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Nuclear rearrangement scattering. I. Quasifree (p,2p) reactions
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A formal theory of scattering, including rearrangement processes, is presented. This
theory is based on a model using completely antisymmetrized and orthogonalized channels.
A detailed discussion of the {p,Pp) reaction which emphasizes the sequential amplitude for
this process is given as an application of the formal theory. The single-hole state generated
upon the first collision is discussed using an extension of the theory of intermediate structure
to doorway states which are not in a space orthogonal to the space of continuum channels.
The theory developed here is able to properly include off-sheQ and Pauli principle effects in
the description of the reaction. Some of the approximations necessary to obtain the standard
results for the {p,2p) cross sections are also exhibited in the context of our general theory.

I. INTRODUCTION

A persistent problem arising in all attempts to
formulate a Hamiltonian theory of nuclear reac-
tions is caused by the nonorthogonality of the
eigenstates used to describe the different open
channels. As evidenced by the numerous reac-
tion theories in existence, the above does not
represent an insurmountable handicap. This
problem has, however, led to the necessity of
employing less direct, and as me shall see, for
many purposes less convenient, means of achiev-
ing the required orthogonality.

Perhaps the most common approach employs
the concept of asymptotic orthogonality (AO}. In-
tuitively, AO is based upon the observation that
in the asymptotic region, where the wave packets
describing the various reaction products no longer
overlap, different channels (i.e., different rear-
rangements of the particles), as well as different
states within the same channel, must be orthogo-
nal. Thus AO is a fundamentally time-dependent
concept and it is in this property that its limita-
tions reside. The thrust of this remark will be-
come clear as me go on.

Mathematically, AO can be expressed in several
ways. Perhaps the most straightforward is to use
lowest-order wave-packet theory (i.e., neglecting
spreading) to construct wave-packet envelopes
for each of the clusters of particles defining a
particular channel. For example, the state ap-
propriate for a tmo-body channel mould then be of
the form

4e(t) =e 'e'~" 84,(x, , . . . , 3IA)

X 42(XA+1 ) ' ' ' & A +((()

X Qg(%g Vgf}62(g V2f) ~ (1.1}
where 5, is the center-of-mass coordinate of the
jth cluster, C, is the wave function for the jth

= iim g, (n}e 'e~'. (1.2)

Using the Riemann-Lebesque theorem this re-
quires only that

(C„,C.) =S(n-m)+q(n, m),

where q(n, m) is square integrable. In fact Ekstein
assumes that this is the case for the channel func-
tions under consideration.

An alternative to the use of AO to meet the
problem of nonorthogonality of channel states
has been given in a series of papers by Hahn. '
He shows how the problem can be circumvented
by formulating the entire problem in a multidi-
mensional Hilbert space, using a generalization
of Feshbach's projection-operator theory. The
"dimension*' is given by the number of channels
that are treated directly. The equations one ul-
timately obtains still involve overlaps between
(nonorthogonal) projection operators for different
charm e1s.

%e may contrast the above methods of dealing
with the problem of nonorthogonality of channel
states with a more direct solution to this problem.

cluster, and g is the antisymmetrization operator.
Asymptotically, the wave-packet functions G, are
nonoverlapping and this assures orthogonality
among the various channels. Alternatively, one
can use the more elegant and more convenient,
but weaker, definition of AO based on techniques
familiar from the formal theory of scattering and
discussed, for example, by Ekstein. ' Ekstein
defines two functions, 4 and 4„, as being AO if
for some weighting function C(m),

l(m @„,Jl e '* '4 c,(m)dm)
g» goo
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That is the orthonormalization of the channel
states themselves, where orthonormalization is
now used in the usual sense. While it is easy
enough to postulate such orthogonal channel states,
a procedure which can be carried through in prac-
tice is much more difficult to find. However,
just such an orthogonalization scheme has already
been proposed for the lowest bound states and the
elastic channel' and it is clear that similar me-
thods can be used to extend the orthonormal sub-
set to include other channels as well. For the
time being, we will assume this has been done
and examine the consequences of the existence of
a set of orthonormal channel states for the formu-
lation of reaction theory.

In the full Hilbert space, we single out a subset
of channels which are of particular interest to the
problem at hand. We can then immediately con-
struct a projection operator, P, which projects
onto the subspace spanned by these states. The
projection operator onto the complementary sub-
space is @=1-P. Also, we can construct a
generalized channel Hamiltonian, gC, which has
as its eigenstates those channel states of interest
to us. If we let

~
I, ) be the state c in channel n,

then from the above we have

(1.4)

arrangement scattering. The use of wave packets
is obviated by applying the adiabatic approxima-
tion and taking the interaction to be

where n is a small positive quantity. The Hamil-
tonian is then

H=K+(H-X)e ~~'~-3C as t-+~. (1.8)

where U, (t', t) is the evolution operator in the in-
teraction representation and is given by

U (P f) el set ~ -4 H( t ~ t) e4-3c t

«) ( ~tp s'
= Q (-i)"— dt, dt„T[V(t, ) V(t„)]

=0 n~ "t
(1.10)

with

Thus the problem is in a form appropriate for the
introduction of the interaction representation.

An immediate consequence is that one can de-
fine an S operator4 which connects an asymptotic
state at t=-~ with that into which it evolves at
t=+~. The S operator is of course just the quan-
tity

$(+~, -m) = lim UI(t', t),
g &~ +oo

fwahoo

CXy C

(1.5)

V =II-X, (1.6)

where II is the total Hamiltonian for the problem.
The channel Hamiltonian and the channel interac-
tion appropriate to any given channel can be ob-
tained immediately by projecting these operators
on the given channel. In contrast, the other me-
thods of dealing with orthogonality (e.g. , those
described above) must define a distinct channel
Hamiltonian and channel interaction for each
channel.

The existence of V in turn allows one to apply,
in a straightforward manner, the well-known
techniques of the interaction representation to
achieve a systematic perturbation theory for re-

where E, is the asymptotic energy corresponding
to the channel state ~4, ). The existence of X dis-
tinguishes the present approach to the problem of
channel orthogonalization from those described
above.

The most important consequence of the existence
of the generalized channel Hamiltonian & is that
there exists a corresponding generalized channel
interaction V, defined by

f
J

e ' "C,(n)4„d , nt-s~,

where the 4„are channel states with

X„4„=E„4„.

(1.12)

The S matrix is simply the array of coefficients
connecting the C, (n) with the C (n), i.e.

C, (n) =S„„C (m). (1.14)

The existence of the matrix (S„)can be demon-

V(f) —eint Ve-Int

being the potential in the interaction representa-
tion.

