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A recently introduced analytical model for the nuclear density profile [P. Papakonstantinou, J. Margueron, F.
Gulminelli, and Ad. R. Raduta, Phys. Rev. C 88, 045805 (2013)] is implemented in the extended Thomas-Fermi
energy density functional. This allows us to (i) shed a new light on the issue of the sign of surface symmetry
energy in nuclear mass formulas, which is strongly related to the nonuniformity of the isospin asymmetry in finite
nuclei, as well as to (ii) evaluate the in-medium corrections to the nuclear cluster energies in thermodynamic
conditions relevant for the description of the (proto)neutron star crust. The ground-state configurations of the
model are compared to Hartree-Fock calculations in spherical symmetry for some selected isotopic chains, and
systematic errors are quantified. The in-medium modification of the nuclear mass due to the presence of a gas
component is shown to strongly depend both on the density and the asymmetry of the nucleon gas. This shows the
importance of accounting for such effects in the realistic modelizations of the equation of state for core-collapse
supernovae and protoneutron stars.
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I. INTRODUCTION

The semiclassical Thomas-Fermi (TF) and extended
Thomas-Fermi (ETF) approach to the density-functional
theory were largely used in the 1980s for nuclear structure
applications [1–3] as well as astrophysical ones [4,5]. Two mo-
tivations of searching for approximations of the microscopic
mean-field theory with effective interactions can be advanced.
On one side, this semiclassical quasianalytical theory provides
a clear physical insight on the functional dependence of nuclear
energies and density profiles, which cannot be achieved with
the numerical resolution of HF equations for single-particle
orbitals. On the other side, the computational resources at that
time made systematic HF calculations very hard to perform
with reliable numerical error bars. The exponential progress
of numerical computing in the next two decades made this
motivation obsolete and we have assisted to an impressive
progress of mean-field and beyond-mean-field large-scale
nuclear structure calculations [6]. However in the recent years,
a renewed interest towards the ETF theory has appeared
[7–9]. This is largely due to the new challenges that are open
to the field and the needs for a microscopic description of
the very exotic nuclear species, which are expected to exist
in stellar matter. The widely used equation-of-state models
for supernova matter, neutron stars, and protoneutron stars
typically replace the nuclear distribution in stellar matter with
a single representative nucleus, and use density functionals to
describe the nucleus as well as the surrounding nucleon gas
[10,11]. More recent models have replaced the single nucleus
approximation by a statistical distribution of nuclei, using the
experimental information for nuclear masses and, in doing so,
do not consider in-medium modifications to the nuclear cluster
energies [12–15]. A complete and microscopic description
of stellar matter at finite temperature and at subsaturation
densities implies the evaluation of an extremely large database
of ground states and excited nuclear configurations in a dilute
light-particles environment, which are not directly accessible

to variational HF calculations, or, for some of them that
are accessible, which are computationally too expensive for
large-scale calculations [16].

In this context it is interesting to develop an ETF-based
formalism that would, in a quasianalytical way, provide
nuclear clusters energies for ground-state and excited-state
configurations using energy functionals optimized for exotic
nuclear data as well as neutron matter calculations [17]. In
a recent paper [18], we have proposed a model based on a
simple parametrization of Fermi-Dirac density profiles and on
the zeroth-order TF approximation for the kinetic energies and
currents.

Comparing this model to HF ground-state configurations,
a good agreement was reached since the differences between
the model and the HF calculation were found independent of
the gas density and of the order of 0.5–1 MeV/nucleon. The
model has therefore been employed to evaluate the in-medium
energy shifts in a large variety of excited-state configurations
[18,19].

In this paper we introduce second-order �
2 corrections,

allowing the introduction of the spin-orbit interaction and an
increased precision in the evaluation of the kinetic energy
density. The agreement with HF energies is therefore found to
be better. This improved model is used to obtain the functional
form of the nuclear energies as a function of mass number and
asymmetry, both in the case of ordinary nuclei in the vacuum,
and in the case of nuclei immersed in a nucleon gas.

The paper is organized as follows: In Sec. II we recall
the ETF formalism and present two possible modelings
of the nuclear density profiles employed in the variational
ETF. These two parametrizations are critically compared in
Sec. III, which presents a comparison of the ETF model to
HF calculations in order to assess the accuracy of the ETF
calculation. It is shown that the inclusion of second-order
�

2 terms considerably improves the predictive power of the
model. Section IV presents an application of the model to the
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study of the functional dependence of the symmetry energy
on the nuclear mass. We analyze the well known problem
of the sign of the surface symmetry energy [20], and show
that an explicit comparison to HF calculations can help to
eliminate the ambiguity in the decomposition between surface
and bulk in the two-component nuclear system. Section V
reports detailed results concerning the modification to the
nuclear energy due to the presence of a gas component. The
specific case of a nucleus immersed in a neutron gas, similar
to the ground state of nuclear clusters present in the crust of
neutron stars, is examined. The case where the nucleus is in an
arbitrary single-particle excited-state configuration, as it is the
case in the finite temperature conditions of supernova matter
and protoneutron stars, is also considered and shown to lead
to very different energy shifts.

