction
[over and above that of Eq. (I1.8b)] is necessary in
order to obtain the theoretical removal energy.%: %
The need for this correction arises from the fact
that a deep single-hole state of the oscillator shell
model does not have the c.m. purely in its lowest
oscillator state. The (0s,,,)"! state of the A - 1=15
system is 20% spurious.®* In a basis consisting of
the (0s,/,)"~! state together with all two-hole—one-
particle states, degenerate with it (in the harmonic-
oscillator shell model), two spurious states (states
with the c.m. in an excited oscillator state) may

be removed. This change of basis together with
use of RBHF-SP energies caused the centroid of
0Os,,, strength in the shell-model calculation to be
shifted downward by 7 MeV 8 to about ~46 MeV
for protons (see Table III).

The eigenstate of the A — 1 nucleus with the
greatest single-hole strength has an energy which
differs from that of the centroid by a “rearrange-
ment energy.” The largest contribution in per-
turbation theory is expected to be the second-order
energy E2, (h) obtained from the diagram in Fig.
9(a).82:27: 6. 83 1n Fig, 9 the dashed hole lines are
renormalized, i.e., multiplied by true occupation
probabilities P,. The values of E{2 (nlj) calcu-
lated by Becker and Patterson®: 2?7+ with the
Hamada-Johnston interaction are quoted in Table
III. One may then define an “eigenseparation ener-
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gy”® (as opposed to a separation energy centroid)

E, ., (nljq) = E(nljq) + Erca(nljq) . (1v.1)

The calculated eigenremoval energies are com-
pared with the energies (relative to the ground
state of %0) of specific eigenstates of !N in Table
III. The rearrangement energy is j-dependent and
increases the spin-orbit splitting of the 0p states
by 0.3 MeV. The resulting theoretical splitting is
only 4 MeV, however, which is about 3 of the ex-
perimental value. For the highly excited 3* states
of N, associated with a Os,,, hole, there are sever-
al peaks in the (p, 2p) spectrum?®® which might cor-
respond to the theoretical “dominant” eigenstate.
The latter is rather uncertain because of the c.m.
spuriosity effect, which should require a correction
to Eq. (IV.1).

The SP energies of neutron states differ from
those of the corresponding proton states by what
is denoted by Aec,, () in Table III. In the RBHF
theory this is actually not only a Coulomb energy,
but contains a starting-energy self-consistency
effect which tends to resist the Coulomb splitting.
The shifts, Aeg,, are smaller than the experi-
mental differences between analogous states in
5N and 'O by a rather surprisingly large amount
(~0.7 MeV) for the 0p,,, and 0p,,, states. Thus,
only 80% of the experimental Coulomb splitting is
found. The Coulomb interaction between protons
is included as part of the two-nucleon interaction
from which the SP potential is derived. It gives
the largest contribution to the difference between
neutron and proton orbitals. An additional contri-
bution arises from the starting-energy self-con-

TABLE IV. Coefficients for the expansion of RBHF orbitals in terms of harmonic-oscilla-
tor orbitals. The interaction and parameters of the calculation are the same as those of

Table III.
Method I Method IIC Method I Method IIC

Neutrons Protons

Cl(sy) 0.9997 0.9998 Cl(s1p) 0.9998 0.9999
Cl(syy) 0.0241 0.0186 Cl(sy)3) 0.0172 0.0118
Ci(syp) 0.0089 0.0090 C3(s1s9) 0.0086 0.0088
CY(p3/2) 0.9995 0.9993 CY( b3 0.9993 0.9995
b3 ~0.0074 0.0239 CY(py)  —0.0166 0.0148
CUDss) 0.0315 0.0282 CY(p39) 0.0326 0.0288
Cl(p 1) 0.9979 0.9988 Co(p1/2) 0.9974 0.9986
CA(p 1) -0.0416 -0.0098 CY(py  —0.0514 -0.0197
CH 1) 0.0494 0.0471 CH D1 0.0512 0.0485
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sistency. The expansion coefficients for the nor- for the reasonably accurate calculation of SP
mally occupied neutron and proton orbitals are energies in the s-d shell. For example, the va-
given in Table IV. The radii of neutron and proton lence energies of the 0d;,, v and 0d,,, 7 levels in
distributions are the same to three significant method IIC are -0.71 and 7.23 with D=1 (SOC) and
figures. -0.98 and 5.90 with D=3, respectively. The c.m.-
Table V contains results for the normally empty corrected separation (“addition”) energies of these
(virtual) states of the s-d shell in °O and for the valence states are nearly the same for methods I
corresponding normally occupied (valence) states and IIC, differing approximately [Eq. (II.18)] by
in 10 and Y"F. The virtual states of the s-d shell only 0.04 MeV. The resulting addition energies
have occupation probabilities of 1-2%, whereas for the s-d-shell orbitals are higher than the ex-
those of the next higher f-p shell are 0.1-0.6% perimental eigenseparation energies by 3-4 MeV.
in a SOC calculation.® When the valence states This underbinding has occurred also in earlier
are occupied their occupation probabilities were SOC-RBHF calculations** 1° which gave correctly
found to be comparable to (~5% greater than) those the absolute binding energy of !%0. The second-
of the core orbitals.?” The Coulomb energy dif- and third-order rearrangement energy diagrams
ferences between corresponding neutron and pro- for “particle” states shown in Figs. 9(b) and 9(c)
ton states are about § of the experimental values. have been investigated®'?” to see if they would give
The dimensionality of 3 seems to be sufficient additional binding. Values are quoted in Table V.