The existence of an oPerator S in our formula-
tion is in contrast to the situation in theories em-
ploying AO or other procedures to treat the chan-
nel orthogonality problem. Ekstein very clearly
shows that only an S matrix exists in the latter
theories. This feature is directly related to the
fact that in those theories the channel states in
distinct channels are eigenstates of different chan-
nel Hamiltonians. In our formulation a single
Hamiltonian & serves for all P sPace ckanne-ls.

It is perhaps useful to summarize Ekstein's re-
sult. Asymptotically his (Schrodinger) states have
the form
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strated by explicit construction. These matrix
elements are merely a convenient way of express-
ing the results of a scattering experiment. An 9
operator, on the other hand, would connect the
asymptotic states,

the following structure:

(c;f r ( c.', ) =(e;J r.„„fe,', )
+(C i(a-X)+(ff-3:)C~'l(a-X)ie', ),

(1.21)

l
C+ n 4ndn =8 C n@„dn (1.15)

and such an operator does not exist if different
4„'s have distinct channel Hamiltonians.

The formulation outlined above has advantages
outside of the possibility of employing time-depen-
dent perturbation theory. These are related to the
fact that the generalized interaction

treats all identical particles symmetrically. This
is in marked contrast to the channel interactions
V, V&, etc., arising in traditional nuclear reac-

tion theories. ' The latter are obviously not sym-
metric. Our symmetrical version allows us to
deal with T-matrix elements between completely
antisymmetrized states. On the other hand, in the
traditional treatment of rearrangement scattering,
each relabeling of the particle indices must be
treated as a separate rearrangement channel. In
fact this is true even in the elastic channel where
effects of exchange of the incident nucleon with the
target nucleons require the introduction of sepa-
rate channels.

The difference between the two approaches may
be made more explicit by noting that in the stan-
dard theory the matrix element for scattering from
channel P to channel a is given by'

(e./
r ] e,) =(e.i v. /

e&;&) =(e&.&i v, / e,)-
(1.1V}

with

S i+&;l,)=ice)+I, . (e-X)ie', &

(1.22}

In Eq. (1.21), (4~$T„~ ~
4~a, ) is the part of T arising

solely from the use of orthonormalized channel
states. '

One additional point can be made with regard to
the distinction between the two formulations given
above. In their exact forms, the two formulations
are mathematically equivalent. However, when
these theories are applied the equations are never
solved exactly but instead are truncated in some
manner. When approximations are used, the
theories are of course no longer identical, and
it could easily be that for the description of cer-
tain reaction mechanisms, e.g., Pauli breakup of
the deuteron, our formulation is superior. This,
however, is probably a question that can only be
answered by detailed calculation in each particular
ease.

Finally, it is interesting to compare our formu-
lation of reaction theory with the second quantized
formulation due to Villars. ' In spirit and motiva-
tion his theory is similar to ours. However, his
mathematical formulation is different. In a chan-
nel in which the cluster g is incident on the target,
Villaxs defines an operator J, through the commu-
tator relation

(e]'&) =(c,)+a&'& v, ]c,),
where

g(~)— 1
E-H+ jc

Thus

(c„iroc, ) =(c„iv.+ v.t."&'&v,ic,&

=(c.i v, + v.G'~'&v, ie, & .

(1.18)

(1.19)

(1.23}

Here H is the total Hamiltonian, A, is the destruc-
tion operator for the cluster g, and &, is the en-
ergy of c (including its binding energy). It is
shown that appropriate matrix elements of J, are
directly related to those of the transition operator.
The relation between Villars's approach and the
present one will be expanded upon in a future pub-
lication dealing with deuteron elastic scattering
and stl 1pplng.

Here 4 and 46 are not antisymmetrized with re-
spect to the particles in different clusters. (The
individual bound clusters contained in the 4 are
antisymmetrized, however. }

In our formulation all the exchange effects for a
given reaction are included in expressions having

II. MICROSCOPIC UNIFIED NUCLEAR-REACTION
THEORY

In this section we will discuss some of the prac-
tical advantages of the present formulation. One
obvious advantage occurs in the formulation of
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coupled-channel equations. The use of nonorthogo-
nal channels states always results in terms in-
volving overlap integrals between the various
channels in addition to those terms coupling the
channels through the interaction potentials. Be-
cause our formulation of reaction theory involves
orthogonalized channel states, terms of the former
type do not occur. The coupled-channel equations
to be solved are thereby simplified. The signifi-
cance of this simplification is probably not very
great, however, because the coupled-channel me-
thod is seldom applied to rearrangement channels.
When the coupled-channels method is used to dis-
cuss the coupling between elastic and inelastic
channels only, the antisymmetrization and ortho-
normalization of the states is no problem, in
principle, and our approach and the standard one
are then rather similar.

A more important advantage of our formulation
is that is uses a basis of states which incorporates
fully the effect of the identity of the particles com-
prising the projectile and the target. In addition,
a workable prescription for orthogonalizing such
states is provided. (This matter has been dis-
cussed in detail in Ref. 3 for the special case of
elastic scattering. Similar techniques can be ap-
plied in general. ) Such states can then be used as
the basis for a microscopic description of various
nuclear reactions, including elastic and inelastic
scattering and certain types of rearrangement re-
actions. The resulting formulation does not, how-
even, provide a proper description of the motion
of the center of mass of the system. Techniques
such as those introduced by Faddeev or those as-
sociated with the resonating group method allow
for a proper treatment of the center-of-mass mo-
tion, but such techniques are completely imprac-
tical for all but systems containing a very small
number of particles.

A detailed account of the techniques to be used
has already been given for the case of elastic
scattering. ' Similar techniques can be applied
for more general reactions. We will discuss in
detail in the following sections the treatment of
(p, 2p) reactions. In a future publication we will
discuss deuteron scattering, including the elastic,
stripping, and breakup channels.

The theory that emerges provides a way of sys-
tematically describing nuclear reactions which
are mediated by realistic (i.e., strong, short-
range) nuclear forces. The fundamental quantity
of the theory is a Brueckner reaction matrix,
which is obtained by summing ladders of potential
interactions. The transition amplitudes for any
given reaction (or the optical potential in the case
of elastic scattering) is expanded into a series of
terms involving the reaction matrix, just as in the

Brueckner-Bethe-Goldstone theory of nuclear mat-
ter and finite nuclei. The analogy is not complete
because we deal with a correlated ground state
from the outset and describe the reaction pro-
cesses with respect to that correlated state. In
many-body theories of nuclear structure, the
model ground state is taken as the reference state.
The former choice, however, is the natural way
to describe nuclear-reaction processes.

Just as is the case in nuclear-structure calcula-
tions, the contributions to the scattering ampli-
tude, obtained using the techniques described
above, can be represented diagrammatically.
Ideally one would like to obtain the expansion ap-
propriate to some general amplitude (i.e., the
general rules for drawing the diagrams which con-
tribute to any reaction process) just as expansions
for various quantities related to the nuclear ground
state, and for various shell-model quantities, have
been obtained. Unfortunately the situation is con-
siderably more complicated for nuclear reactions
because one must deal with collision partners, one
or both of which are correlated in a complicated
manner. Thus we propose to consider each reac-
tion of interest separately and to apply the tech-
niques referred to above to obtain the correspond-
ing amplitude. In the following sections we will
treat the (p, 2p) reaction as an example of the ap-
plication of our methods.