II. MODEL

We briefly present the model for nuclei and nuclear
matter, which is based on the Skyrme interaction [17] and
where the semiclassical ETF approximation is employed.
This approximation requires a parametrization of the nuclear
density profiles and two types of such parametrizations are
investigated and compared.

A. Skyrme functionals and ETF semiclassical approximation

The Skyrme functional for the time-even energy density is
expressed as [21,22]

Esky(r) = �
2

2m
τ (0) +

∑
t=0,1

C
ρ
t (ρ(0))ρ(t)2 + C

�ρ
t ρ(t)�ρ(t)

+Cτ
t ρ(t)τ (t) + 1

2
CJ

t J (t)2 + C∇J
t ρ(t)∇ · J (t), (1)

where the superscripts t = 0 and t = 1 stand for the isoscalar
and isovector part of the corresponding densities, as for
example,

ρ(0)(r) = ρn(r) + ρp(r), ρ(1)(r) = ρn(r) − ρp(r). (2)

The coefficients C are taken to be constants except for C
ρ
t ,

which depends on the isoscalar density ρ(0) according to the
parametrization,

C
ρ
t (ρ(0)) = C

ρ
t (0) + (

C
ρ
t (ρsat) − C

ρ
t (0)

)(ρ(0)

ρsat

)α

, (3)

where ρsat is the saturation density in infinite symmetric
nuclear matter. See Appendix A and Ref. [21] for additional
definitions.

This functional depends on the occupied single-particle
orbitals in a complex way because of the presence of kinetic
densities and currents. A simpler dependence on the single-
particle densities ρq can be obtained using a semiclassical
Wigner-Kirkwood expansion [1], which is the basis of the
so-called Thomas-Fermi approximation. We will consider an
expansion up to the second �

2 order. The kinetic density τ (0)

reads at the zeroth order (Thomas-Fermi approximation) [1]

τ (0) = τTF ≡ 3

5
(3π2)(2/3)

∑
q

ρ5/3
q , (4)

and at the second order τ (0) = τTF + ∑
q τL

q,2 + τNL
q,2 where,

τL
q,2 = 1

36

(∇ρq)2

ρq

+ 1

3
�ρq, (5)

τNL
q,2 = 1

6

∇ρq · ∇fq

fq

+ 1

6
ρq

�fq

fq

− 1

12
ρq

(∇fq

fq

)2

+ 1

2

(
2m

�2

)2

ρq

(
Wq

fq

)2

. (6)

Here, τL
q,2 is the second-order local term, τNL

q,2 is the second-
order nonlocal term, and the effective mass factor fq = m/m∗

q

is defined as

fq = 1 + 2m

�2

[(
Cτ

0 + Cτ
1

)
ρq + (

Cτ
0 − Cτ

1

)
ρq̄

]
. (7)

.
The spin-orbit current obtained at the same �

2 order in the
semiclassical expansion is given by [1]

Jq = − 2m

�2fq

ρqWq, (8)

where the spin-orbit potential Wq reads

Wq = −(
C∇J

0 + C∇J
1

)∇ρq − (
C∇J

0 − C∇J
1

)∇ρq̄

+(
CJ

0 + CJ
1

)
Jq + (

CJ
0 − CJ

1

)
Jq̄ . (9)

In asymmetric systems, the relation between the spin
currents Jn and Jp and the gradient of the densities is given by
the solution of the 2 × 2 system of linear equations [22],(

�
2

2m
fq + (

CJ
0 + CJ

1

)
ρq

)
Jq + (

CJ
0 − CJ

1

)
ρqJq̄

= (
C∇J

0 + C∇J
1

)
ρq∇ρq + (

C∇J
0 − C∇J

1

)
ρq∇ρq̄ . (10)

The solutions Jn and Jp of this system are injected in Eq. (8)
in order to obtain the expression of Wq in terms of the density
gradients.

Let us notice however that in several Skyrme interactions
such as SIII, SLy4, SGII, . . . the terms in J (t)2 in the functional
(1) are neglected. The spin-orbit potential Wq given in Eq. (9)
is therefore simply related to the gradient densities in these
functionals, and we have

Wq = −(
C∇J

0 + C∇J
1

)∇ρq − (
C∇J

0 − C∇J
1

)∇ρq̄ . (11)

In principle, fourth-order �
4 terms can also be added for an

improved predictive power, as it has already been done in
previous works [1–3].