TABLE V. RBHF true occupation probabilities and energies of the s-d-shell orbitals in
180 (virtual “particle” states) and in 1’0 and !'F (valence states). The SP energies of the
virtual states were calculated from Eqs, (II.5) and (II.8b). Spin-orbit splittings are denoted
by As,; neutrons and protons are distinguished by v and n. The interaction and the parame-
ters used in the calculations are the same as in Table I,

Virtual Valence
Dimension: soC D =3 SOC D=3
nlj c.m, method: I I IIc I I c EZ
0ds, P (v)~P(m) 0.012 2 0.865°
Aecoul 3.57 2.99  3.02 2.87 2,75 2.79  3.54
e(v) 7.28 4.711  4.50 -0.06 -0.55 —0.98
e(m) 10.85 7.70 1.52 2.81 2.20 1.81
E@) ~—0,25 ~—0.21 —4.14
E(m) ~ 2,54 =~ 2.58 —0.60
E®, 0.82 1.12
EQ, -1.1b
1sy, P (y)=P(m) 0.013 2 0.847"
Ae Coul 3.07 3,08 2.70 2,72  3.16
e(v) 10.02 5.37 5.25 0.5 -0.40  —0.77
e(m) 8.44 8.33 2,30 1.95
E®W) ~-0.04 =~ 0.00 —3.27
E(m) ~ 2.68 ~ 2,72 —0.11
E®, 1.02 142
EQ, -1.0°
0dy; P () ~P(m) 0.0212 0.859
Aecon 3.54 2,70  2.70 2,86 2,62 2,63  3.56
e(v) 14,21 8.40 8.33 5.01 3.41 3.27
e(m) 17,75 11.10 11.03 7.87 6.03 5.90
EW®) ~ 3.99 ~ 4.03 =0.%4
E(m) ~ 6.62 ~ 6,66 =4.50
E®, 152 1.92
EQ, -0.9°
0dy;m AGE 4.2 42 =508
0ds, AQERY 1

2 R. L. Becker and M. R. Patterson, as quoted in Ref. 6, to be described fully in Ref. 27.
C =417.753 MeV was used.
b Reference 27.
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(a) (6) (¢)

FIG. 9. Hole-line-renormalized rearrangement-energy

diagrams (see Refs. 6 and 27). @) EQ, ®); b) EZ: ©0);
© E®: ).

With SOC wave functions the results to date indi-
cate near cancellation of the second- against the
third-order rearrangement energy for the 0d;,,
state and a positive net contribution for the 1s,,
and 0d,,, states. For the 0d states this raises the
calculated spin-orbit splitting from about 80 to
100% of the experimental value. However, another
source of additional binding, such as orbital re-
arrangement energy, seems to be needed. More
accurate (non-SOC) calculations of the rearrange-
ment energies and of Pauli and spectral correc-
tions to the reaction matrix elements would be
desirable in this connection.

For *He we found a considerable difference be-
tween the RBHF proton densities given by c.m.
methods I and IIC. For 80 these densities are
nearly identical and are unrecognizably different
in appearance from that for the oscillator shell
model (see, for example, p. 35 of Ref. 86). Some
of the finer details of the RBHF densities are
shown in Fig. 10, Both for methods I and IIC the
D =3 RBHF densities are larger than the SOC
density near the origin, smaller between 2 and
3 fm, and larger in the tail. The density p"(r)
is slightly smaller than p!(r) near the origin,
larger between 3 and 23 fm, and smaller for
r 223 fm. Finally, in method IIC the neutron
density is greater than the proton density for
7 <24 fm, and slightly smaller for larger ». The
quality of the RBHF body form factor (not shown
in a figure) as compared with the experimental
data®” is about the same as for *He. The con-
siderable variation with dimensionality indicates,
as in “He, the need for calculations with higher D.
Thus, of the two main aspects of the “saturation
properties” of finite nuclei (namely the energetics
and the size) it appears that the energetics (binding
energy and removal energies) and the rms radii
are stable for a dimensionality of 3 or 4, but that
the detailed shape of the density distribution re-
quires a significantly more elaborate calculation.
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FIG. 10, Details of the RBHF density distributions for
160 with a dimensionality of 3. Differences in densities,
magnified by 100, are plotted. (a) Full curve, p}C(r)
-p} (7); (b) dashed-dotted curve, p} —p3°C; (c) dashed
curve, pjlC(r) —p39C(7); (d) dotted curve, pli€ (r)

- p}}c(r). The SOC density was calculated for a =0.45
fm™!, the same value as for the basis orbitals of the
D =3 calculation.

The main obstacle to such calculations is not the
matrix diagonalization nor the self-consistency
requirements, but the vastly greater number of
two-nucleon reaction matrix elements which are
needed. Their accurate calculation is very time
consuming, requires a large amount of storage
capacity, and would necessitate an order-of-
magnitude increase in the RBHF computer tech-
nology.
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