We feel that the approach described above, which
treats the nuclear-structure and the nuclear-scat-
tering problems from a unified point of view, and
with similar techniques, will aid in achieving a
better understanding of nuclear dynamics.

III. APPLICATION TO QUASIFREE (p, 2p) REACTIONS

A. Introduction

While quasifree scattering initiated by electrons
or protons has been rather extensively studied"
there does not appear to exist a theory of this
process which addresses itself to some of the for-
mal questions arising in the study of the reaction.
For example, there is the question of the relation
of the hole states used in the description of this
reaction and the actual physical channels. In the
simplest description the projectile knocks a par-
ticle out of the target leaving behind a single-hole
state. This description is clearly a "doorway"
description in that the single-hole state is not an
eigenfunction of the Hamiltonian of the residual
nucleus. Further, in the case of quasifree scat-
tering (p+A-p+anything) initiated by protons or
in (p, 2p) reactions (p+A -p + p+anything) there
are questions as to which reaction matrices are
to be used. Off-shell effects and the role of the
Pauli principle should be clarified. In this work
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we wish to discuss the aforementioned reactions
in the context of the formal reaction theory dis-
cussed in the previous sections. We hope this
discussion will aid in understanding the nature of
the approximations necessary for the treatment
of these reactions and indicate what may be
learned from their study. As part of this program
we will extend the theory of intermediate struc-
ture somewhat.

The usual discussions of doorway states and in-
termediate structure" have largely centered about
the theory of resonance reactions (for example,
as in the theory of analog resonances") or photo-
nuclear reactions. " In these examples, the door-
way states are constructed so that they are in a
Hilbert space orthogonal to the Hilbert space used
to describe the continuum channels. In the reac-
tions discussed in this work this orthogonalization
of doorway and continuum channels is not a natu-
ral procedure so that the analysis proceeds some
what differently than is usual.

I xs, a& =~,'I4'w& (3 7)

where
I

C „) is the exact ground state of the target,
HI&„)=E„I4„). The

I
X~~ „)were constructed to

be an o~thonormal set by writing them as linear
combinations of the states of Eqs. (3.6) and (3.7).
The states of Eqs. (3.6) and (3.7) are not orthonor-
mal, in general. In the simplest casewe may write

&&'i,', &
= f Ix~».', &(x'»,'I »&»t'»'&d&»' (3.8)

where we have neglected problems arising from
the possible la.ck of orthogonality of the

I
x~-l ) and

the
I X»&, a very small effect.

In terms of the
I X» ), we defined a projection(+)

operator for the elastic channel

and h, is the kinetic-energy operator. Further we
constructed the states

(3 6)

B. Formal considerations
I
x'-„'„)dk& XP'„I =1 —q (3.9)

and

(3.2)

The I P, & were chosen as the bound-state eigen-
functions arising from self-consistent Brueckner-
Hartree-Fock calculations, for example. The
I x- ) were defined so that they would be ortho-(~)

normal to the
I p, ), with

I x p) (I x ) ) satisfying
outgoing (incoming) boundary conditions. Indeed,
they satisfied the single-particle equation

(~x-~.)l x'-„"&=o, (3.3)

where

P I e,& .&e. I . (3.4)

Here p is a projection operator,

p =1 —Q I e~&&en I (3.5)

In some previous works we were able to con-
struct formal Lippmann-Schwinger equations for
nuclear reactions. ' This was accomplished through
the definition of a channel Hamiltonian, &, and a
set of orthonormal states

I Xg „) which could
(+)

serve as channel vectors for the elastic channel.
It is probably useful to summarize some of our
previous results in a somewhat simplified formu-
lation.

We had defined a set of Fermion operators
(&7g', &7~t) which when acting on the vacuum created
a set of orthornormal single-particle states

I x-'„"&=g'-„"'I 0& (3.1)

and also wrote

x = PxI'+QxQ
with the further definition

(3.10)

(3.12)

The T matrix for elastic scattering, which may
be obtained from the knowledge of the asymptotic
form of Pl C~ & ), has been extensively studied in
a previous work. ' It is given by

&&'I 7'I && = &k'I7'-elk&+& x'-„' „I(ff - ffo) I
+ ~,„&

(3.13)

where T„,h has been defined previously' and rep-
resents the scattering due to the use of the parti-
cular "distorted waves" of IXt; „).

In this work we are particularly interested in the
T matrix for the (p, 2p) reaction. To discuss that
T matrix it is ultimately necessary to recognize
the multiplicity and complexity of the final chan-
nels, since the (p, 2p) reaction is an inclusive re-
action involving channels with many continuum
particles. However, it is useful for the sake of.
conceptual and notational simplicity to consider

Ho= PXP = IX~ )(gg+E ) dk(X„ I. (3.11}

With these definitions it was possible to write the
formal integral equation
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initially only the simplest final channel, the three-
body channel consisting of two free protons and a
bound residual nucleus. After treating the simple
case we will consider the channels having a larger
number of continuum particles and we will see that,
in the desired approximation, these more com-
plicated channels can be treated in close analogy
to the simpler case treated first.

We define the bound eigenfunctions of H for the
(A —1) body system as

I
C A, ) such that

(3.14)

Here A denotes all the quantum numbers neces-
sary to specify the particular eigenfunction of H.
Using these states we may also define the states

(3.15)

These could serve as a set of orthonormal channel
states except for the identity of the nucleons cre-
ated by the (n~«, n1 ) and the nucleons of I 4„,) .
We note, however, that the states of Eq. (3.15}
may be orthonormalized and we will denote this
orthonormalized set by I Y«» &. These states(+)

may be written explicitly by means of the formal
equation

x& x-''x'-'I 6~ ~I x'-'x'-'&dfxdfl.
kg k2

(3.16)

We will not discuss the details of this construction
here. It is also quite useful to require that the
states of Eq. (3.16) be orthogonal to the IX~ & ) and

IX~ „). Since the
I Y«& „) have two free parti-

cles asymptotically and tfie IX«) and
I X»&

have at most one, this requirement will not entail
great formal complication.