Hereafter the Skyrme functional with the kinetic energies
and currents approximated within the second-order ETF
expansion will be noted EETF

sky [ρ(0),ρ(1)].

B. Symmetric nuclei and generalized Fermi function solution

The great advantage of the semiclassical ETF approxima-
tion is that the nonlocal terms in the energy density functional,
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see Eqs. (5), (6), and (9), are entirely replaced by local
gradients. As a consequence, the energy functional solely
depends on the local particle densities. Thus, the energy of
any arbitrary nuclear configuration can be calculated if the
density profiles ρq are given through a parametrized form.

The ground-state configuration should in principle be
obtained from the variational calculation, which in the single
density case, ρ = ρ(0) and ρ(1) = 0, is reduced to single
Euler-Lagrange equation,

∂EETF
sky

∂ρ
− ∇ · ∂EETF

sky

∂∇ρ
+ �

∂EETF
sky

∂�ρ
= λ, (12)

where λ is a Lagrange multiplier imposing the correct particle
number. The generalization of Eq. (12) to the two-density case
realized in isospin-asymmetric nuclei is straightforward [1].

Substituting Eq. (1) into the Euler-Lagrange equation, and
using the �

2 order in the ETF expansion Eqs. (5), (6), (7), (11),
leads to

λ = dh

dρ
+ C∇(∇ρ)2 + C��ρ, (13)

with

C∇(ρ) = �
2

2m

1

36

(
1

ρ2
+ 3κ2

f 2

)
+ C∇J

0 BJ

2f 2
,

C�(ρ) = �
2

2m

1

3

(
− 1

6ρ
+ 7

3
κ − κ

2f

)
− 2C

�ρ
0 + C∇J

0 BJ

ρ

f
,

h(ρ) = �
2

2m
f τTF + ρ2C

ρ
0 , (14)

where the following quantities have been introduced: κ =
2m/�

2Cτ
0 , BJ = 2m/�

2C∇J
0 , f = 1 + κρ. This equation was

solved, within a simplified energy functional and in the semi-
infinite slab geometry, in Ref. [2]. A numerical solution of
the Euler-Lagrange equations for finite nuclei employing more
general density functionals, including the Coulomb interaction
and possibly �

4 terms in the semiclassical expansion, is as
numerically demanding as the resolution of the HF equations.
For this reason, trial density profiles containing only a few
variational parameters are often employed [1–3,7–9]. In partic-
ular, in Ref. [2] it was shown that a trial density presenting the
correct asymptotic behaviors in the one-dimensional system,
is given by the generalized Fermi-Dirac distribution (GFD):

ρGFD(r) ≡ ρsat

(1 + exp(r − Rν)/aν)ν
. (15)

The parameter ρsat coincides with the solution of the Euler-
Lagrange equation in the limit of infinitely extended nuclei,
which is the saturation density of symmetric nuclear matter.
The other parameters aν , Rν , and ν are analytically derived
from the asymptotic solution of the Euler-Lagrange equation
[2]. Details are given in Appendix B.

For the nuclear interactions considered in this work, the
terms in J (t)2 in the functional (1) are neglected. The correction
to the Euler equation (13) induced by the inclusion of the
spin-orbit current is given in Appendix C.

C. Simple Fermi function model

The variational approach presented in Sec. II B allows an
analytical determination of the nuclear energy for symmetric
N = Z nuclei. Unfortunately, the generalization of these
equations to asymmetric nuclei is highly nontrivial [23] unless
severe approximations are assumed. Since our aim is to have
a robust model, which can be applied for exotic nuclei as well
as for dilute nuclear clusters present in the (proto)neutron star
crust, we shall not consider uncontrolled approximations. We
shall therefore propose a modified functional form, which is
inspired by the solution of the Euler-Lagrange equations, and
is directly optimized on Hartree-Fock calculations.

In Ref. [18] an analytical modeling of the density profile
was proposed, using a simple ν = 1 Fermi-Dirac (FD) func-
tional form.

ρFD(r) ≡ ρsat(δ)

1 + exp(r − R)/a
. (16)

Similarly to the previous model given by Eq. (15), the
parameter ρsat(δ) matches with the limit of infinitely large
nuclei, but this time can be generalized in asymmetric matter.
The asymmetry dependence of the saturation density is well
given by the following form [18],

ρsat(δ) = ρsat

(
1 − 3Lsymδ2

Ksat + Ksymδ2

)
. (17)

In this expression, Lsym = 3ρsat∂E sym
sky /∂ρ(0) and Ksym =

9ρ2
sat∂

2E sym
sky /∂ρ(0)2 are the slope and curvature of the symmetry

energy at saturation, where we have introduced the usual
definition of the symmetry energy functional:

E sym
sky (ρ(0)) = 1

2
ρ(0)2

∂2EETF
sky

∂ρ(1)2

∣∣∣∣
ρ(1)=0

. (18)

In Eq. (17), the parameter δ = 1 − 2ρsat,p/ρsat is the bulk
asymmetry of the nucleus. The bulk asymmetry differs from
the global asymmetry of the nucleus, I = 1 − 2Z/A, because
of the presence of a neutron skin and Coulomb effects.
The relation between the bulk asymmetry δ and the global
asymmetry I is given by [24–26]:

δ =
I + 3aC

8Q
Z2

A5/3

1 + 9Esym

4Q
1

A1/3

, (19)

where Esym = E sym
sky [ρsat]/ρsat is the symmetry energy at

saturation, Q is the surface stiffness coefficient extracted
from a semi-infinite nuclear matter calculation, and aC is the
Coulomb parameter taken equal to aC = 0.69 MeV. The radius
parameter R entering the density profile (16) is given by

R = RHS

[
1 − π2

3

(
a

RHS

)2]
, (20)

where RHS = [3A/4πρsat(δ)]1/3 is the equivalent homoge-
neous sphere radius. Equation (20) can be deduced from
the general expression given in Appendix B, Eq. (B13). The
diffuseness parameter a of the total density profile is assumed
to depend quadratically on δ, a = α + βδ2, where α and β
were fitted from HF calculations in Ref. [18].
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This simple model has the great advantage that its level of
predictivity is the same for symmetric and asymmetric nuclei
[18]. To describe an isospin asymmetric system, we need two
independent density profiles. We will for this purpose use the
total isoscalar density ρ and the proton density ρp as two
FD functions characterized by the corresponding saturation
densities ρsat, and ρsat,p = (1 − δ)/2ρsat, diffuseness a(δ),
ap(δ) (with parameters α, αp, β, βp governing the diffuseness
isospin dependence), and radii R,Rp as given by Eq. (20)
above.

Moreover, the extension to the physical situation of the
inner crust, where nuclei are immersed in a gas of continuum
states, is also relatively straightforward [18]. This point will
be discussed in Sec. V.

III. COMPARISON TO HARTREE-FOCK CALCULATIONS

Once the parameters of the density profiles are specified,
the nuclear ground-state energy is straightforwardly calculated
as

EETF =
∫

d3rEETF
sky [ρ(0),ρ(1)], (21)

where the semiclassical ETF nuclear functional EETF
sky is given

in Sec. II A. In this expression, the isoscalar and isovector
densities are calculated imposing FD profiles for the total
isoscalar and proton densities ρ and ρp. For symmetric nuclei
the isovector density ρ(1) vanishes and it becomes possible to
describe the density profile with a GFD profile via Eq. (15),
which in principle should be more correct since it corresponds
to the variational solution of the ETF problem, though using a
trial density profile.

The quality of the models given by Eqs. (15) and (16)
can be judged by comparing the ansatz density profiles and
the associated energies to HF calculations performed with
the same nuclear effective interaction. For these numerical
applications, we will systematically use the SLy4 Skyrme
nuclear interaction [17]. We first compare the GFD (15) and
FD (16) ansatz density profiles for N = Z nuclei, showing the
minor role of the parameter ν as well as the limitations of the
variational approach.

A. Comparison between FD and GFD ETF in symmetric nuclei

Figure 1 shows the density profiles, as well as the density
multiplied by r2 and the gradient of the density ×r2 for some
chosen representative N = Z nuclei. In all cases, the GFD (16)
and FD (15) ansatz density profiles are compared to Hartree-
Fock calculation in spherical symmetry. Double magic nuclei
are considered in the left part of the figure, while open shells
ones are plotted in the right part.

We can see that both the FD and the GFD ansatz can
reproduce the HF density profiles with the same accuracy
and, quite interestingly, the diffuseness of the nuclear surface
is equally well reproduced by the two ansatz. Microscopic
density profiles exhibit ripples in the central density, which
are not accessible to a simple (G)FD shape. However, these
structures are not expected to influence the energetics of the
system in an important way, because of the volume element
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FIG. 1. (Color online) Density profiles (top), corresponding par-
ticle numbers (center), and density derivative profile times r2 (bottom)
of different magic (left, 40Ca, 56Ni and 100Sn) and open-shell (right,
48Cr, 68Se, 88Ru) even-even symmetric nuclei. Symbols: spherical
HF calculations. Dashed lines: GFD model Eq. (15). Solid lines: FD
model Eq. (16). A vertical shift of δρ = 0.02(0.04) fm−3 is applied to
the density profiles of 56Ni, 68Se (100Sn, 88Ru) to better separate the
different curves.