The notation used in Eq. (3.15) is motivated by
that of our previous work. ' We had defined the
states'4

While the states of Eqs. (3.1'l) and (3.18) played
an important role in the discussion of the optical
model for elastic scattering, they clearly cannot
serve as proper channel states in a formally cor-
rect reaction theory. These states however do
play a very important role in the "doorway" de-
scription of quasifree scattering. Anticipating our
results somewhat we may note that the overlap of
the states of Eq. (3.16) and Eq. (3.18) will be an
important consideration. Therefore we define

where

1/2 + ~ ~ ~
A, a t (3.20)

SA, B (@A-1I nBI @A& PB (3.21)

With these definitions we may return to the con-
sideration of the T matrix for the (p, 2p) process.
Let us denote the transition amplitude for the chan-
nel A by

&f„f„AITlf&=& Y~-~ «, I(a-36)le~ ». (3.22)

Note that in order to evaluate Eq. (3.22) we require
a definition of the projected channel Hamiltonian,
PXP, which goes beyond that of Eq. (3.11), viz.

P&6P=P, + —Q ) df, -df, lY~'&- )
A $0 2 ~

x (e«, +e~, +E~ .}&Y«'-, I ~

1' 2'

(3.23)

It is clear that Eq. (3.22) is not very useful as it
stands and simplifying assumptions are necessary
for its evaluation.

l
(3.19)

To a good approximation we may write

( (+& (+&
I 8 I

x(+& g+» ~&2
Xg Xg, wa Xg Xk

2 1 2

=I6(f, -f,')6(f, —f,') —6(f, —f,')6(f, -f,')]

I
Y~", -„, ,& =n1n), n, i c,& p, "'

ps = & +~l nsnsl CA& (3.1'I)

~ vP& &
= Pf[iP-„...&uk,'uk, '

j.' 2'

where I3 denotes a bound state that is occupied
with a high probability in

I 4&„&. In addition we had
indicated that the states of Eq. (3.17) could be
orthonormalized:

C. Derivation of the factorized (p, 2p) amplitude

In this section we wish to indicate how the ampli-
tude of Eq. (3.22) may be factorized into a "door-
way" part and a spectroscopic factor. This fac-
torization follows from a specific model for the re-
action mechanism (the impulse approximation) and
is not derived from first principles. Inspecting
the structure of Eq. (3.22} we note that we can as-
sume that the nucleons with momenta k, and k,
are the struck nucleon and the projectile.

For the moment we will neglect secondary pro-
duction, that is, we will neglect the creation of
additional continuum nucleons by the final nucleons
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on their passage through the target. With that as-
sumption we see that it is possible to use only a
portion of

I 41; „)to define a doorway approxima-(+)

tion to Eq. (3.22). Indeed, let us recall that in
addition to the operator P, we have previously'
defined the projection operator Q„

(&, =- Qf)(rf'„- &dkdk(r'

(3.24}

which was useful in the theory of the optical poten-
tial. In terms of this operator our doorway model
may be stated as

(k&, k~, AIT lk)=(Y„„ I(8-Z}(P+pi)l&id)i ).
(3.25)

The terms contained in Eq. (3.22) but neglected
in Eq. (3.25) are necessary to describe secondary
production by the projectile or struck particle as

I
d'-„"„&= I(('+ Q.&+ (d ~, , )

d(((('+ (&,&& Id-'„'„&

(3.26)

which may be approximated in lowest order by
the first term

lg f,„&=(P+q, )l~&'„& (3.27)

they leave the nucleus. However, it is common
practice to treat these features by introducing
optical potentials for the outgoing particles. " We
will return to these questions at a later stage.
However, it should be emphasized that in a (p, 2p}
experiment the experimental apparatus is usually
arranged in such a manner as to reduce the in-
fluence upon the cross section of the portions of
the total wave function which we have ignored in
our doorway model.

From a formal point of view we may always write
1 = P+Qg+q and write the formal equation

leading to Eq. (3.25}. More generally, therefore,

(k„k„AI elk) =(Y'-„'„,ll'(H-X)+(H-X) . (H-X)](P+q, )le-„„). (3.28)

However, we will discuss the simpler form, Eq. (3.25).
Let us consider the first term of Eq. (3.25):

&Y';,
'
~„,l(H-36}Plg'-„'„& =

J &Yg' k, lHl~p „&&x-'„",I eg'& dk', (3.29)

where (X&~'&
I &l&g ) is the optical model wa-ve fanc-

tion defined in Ref. 9 through the relation
serting a representation of unity in the space of
(A +1)-body wave functions

Pl+' ) = jtlx'-„", „)dk'(x&,'„Ie'-„'„) 1=P+, +q (3.31)

=
J

I&'-„", &dk'&x'-„", l0-'„'&.

(3.30)

The matrix element of H appearing on the right-
hand side of Eq. (3.29) may be evaluated by in-

into Eq. (3.29). (Some discussion of the structure
of q appears in Ref. 9 for the case in which we
represent unity in terms of states characterized
by the number of holes we make in the correlated
target le„).)

Now, since we have required ( Y- - IP =0,
la 2~

we have

&Yk k ~IHl~k ~&=&Y) k.~l(P+~i}HI ';.' &=&Y~ q ~I&HI&')' &1' 2'

= g(S...)'~&Y~X, ,~„.IHI&f',.& = Q(S„y~2&Y„'=,'&, gHI &'„", „&

= Z(SA.s}'"&x„-g„- I vl x'„-',P&~&p I pl e.& p, '". (3.32)

Here we have used the fact that since H is at most a two-body operator its matrix elements between I~(-'& )
and the states in q are small.

In Eq (3.32) (y(.&y(=&
I vlx~", P)„ is an antisymmetrized matrix element of the two-body potential v

kg k2 k'
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and (p~ p ~ ps& is the density matrix associated with

the target. This matrix may be assumed to be
diagonal in the subspace of the bound states. Also
we may take (X« ~ p~ Qs& =0, so that we have(+)

(3.33)

In deriving Eqs. (3.32) and (3.33) we have neglected
the small quantities 5 and y which are necessary
to relate the l r „, «-, s& to the

~
r„- „- s& and the

~
Ã„-„&to the ~XU &, respectively.
Inserting our approximate result, Eq. (3.33),

into Eq. (3.29), we have

(-) (+)

with

(+)
@i+0&i=2 J lru, , ««, s&(e«)+ed, -~s+Eg)

x(r„- »-, ~
dk, dk, {3.38)

has been discussed at great length in Ref. 9. The
quantity Q,X,Q, may be termed the (projected)
doomsday Hamiltonian and is to be contrasted to the
channel Hamiltonian defined above,

(+)
«

x (r„-, „-, ~~ dk, dk, . (3.39)

Again, dropping the matrices g, we have, follow-
ing Ref. 9:

(-) Q+)

= g(s, ,) &x„;x„;(v„(y„-y,&„p,
(-) (-) (+)

(3.84)

=5w, A &g~ .In»p«, li'&«-;&«;ll4'~-. &

(+) (+)=5, „&x„=x„=~v( xg, xq&„. (3.40)

It is clear from Eq. (3.34) that in the case of the
singular or very strong interactions appropriate
to nuclear physics, we must consider additional
terms in the transition amplitude. The additional
terms permit us to replace v by some appropriate
reaction matrix. To this end we consider the
second term in Eq. (3.25),

(8.35)

To complete this portion of our calculation we
still need the quantity (r«, «-, s(4 «-„& which ap-
pears in Eq. (S.SV). Again we will build our devel-
opment using the methods discussed in Ref. 9. %e
write /=I-P, and

Q)ej„)= ( . jgllPleF ). (3.4„1)

As was discussed in Ref. 9 in some detail, we may
approximate

Again this is best developed by inserting a repre-
sentation of unity. However, in this case it is ap-
propriate to use a representation built on the
channel vectors, i.e.,

E- gaQ+~~ E- Q HQ, +~
and also put

(8.42)

(+), (+)I=I'+
2 lr«, .«, , ~&dkxdk«&r««, ~l+

A

(3.36)

c,= . -go+go(ff-31')G, .E- Q~HQ~+ie
(3.43)

(+) (+) (+) (+)
&r«, »-. , ~.l@.l@«-.~& = Z (3~.a) ' &r.-, «-.el+«. ~&.

The quantity

(S.SV}

Noting that PQ, = 0, we see that we need quantities
of the form

(-) (+)
&r«, .«;, ~l«-&)lr«;

~ «-;.~ &

Q~

E —Q,R,Q, +aa )
and q,3f Q, is as defined in Eq. (3.38). Now we

may write

(+) (+)
&ref, «;,slq'» ~&

(+) (+)
=&r«f, «g, ,l[g.+ go«-Seo)go+ "llfpl+t ~ &

(+) (+)
=„l&r«-;,«; ~ Ilg. +g.(ff-Se.)g.+ "lfflA'«

~
&

(-) (+)
&r«„«, ,lÃ Se ) Ir«-; «--; s&. . x dk'(Xp, ~g«- ) .(+) (+)

(8.44)
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It was shown in Ref. 9 that it is possible to keep a special class of terms in Eq. (3.44), in particular,
just those particle-particle interaction terms necessary to renormalize the matrix elements of v. We
obtain

12 12 12

with Q» the Pauli principle operator,

(3.45)

(+) (+)
PP II (+) (+)Q„= lxkp xk;&dk,"dk,"&xk; xk; I, (3.46)

and

e» = h, (1) + h, (2) —es —e-k. (3.47)

In Eq. (3.47), h, (1) is the kinetic-energy operator of particle 1, es is the (renormalized) Brueckner-Har-
tree-Fock energy of the occupied state B, and ek is the kinetic energy of the projectile.

It is now clear that Eq. (3.35) may be written [using Eqs. (3.3'I), (3.40), and (3.45)]:

(-) (+)
& yk, k, A I (H-&)Q, lq k, A& g(~A s) &Xk X I5 v -zr»», ~ .~ -~4~y & &/21' 2' k 2 12 12 12 V12 V12 + 'I + QB/~PB

B k

(3.48)

Finally, therefore, using Eqs. (3.34) and (3.48) we have for Eq. (3.25)

&k„k., A IT Ik& =Q(SA, s)"'&Xk, Xk II~»(e1+es&ilk AB&APB
B 2 12 (3.49&

12 12 12 12
&12

(3.50)

with only kinetic energies for the particle states.
Inspection of Eq. (3.49) will indicate that while

(+)
the optical-model wave function Igk & appears
on the right side of the expression, the "orthogon-
ality scattering" states appear on the left. This
"unphysical" feature has its origin in the neglect
of the q space. In particular, in Ref. 9, we con-
sidered a representation of unity of the form

1=P+Q, +Q + ~, (3.51)

where Q, was built of (appropriately orthogonal-
ized) states of the primary form

Ok10k2 Vk 0

These may be considered as "two-hole" states
while Q, may be thought of as spanned by "one-
hole" states. (This terminology is somewhat de-
ficient since IC „& is correlated and therefore con-
tains various numbers of "holes" and "particles. ")

We may ask how the inclusion of the Q, space
would modify our considerations. Without be-
laboring this point, we can see that the inclusion
of this space will provide the possibility of includ-

where K» is the Brueckner reaction matrix, which
satisfies the Bethe-Goldstone equation

ing optical potentials for the final particles. Again
what is required is a selective summation of in-
teractions —see Fig. 1. In addition, one can con-
sider final-state interactions between the two out-
going protons, but we will not treat this feature
in detail here. With these remarks we are led to
the simple approximation'6

K '~ =U —V —K"".1

12

For convenience, let us define

(3.53)

&k„k„fI I T, Ik&

& 4k 4k I+»(ek +es)14'k 4 B&APB (3.54)

]/2 ( ) ( ) (+)= Q(5A, e) '
& 4k~ kk2 le»(ek + eB) I fk AB&APB'".

B
(3.52)

Note that this expression treats the influence of
the Pauli principle exactly. Previous theories
based on the impulse approximation ignore Pauli
effects completely. Such effects are, or course,
of relatively greater importance at lower energies.

To make contact with previous approaches" this
expression can be further simplified by replacing
the Brueckner K matrix by the free-scattering
matrix
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with tmo continuum particles and a bound residual
nucleus), Eg. (3.52) represents our basic factor-
ized result. In the next section we will generalize
this result to final channels mith more than two

continuum particles in addition to a bound residual
nucleus.

(b)

FIG. 1. In these figures a heavy upgoing line represents
a particle moving in an optical potential. The light up-
going line represents a particle undergoing orthogonality
scattering. Downgoing lines refer to occupied states
with wave functions (@s&. Wavy lines represents
matrices. (a) This figure represents the matrix element
appearing in Eq. (3.49), ()((~ )(~ [%&2( (( $ Ps&. (b) The

inclusion of the Q2 space yieMs diagrams of the type
shown here, where there are two holes (B,B') present in
intermediate states. Consideration of this class of dia-
graxns allows one to replace ()((g) X f) (X&& [()(„+~4h&~ by

(4-„' PP,
' I&„I 0'-„'g&& tn Et(. (3.4e).

so that Eq. (3.52) may be written

&k» k» A [ T (k& =Q(S, s)"'(k„k„a(r, (k&.

(3.55)

We will speak of Tn of Eq. (3.54) as the doonoay
T matrix.