in the energy integral. Moreover, it is known that they are
to a large extent artifacts of the mean-field approach and
are expected to be washed out by correlations. For these
reasons, the densities and the gradient of the densities are
multiplied by r2 in the lower panels of Fig. 1. Interesting
enough, the GFD functional form, even multiplied by r2, does
not give a better reproduction of the microscopic calculations
than the simpler FD one. It is clear from this figure that
the FD profile is flexible enough to reproduce the gross
features of the microscopic calculation. In particular we can
see that the fall-off of the density in the HF calculation is
very well described by an exponential behavior. Conversely,
it was shown in Ref. [3] that the variational ETF solution
exhibits a slower polynomial decrease when the �

4 terms are
included. This is again an argument suggesting that we can
safely neglect these higher-order terms. It is also important
to remark that the Coulomb interaction is known to affect
the density profile, though it can be considered as a second
order effect. The Coulomb effects are implicitly included in
the FD model of Sec. II C, while both the direct and exchange
term of the Coulomb energy density should be included in
the Euler-Lagrange equations for a correct derivation of the
density profile if we use the variational strategy of Sec. II B.

The satisfactory performance of the FD model is confirmed
and quantified by Fig. 2, which displays the energy per particle
of N = Z nuclei as a function of their mass number. Only the
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FIG. 2. (Color online) Energy per nucleon of N = Z nuclei as
a function of the mass number. Squares: HF calculations; circles:
experimental data from Ref. [27]. Solid blue line: FD model. Dashed
red line: GFD model. Dotted black line: results from Ref. [28].

nuclear part of the HF energy is considered in this figure. For
consistency, the same Coulomb energy, as obtained in HF, is
subtracted from the experimental nuclear masses, taken from
Ref. [27].

We can see that the GFD profiles systematically produce
more binding than the FD ones, as expected from the
wider variational space associated to this functional form.
The resulting energies are in good agreement with both the
microscopically calculated and measured masses for the magic
nuclei represented in Fig. 1 above. However, the other nuclei
are overbound. This overbinding is known to be due to the
absence of fourth-order terms in the ETF functional [3]. The
simpler FD model with no variationally determined parameter
underbinds magic nuclei, but it leads to an overall good
agreement with the microscopic calculations. These results
are consistent with previous findings comparing FD and GDF
ansatz profiles [3].

A liquid-drop-like parametrization for the nuclear masses
in the framework of mean-field Skyrme models was recently
proposed in Ref. [28]. In this reference, the authors propose
the following functional form for the nuclear energy

ELDM = avA − asA
2/3 − aa

v

1 + aa
v

aa
s A1/3

AI 2, (22)

and have extracted the parameters av , as , aa
v , aa

s from a fit
of HF calculations in an uncharged semi-infinite geometry, as
well as from the neutron-proton radii differences. The isoscalar
part of Eq. (22) contains bulk and surface contributions only
while the isovector part contains additionally curvature and
beyond contributions. The result of Eq. (22), using the same
SLy4 functional [17], is also displayed in Fig. 2. We can
see that the variational ETF calculation correctly converges
towards the slab estimation (22) for very large mass numbers,
where curvature corrections to the surface energies due to the
spherical geometry are becoming negligible. The functional
form given by Eq. (21) naturally contains curvature effects in
the isoscalar and isovector channel. The difference between

Eqs. (21) and (22) is mostly due to the missing curvature term
in the isoscalar channel in Eq. (22). For light nuclei Eq. (22)
therefore tends to overestimate the binding.

From the ensemble of results presented in Fig. 2 we can
conclude that the ansatz densities FD and GFD reproduces
equally well the microscopic HF calculations, and that the
biggest source of discrepancy is mainly due to the lack of
shell effects in the ETF approach. We therefore stick to the FD
parametrization, and turn to test its predictivity in asymmetric
nuclei, where a direct analytical solution of the Euler-Lagrange
equations does not exist with any trial density profile.