For the final states considered here (viz. , those

IV. TREATMENT OF FlNAL-STATE CHANNELS

CONTAINING MORE THAN TNO UNBOUND

NUCLEONS

The discussion of the previous section is strict-
ly applicable only to final states

~
Ff, , k, , A) of the

form given in Eq. (3.l6). Recall that k, and k,
refer to the tmo final-state p'rotons and that A is
a set of quantum numbers specifying a bound state
of the remaining A- 1 particles. In addition to
these channels, however, contributions to the

{P,2P) cross section can arise from the more
complicated final-state channels which contain
more than two continuum nucleons; the only re-
quirement is that, of all the continuum nucleons
in the final state, tmo of them are protons having
momenta appropriate to the experimental situa-
tion. %e mill now show that these more complex
channels can be treated, within the doorway ap-
proximation, in complete analogy mith the treat-
ment given in the previous section for the chan-
nels spanned by the states,

~ Yf, k A).
We will consider first the case of a final state

containing three continuum nucleons and described
by the channel state~Yk k, -„A). The corre-l+)

sponding result for a channel containing any num-
ber of continuum particles will then be obvious.
The subscripts k„k„and k, appearing on the
channel state refer to the momenta of the con-
tinuum nucleons, while A nom represents the quan-
tum numbers of an (A-2)-particle bound state.
Since we are considering only quasifree scatter-
ing me mill assume that the two protons in the
final state have energies significantly larger than
that of the remaining free nucleon. %e will de-
note the momenta of these tmo "fast" protons as

{+)
k, and k, . The states )Yk, k, k A) are fully anti-
symmetrized and are regarded as forming an
orthonormal set with the (previously defined)

g+) (+)
sta'tes I+k, A& and I rk„k, .A& The corresponding

projection operator is

EIf J dk~&k, lii, , i, , i, , )(ii, , i, , i, , el
A

and the associated piece of the channel Hamiltonian is

(+)
= —,Z )~ J~

dkldk2 3li'kg kk kp, A&(sk +skk+sks+Ez-k)0'k, kq, ks, AI.
A

(4.2)
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(4.3)

The T-matrix element of interest now [in analogy to Eq. (3.22) for the case of two continuum nucleons] is

&k„k..k., ~iT I» =&6,', ~,. ~, .1(ff-3C) I4X.A

=
& Yk, , r, .C,.« I (ff %-}I @V

If we again make the "doorway" approximation as in the previous section we have

(4.4)&kgb k2x Qt A IT lk& ( Yf~, k~, k~ ~ « I
(ff -3C3)(I + 0,) I ya, «&

The procedure for evaluating Eq. (4.4} is identical to that used to evaluate &k„k„A~T )k). The latter was

discussed in detail in the last section. We will therefore remark only on several new features that occur
in the process of reducing Eq. (4.4) to a form analogous to Eq. (3.52).

Consider first the term involvjng P. We have

& Yk„i . r, .« I(ff-3C,)I'I+k, d =& Yg~, r,, r, , « I»14~,2
(-) (+)

& YI), k~, ks, « I(p+@i+ ")»
I yk, «&

(~) (+)
=

& Yt, , v, , u, , « I 0»I @%,«&

(+) (+) (+)
&leak'&s&Yt .I' X «IYX;g,', s&&Yr, , u;, slff l&r, ;,«&

B

(+) (+) (+)
&Aldks& Yt .r, , r, .«le, X .s& & YX X;,slff IXr;,«&&&t «I~r„«&

1v ~ +() (+) (-) (-) (+)
5t!Q& Ylt~, k2, k~, « I ~k f, k~, B& (Xk( Xk2 I ~

I kk AB&«PB"' (4.5)

This result differs from the corresponding one encountered in the last section only in the factor involving

the overlap

~ (-) (+)
k), k~, I~, « I f~, kg, s&

Evaluating this expression we obtain

( Yg g g «~ YP, g s&=[5(k,'-fc, )5(k'-k, )-5(%,'-k )5(k'-k, )](S"& )~~2

—[5(k,' —k, )5(k' -Rs) -5(k,' -Gas)5(k' —k, )](S"2 )'~2

+[5(k~ k )5(k3 k,) 5(k~ k~)5(k' k )](S f, }sa

where we have defined

(4.6)

(S«,s)"'=&@«,I mn-s I@«& ps "' (4 7)

In Eq. (4.6}we have, in the interests of notational simplicity, suppressed pairs of S-matrix elements con-
(-) (+) (+) ynecting the orthogonality scattering states (Xg ) and )Xg &. These merely serve to convert the &~ 's,

which would otherwise occur on the left-hand side of the matrix element of v in Eq. (4.5), into X) 's, and

this fact has been used in writing Eq. (4.5) in the form given. Combining Eqs. (4.6} and (4.5}we finally
obtain

& Yg -„p, , [(a-X,)P(eg g=g (S«3,)"'&Xp Xg (v[g" y,&«p,
'"

-Q(S„" )'"&Xf Xr& Iv(~ Ps&«ps"

+P(Slip�

)lls&XA X [@(f%Q ) pl/2
B

(4.8}
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Similarly, evaluating the term involving Q, we obtain

with

A (m) ~ (+) (+) (+)
x&yk, r, , r, , Al(ff-30. )IFr, r, r;.A&&I'k;

~ r;, r, A IQ, I4'k, d (49)

(4.10)

&k„k„k„AI T [k& =P(S,"BB}'I'&~k~ y. kk IK(~k+~B) I e @B&APB'"

(+) (+) 1 (+) - (+) a (+) (+)
& I'k

~ r,;,I;, A I Qi I @r,A&
=

2
dkl'dk"

& I'r„r, , r;, A I yr;, kk, B& ( yr;, I',",B I q'X, A&

B

The matrix element of H -X, which occurs in Eq. (4.9) involves interactions between the "slow" nucleon
(i.e., that of momentum %,) and each of the two "fast" nucleons, and between the "slow" nucleon and the
residual nucleus, in addition to the interactions between the two outgoing nucleons. At the present stage,
we are only interested in interactions of the latter type, namely those which must be used to develop the
reaction matrix from the bare v interaction appearing in Eq. (4.8). The remainder of Eq. (4.9), written
explicitly in Eq. (4.10), involves the product of a spectroscopic amplitude, indentical to that given in Eq.(+)
(4.6), with the amplitude of 4g „projected onto the Q, space. The latter was evaluated in the last section.
Thus we see that Eq. (4.9) contains everything we need to renormalize the bare v interactions occurring
in Eq. (4.8). Combining Eqs. (4.8) and (4.9) we then finally have for Eq. (4.4)

-Q(S"' )' '&Xk ~k IK(&I+k )IBEX AB&APB'"

(-) (+)
+Q(SA'B)'"&&k rt', IK(&r+eBItj'r PB&APB"*

B
(4.11)

If we recall that we have assumed k, and k, to
be the large momenta, we can see that the last
two terms of Eq. (4.11) will be considerably small-
er than the first in the energy region of interest
(kk &150 MeV). There are two reasons for this.
First of all the)actors (SA'B}' ' (i =1,2) are much
smaller than (S„'B)"', since (k, («(k,

~
(i =1, 2},

and the spectroscopic amplitudes decrease rapid-
ly with increasing momentum. Secondly, mo-
mentum conservation applied to the second and
third K-matrix elements requires

(4.12)kg +k, = kB +k (i = 1, 2),

where kB is a typical momentum component of QB.