B. Comparison between HF and FD ETF in asymmetric nuclei

Some representative microscopic HF density profiles are
compared to the FD ansatz (16) in Fig. 3. We can see that
the level of agreement with the microscopic calculation is
comparable to the case of symmetric nuclei. It does not depend
on the exoticity of the nucleus but mostly on the size of the
system. The larger the system, the better the FD model. This
statement is better quantified in Fig. 4, which shows the energy
difference between the ETF calculation and the microscopic
one as a function of the neutron number, for some selected
isotopic chains. In this figure, the filled symbols correspond to
the Thomas-Fermi or local density approximation, consisting
in truncating the kinetic energy density expansion to the zero
order in �, see Eq. (4). In this approximation, which was used
in a previous work [18], the spin-orbit term vanishes and the
local kinetic energy density at a position r is the same as
for infinite nuclear matter at the local density ρ(r), ρp(r).
We can see that the inclusion of second-order terms in the
functional (open symbols in Fig. 3) considerably improves
the description. In particular, for the heaviest isotopic chain
considered, the average ETF energy very well reproduces
the average HF energy. The deviations are comparable to the
difference between the HF model and the experimental data
(solid circles), and can be fully ascribed to the missing shell
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FIG. 3. (Color online) Total (upper curves) and proton (lower
curves) density profiles of different Sn isotopes. Symbols: spherical
HF calculations. Solid lines: FD model Eq. (16). A vertical shift
of δρ = 0.02(0.04) fm−3 is applied to the density profiles of 132Sn
(150Sn), to better separate the different curves.
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FIG. 4. (Color online) Difference between the energy per particle
calculated in the ETF model and in the HF for the isotopic chain of
Ca (red symbols), Sn (green symbols), and Pb (black symbols). Solid
squares: zeroth-order TF approximation. Open squares: second-order
� expansion. Solid circles: experimental data.

effects. These effects, which cannot be accounted for by a
semiclassical model as ETF, could in principle be included
with Strutinsky smoothing techniques [7]. For the application
to the protoneutron star crust that we are interested in, however,
we do not expect this to be an important point, as shell effects
are known to rapidly wash out with increasing temperature.

To conclude, the use of the simple FD ansatz in the ETF
approach at second order in � has been found to reproduce
with a good accuracy the microscopic HF density profiles as
well as the HF binding energies, with an accuracy of the order
of 300 keV/nucleon for the lighter nuclei, and which does
not exceed 150 keV/nucleon for the heavy ones. A significant
improvement is found with respect to the previous work [18].

IV. SYMMETRY ENERGY FROM ETF

Let us now turn to a first application of the model. Given
the reasonably good reproduction of the smooth part of the
microscopic nuclear density, the ETF description can be used
to explore the functional form of the nuclear mass, and in
particular the separation in a bulk and surface term of its
isovector and isoscalar parts.

Such a separation is important for the extraction of the
largely unknown density behavior of the symmetry energy
from nuclear data [29]. Indeed it has been proposed in the
literature [30] that the symmetry energy can be strongly
constrained from the measurement of nuclear masses. These
estimations give the experimental constraints on the symmetry
energy, which have at present the smallest uncertainties [31].
The determination of the symmetry energy from nuclear
mass implies that the surface and bulk component of the
isospin dependence can be unambiguously distinguished.
However, very different values are reported in the literature
for the surface symmetry energy coefficient [32–35]. In a
two-component system, there are two possible definitions of
the surface energy, which depend on the definition of the bulk
energy in the cluster [20,25,36]: the first one corresponds
to identifying the bulk energy of a system of N neutrons

and Z protons to the energy of an equivalent piece of
nuclear matter ES = Sγe

≡ E − eA, where A = N + Z and
e is the energy per nucleon of uniform matter. The second
definition ES = Sγμ

≡ E − μnN − μpZ + pV corresponds
to the grand-canonical thermodynamical Gibbs definition. The
first definition is the standard surface energy of the droplet
model [37], while the second one gives the quantity to be
minimized in the variational calculation conserving proton
and neutron number. It was shown that the sign of the surface
symmetry energy depends on the choice between these two
possibilities [20,25,36]. Moreover it was argued [20] that the
case of liquid-drop model (LDM) mass formulas, where the
bulk energy is a function of the total mass number A and of
the global asymmetry I = (N − Z)/A only, is closer (though
not equal) to the Gibbs definition. This can explain why LDM
mass formulas systematically obtain negative (though widely
varying) surface symmetry energy coefficients [32–35].

If the total energy E is exactly known, the two decompo-
sitions are in principle exactly equivalent, meaning that the
surface symmetry energy is ill defined. However, the total
energy is never exactly known. In the case of empirical mass
formulas, it is given by a fit of experimental data. In the case of
ETF-based functionals, as in the present study, we are seeking
for the best possible approximation to the complete variational
HF problem within a given effective interaction. Therefore it is
important to determine if there is a decomposition that is best
suited to reproduce the Hartree-Fock energy. The variational
ETF theory imposes the use of local quantities instead of global
ones, and it therefore naturally leads to the use of the local
asymmetry parameter δ instead of I . This choice implies that
the surface symmetry energy shall be positive as we will show
hereafter.