1«lkI and Ik, I«lkiI (I =1, 2), so th«mo-
mentum conservation requires

k] =k. (4.13)

However, the geometry of most (p, 2p) experi-
ments is such that R, (i =1, 2) is quite different
from the incident momentum k. For such geom-
etries, then, both the spectroscopic factors and
the K-matrix elements occurring in Eq. (4.11)
are small, and we have

&kx, kk, kk AITlk&

=Q(SA B) &lI'k &k IK(k%+kB)IWk AB&APB
B

(4.14)

Thus we have again obtained a factorized ampli-
tude.

It is clear that the approximations leading from
Eq. (4.11) to Eq. (4.14) are valid only at high ener-
gy. This demonstrates the weakness of the usual
analyses of (p, 2p} reactions which view the quasi-
free process as the formation of a hole state, and
thus always arrive at a factorized amplitude. Our
results show that in situations where two of the
momenta are not clearly larger than the third,
all three components of the T matrix in Eq. (4.11)
contribute significantly. In this case the theory is
considerably more complicated. This more com-
plicated situation is indicated schematically in
Fig. 2.

The extension of the results of this section to
final states with four or more continuum nucleons
is obvious since the considerations required to
obtain the contribution of such states to the (P, 2P)
cross section are identical to those needed for the
three-continuum-nucleon case.

It is important to keep in mind that all the con-
siderations of this section have been directed
toward the description of final states in which
the continuum nucleons other than the two protons
of interest arise from the decay of an unstable
hole state (the doorway assumption). In partic-
ular, continuum nucleons arising from multiple
scattering of the two "fast" protons or from the
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FIG. 3. The amplitude for the (P, 2P) reaction in a
sequential model. Here k& and k2 denote the momenta of
the fast protons in the final state. The residual system
denoted by R may have several continuum particles plus
a bound fragment A.

(b)

k2

k~

(c)
FIG. 2. (a) The amplitude associated with the factor-

ized T matrix for (p, 2P) scattering leading to a four-
particle final state. Particles with the momenta k& and

k2 are detected. (b) A process which can interfere with
that given in (a) and which leads to a nonfactorizable
result. Here the second particle detected arises not
from the quasifree collision but from some other process.
(c) A pictorial representation of secondary production
which provides some background to the simple diagram
in (a).

ejection of strongly correlated nucleons by the
incident proton have been neglected. This is, of
course, consistent with the quasifree model for
the reaction.

V. CALCULATION OF THE CROSS SECTION

We consider using the model developed in the
previous sections for a (P, 2P) reaction in which

(5.2), +E~ = Ck +ek +E
1 2

where k is the momentum of the incident proton,
ck the associated energy, and K, is the total
momentum of the residual system, etc.

To obtain the cross section for the observation
of the momenta k, and k, we must calculate the
sum of all cross sections with at least two parti-
cles in the final state and integrate over the un-
observed momenta. We will keep only the terms
in which the interaction of the incident particle
with a target nucleon leads to the final momenta
k, and k . In these terms, if there are more than
two particles in the final state, the other momenta

the energy E& is the total energy of the residual
system —see Fig. 3. This system may be a bound

state of (A —1) particles, or more generally, may
contain several fragments. We will also write
E„=E, +E», where E,~. is the energy associated
with the center-of-mass motion of the residual
system.

We assume that we observe two nucleons (pro-
tons) with momenta k, and k . The conditions of
energy and momentum conservation allow for the
determination of E» and E, . We have

k =k~ +k2+Kc.m. (5.1)

appear in the spectroscopic amplitudes. Thus,

j
(S )' '(5 )' '5(R -5 )+ J(S"' )"'(5 )' '5(Z ~ 55 -E )dk

gk3k4 jl2 Skgk4 &/2g E +6 +6 —E dk dk + ' '

(-) (+) i)2 (+)
( 4»5 4k, I&,.I 0» eB)APB ( Wk 0k I&,.I ()'k '(|)B )APB ~

'
~ (5.2)
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In Eq. (5.3), && is a kinematical factor .The sum-
mation over A and the integration over the unob-
served momenta, k„k4, . . . , serves to sum the
various contributions to the (P, 2P) cross section.
In this equation we have also included the dis-() ()torted waves Q«and Q«describing the refraction

1
and absorption of the outgoing particles with mo-
menta k, and k, ." Energy conservation is indi-
cated by the inclusion of the appropriate 6 func-
tions which restrict the phase space available for
the unobserved particles. [The 5 function 5(EA-ER)
appears in the first term of Rq. (5.3}since the
quantity EA is a continuous variable containing
both the center-of-mass energy and the binding en-
ergy of the fragment A. ]

It is useful to define the quantity in the brackets
in Eq. (5.3}, summed over A, as BBB (E„). In
certain kinematical regions the cross section
could be dominated by the ejection of a particle
from a particular occupied state

I QB&. We may

consider the cross section to be additively com-
posed of such terms; that is, we may neglect in-
terference of amplitudes containing different hole
states. This may be a good approximation if the
energy transferred into the excitation of the re-
sidual system is relatively small. In this approxi-
mation we may write

SB(ER)=—SBB(ER}. (5.5)

The factor PB which appears in Eq. (5.4) pro-
vides a measure of the probability of finding the
struck particle in the orbit l(PB&; for a nucleus
with short-range correlations, this factor is ex-
pected to be about 0.8-0.9. Note the structure

did dII
R Q BB(ER) I & 0«, 0«, I&,.I 4«pB&A I PB

(5 4)

with the definition

of sB(ER)&

BB(ER) Q &@Al nB I C A && (@A-& I 7B I @A& 5(E&& -ER)
Ps

+ dk, &4A I nB 1k~I@A-.& &C'A .I nu, n-B I@45(EA+ek~ ER)

+ ks kA&@A I ~BVkB lk4 I @A-4 &@A-B I Vk 7k~ tB I @A& 5(E&& + ek~ +ek4 ER) +. (5 6)

which may be rewritten in the suggestive form

~,(& &
=—2 (@

I

n' I@;,»&(& -F.,&(o,",
I

~ (ni, lo" .»(& ~ ~&; & &&k,(@",. I m, ' " n I @*&I .

(5.7)

As a simple example, let us assume that only the
bound states, IC „,), of the (A —1)-body Hamil-
tonian have significant overlap with the doorway
state qB I@A&. On the basis of that assumption, we

may write

SB(ER)= SB(ER) &4A I (iB5(ff ER)RB l@&A& PB '.
(5.8)

To the extent that Eq. (5.8) is valid, it is useful
to note that the quantity 9B(ER) satisfies an energy-
weighted sum rule, "

(ER EA)9B(ERASER (@A I gB[H & gBl I&'A& = —~„
(5.9)

where c~ is the renormalized Brueckner-Hartree-
Fock energy associated with the orbit I QB& and

BB & pB I
t I (I B& + Q& ARAB ' I+&2(eB +B ') I &pB pB ')APB ~

gy
I

(5.10}

In those theories"' "in which one does not take
into account the "doorway" character of

I (t&B& in
the manner we have done, one assumes that the
cross 'section is proportional to the lB(ER) of Eq.
(5.8). It is of interest to ask what approximations
need to be made to obtain a cross section pro-
portional to 9B(ER}, rather than sB(ER}. Using
our methods, we see that what is desired is a dif-
ferent channel Hamiltonian based on states of the
type

(+)
nk, n~, I~A &&, n«, &1«, I4«, A(A .&&,

(+)
Pk &Tk l@k,k .A &A-k»

where the states IC) here are eigenfunctions of
the total (A —1)-body Hamiltonian, including both
continuum and bound states. The use of such chan-
nel states is possible if we consider states of the
P space with only two very large momenta (which
may be denoted as k, and k, ). In that limit the
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«« =-.(E.) „&C«,e-«, Iff. l~«k&.

~dk'&k'l&s& p'
In the high-energy limit

(5.13)

«« --.(E )l&k,k. l&,.l~ &,I'P(k')p (5 14)
1 Pg

P(k') = 1&k'le.&
I' (5.15)

k' =k +k -k. (5.16)

It, is clear that Eq. (5.14) can only be obtained if
all continuum wave functions are replaced by plane
waves. Otherwise the quantum-mechanical inter-
ference effects between the various momentum
components of (k'

) Qs) enter as in Eq. (5.13).
There is no way to obtain a factorized form in-
volving the momentum distribution and the free
nucleon-nucleon cross section without serious
approximations in the treatment of distortion ef-
fects. For a highly simplified treatment of dis-
tortion yielding a factorized form analogous to
Eq. (5.14), see Ref. 10.

new channel states would be approximately ortho-
normal; for example

(+) (+)
&4'«,', «', A'(~-«& I nxPvPx, m, I4 «, ,«, ,A&~-«»

= [5(k, -k,')5(k -k') -5(k, -k«)5(k -k,')j
(+) (+)

X&4'«' «' A'&~-~&14'««A&~-3&& (5.11)

Since, by assumption, the (4& are eigenfunctions
ofH, then

(+) (+)
&@k«, k4,A'&A-s) I @««, «4 ~ A 'tA-s&&

[ 5(k~ —ks) 5(k~ —k4) —5 (k« —k4) 5(k4 —ks)] .
(5.12)

Using this latter scheme, in which there is a
cleax' distinction between the large momenta and
the small, we could obtain a cross section pro-
portional 'to the Os(Es) Howev. er this approach
would make a discussion of the production of sec-
ondaxy particles by the fast particles leaving the
nucleus extremely difficult, and thexefore, itis not
appropriate to a more complete treatment of the
(P, 2P) reaction.

To the extent that Eq. (5.4) provides a reason-
able description of the (P, 2P) cross section one
may learn something about the momentum content
of ) Qs&. If we keep only a single term of Eq. (5.4)
we have

VI. SUMMARY AND CONCLUSIONS

Several of the advantages of our approach to re-
arrangement reactions have been discussed in the
first two sections of this paper. In this section we
wish to summarize some of the novel features of
our methods when applied to the description of
the (P, 2P) reaction. We will also indicate sev-
eral open problems.

To some extent previous discussions of the
(P, 2P) reaction have not been placed within the
context of a reaction theory capable, in principle,
of dealing with the full complexity of the actual
physical process. It is useful to be able to under-
stand the series of approximations which lead to
the factorized (or sequential) amplitude for this
process. In the theory developed in this paper
we have cax ried through a derivation of the factor-
ized amplitudes while indicating the nature of the
approximations necessary to obtain the standard
result. Some of the novel features of our approach
are presented below:

(i) In developing our theory we have extended the
usual "doorway" concept of the theory of inter-
mediate structure to include doorway states which
are in the same Hilbert space as the continuum
channels of interest. This may be placed in con-
trast to the procedure in which the doorway space
and the continuum space ax'e explicitly orthogonal-
ized. " " The overlap of the doorway state and the
continuum channels allows us to introduce a gen-
erali. zed energy-dependent spectroscopic factor
for the doorway.

(ii) Since we deal with a theory in which all the
particles are treated on the same footing, we are
able to discuss various exchange amplitudes that
can contribute to the (P, 2P) cross section. We
are also able to see how in the limit whex'e the
observed final-state particles have very high mo-
menta, the identity of the particles becomes less
important and we see how, in this limit, the fac-
torized amplitude becomes a reasonable approxi-
mation.

(iii) The formulation used, being based on that
previously given for the calculation of the optical-
model potential and wave functions, allows one to
define distorted waves fx om the point of view of a
fundamental theory. For example, in our previ-
ous work, the optical wave functions were defined
in a Hilbert space orthogonal to the bound-state
wave functions. The use of such wave functions
avoids the introduction of some spurious (Pauli
principle violating) terms in Eq. (5.3), a feature
which is of somewhat less importance in the very
high energy limit.

(iv) The formulation used here also leads to the
introduction of off-shell reaction matrices. %bile
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we have not expanded upon this point here it is
worth noting that if we had considered the (P, 2P)
process in which a strongly correlated particle
was struck by the projectile we would have had to
use K matrices which would be very far off shell. "
The methods developed here allow for a mathe-
matical description of such events; however, this
feature has not been fully explored. In genexal
such events may lead to the presence of three or
more fust particles in the final state and need
to be considered along with the discussion of the
"background" due to secondary production.

Our work, while clarifying some matters, still
leaves many unanswered questions which should
be explored in order that one may feel confident
in the validity of the interpretation of the (p, 2p)
reaction. %e list a few of these questions below:
(i) To what extent can one be sure that the ob-
served particles are the projectile and its fix st
collision partner?

(ii) Can one obtain reliable momentum distribu-
tions free of uncertainties due to distortion ef-
fects?
(iii) To what degree is it possible to measure the
binding energy of the hole states? j~To the extent
that we appeal to the energy-weighted sum rule,
Eq. (5.9), for an answer to this question, we need
to have some general idea of the dependence of
the generalized spectroscopic factor on energy. ]

There are additional questions concerning the
importance of final-state interactions between the
ejected particles as well as questions as to the
off-shell nature of the reaction matrices. "

In this paper we have explored only a very limit-
ed number of the questions that pertain to the com-
plete description of the (P, 2P) reaction. If we can
give satisfactory answers to the other questions
we have raised, we can expect that the (P, 2P)
reaction will be important for a more detailed
understanding of the properties of the nucleus.
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