A. Surface symmetry energy

In our model, the neutron and proton density profiles
are fully defined by the FD ansatz, which conserves the
particle numbers by construction and contains no variational
parameters. For this reason we do not need to introduce the
Gibbs surface tension [20], and will only refer to the definition
of the surface energy as the quantity deduced from the total
energy after subtraction of the energy the system would have
in the absence of the surface:

ES = EETF − EETF
sky [ρ(0) = ρsat(δ),ρ(1) = ρsat(δ)δ]

ρsat(δ)
A. (23)

As we have already observed, because of the presence of
the neutron skin, the isospin asymmetry distribution is not
uniform in the nuclear system. As a consequence, the bulk
asymmetry δ does not coincide with the global asymmetry I =
(N − Z)/A, see Eq. (19). It is clear that the symmetry energy
obtained from Eq. (23) will be different if one replaces the
subtracted bulk component evaluated at the bulk asymmetry
δ by the one evaluated at the global symmetry I . Most mass
formulas, both phenomenological [24,30] and microscopically
motivated [32–35], assume, however, that the bulk isospin
dependence is given by the the global asymmetry variable
I = (N − Z)/A. This is for instance the case of the reported

065807-6



In-MEDIUM NUCLEAR CLUSTER ENERGIES WITHIN THE . . . PHYSICAL REVIEW C 89, 065807 (2014)

−12

−8

−4

 0

   
E

/A
 (

M
eV

)

ETF (δ) 
ETF (I)  

Ref. [28]

−16

−12

−8

−4

E
b
/A

 (
M

eV
) 

 0

 10

 20

 30

−0.6 −0.4 −0.2  0  0.2  0.4  0.6

E
s/

A
2/

3
 (

M
eV

) 
   

  

I

FIG. 5. (Color online) Total (top) and bulk (center) energy per
nucleon and surface energy per surface nucleon (bottom) along
the isobaric chain A = 200. Red circles: ETF calculation including
the neutron skin effect Eq. (23) (see text). Green squares: ETF
calculation neglecting the neutron skin effect Eq. (25). Black
diamonds: estimation from Eq. (24).

Eq. (22) where the surface energy is defined as [28],

ELDM
S = ELDM − (

av − aa
v I 2)A. (24)

In Fig. 5 are compared, as a function of the global asymmetry
I , the energy and the symmetry energy obtained from Eqs. (21)
and (23), referred to as ETF(δ), the same energies but replacing
δ by I ,

E′
S = EETF − EETF

sky [ρsat(I ),ρsat(I )I ]

ρsat(I )
A, (25)

referred to as ETF(I), and the ones obtained from Eqs. (22) and
(24), referred to by Ref. [28]. This comparison is performed
for a representative isobaric chain A = 200. For such heavy
nuclei, the curvature terms play a minor role and the liquid-
drop formula (24) referred to by Ref. [28] leads to a nuclear
energy very close to the ETF model. However, because of the
very different partition between bulk and surface in the models
EFT(δ) and LDM (24), the surface symmetry energy shows an
opposite behavior in the two models. As a consequence, the
surface energy, and more specifically the surface symmetry
energy, depends on the prescription employed to remove the
bulk component, cf. Eqs. (23) and (25).

It is interesting to notice the very close behavior of the
surface energies given by ETF(I) and LDM (24) in Fig. 5.
This very similar behavior asserts the important role of
the asymmetry parameters δ and I . Specifically, the isospin
dependence of the symmetry energy shown also in Fig. 5 is
found to behave in an opposite way between the models EFT(δ)
and the two other models ETF(I) and LDM (24). Consistently
with Ref. [20], it can be deduced from the curvature of the
curves represented in the bottom panel of Fig. 5 that the choice
of the asymmetry variable has an important consequence on
the sign of the surface symmetry energy.

This effect is easy to understand analytically. Let us start
from the relation between the bulk asymmetry δ and the global
asymmetry I previously given by Eq. (19). In the limit of
small asymmetries, neglecting the Coulomb correction and
fixing x = 3aC/8Q and y = 9Esym/4Q, we can make the
approximation

δ2 =
(

I + xA1/3(1 − I )2

1 + yA−1/3

)2

≈ I 2[1 − 2yA−1/3 + g(A,I )],

(26)

where the residual term g(A,I ) contains terms of order x,y2

or smaller, which can be viewed as a correction with respect
to the previous term. We can see that the replacement of the
asymmetry parameter δ by I in Eq. (26), induces a correction
to the LDM, which is proportional to A−1/3. This means that
the ambiguity in defining the proper asymmetry parameter
in the bulk term of the LDM propagates to the surface term.
Moreover, replacing δ by I in the LDM induces an extra surface
symmetry term with a negative sign, cf. Eq. (26). Since the
surface symmetry term is positive in ETF(δ), the change of
sign in ETF(I) can be related to the negative extra term in
Eq. (26). In order to set this argument straight, let us now be
more quantitative.

In the parabolic approximation [18], the bulk part of the
ETF energy (21) is quadratic in δ:

EETF ≈ (λsat + Esymδ2)A + ES(A,I ), (27)

where λsat = EETF
sky (ρsat,0)/ρsat, see Eq. (B4) in the Appendix,

and ES is the surface energy as in Eq. (23), limA→∞ ES/A = 0.
If the same parabolic approximation is employed for the bulk
term of Eq. (25) as it is customarily done, see Eq. (24),

EETF ≈ (λsat + EsymI 2)A + E′
S(A,I ). (28)

Comparing Eqs. (27) and (28), and using Eq. (26), we
immediately get the following relation between the two surface
energies,

E′
S ≈ ES −

(
9E2

sym

2Q
A2/3 − Ag(A,I )

)
I 2. (29)

It is interesting to remark that this same equation was derived
in Ref. [20] as the difference between the microcanonical
(γe) and grand-canonical (γμ) surface energies, in the limit
of small asymmetries. This equation shows that the surface
energy E′

S contains an extra negative symmetry term due to
the nonuniformity of the isospin distribution. As a result, the
surface symmetry energy can change from positive to negative,
as it is shown in Fig. 5.

B. Curvature symmetry energy

In spherical symmetry it is well known that the surface
energy obtained from Eq. (23) does not exactly scale as A2/3,
but it contains slower varying terms, the dominant one being
a curvature term, proportional to A1/3. In Fig. 6 is displayed
the behavior with the mass number A of the surface energy
divided by A2/3, where the surface energy is obtained in
various ways: the red circles represent the surface energy
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FIG. 6. (Color online) Surface energy per surface nucleon as a
function of the nucleus mass. Red circles: ETF calculation including
the neutron skin effect Eq. (23) (see text). Green squares: ETF
calculation neglecting the neutron skin effect Eq. (25). Black
diamonds: estimation from Eq. (24).

defined by Eq. (23), where the bulk asymmetry parameter
δ is employed taking into account the nonuniformity of the
isospin asymmetry distribution in nuclei due to the presence
of a neutron skin; the green squares are obtained from Eq. (25),
where the bulk asymmetry is approximated by the global
asymmetry parameter I ; and the black diamonds stand for
surface energy deduced from the LDM (24). The left panel of
Fig. 6 shows the isoscalar behavior of the surface energy, where
the global asymmetry is fixed to be I = 0, while the right panel
shows the result by fixing the asymmetry parameter to a finite
value I = 0.4. Apart from the LDM (24) in the isoscalar case,
it is observed that the surface energy is not constant, revealing
the presence of a curvature energy in the considered models.

We can see from the left panel of Fig. 6 that the isoscalar
curvature energy is positive for the ETF models (23) and (25),
and zero for the LDM (24). The absence of the curvature
energy in the isoscalar part of the functional (24) is due to the
fact that this LDM formula was motivated by one-dimensional
slab calculations [28], which by definition do not contain this
term. The absence of a curvature energy is at the origin of the
poorer reproduction of nuclear masses for symmetric nuclei,
as observed in Fig. 2.

For the isoscalar case, there is almost no difference between
the asymmetry parameters I and δ, therefore the surface
energies (23) and (25) overlap on the left panel of Fig. 6. On
the right panel of Fig. 6 where I = 0.4 the symmetry energy
(23) is shifted up, and the symmetry energies (25) and (24)
are shifted down, as expected from Fig. 5. The curvature in
the case I = 0.4 is, however, given by a mixture of isoscalar
and isovector contributions. The effect of the isovector term in
the case of the surface energy (23) is, however, sufficiently
negative to overcome the isoscalar contribution. We can
therefore deduce from Fig. 6 that the curvature energy is
positive and the asymmetry curvature energy is negative in the
case of Eq. (23). In the case of the model (25), the isovector
term goes in the same direction as the isoscalar term, and the
trend of the surface symmetry is similar to the one from the

LDM (24). We can see from Fig. 6 that again the sign of the
surface symmetry term is opposite in the ETF models (23) and
(25), and that the ETF model neglecting the neutron skin effect
(25) has the same behavior as the mass formula (24).

This is again coming from the bulk contribution subtracted
in the two ETF models (23) and (25). Indeed Eq. (29) shows
that the difference between bulk δ and global I isospin
parameters induces an extra mass-dependent term, which
contributes negatively to the curvature surface symmetry en-
ergy. Neglecting the nonuniform isospin density distribution,
induced by neutron skin and Coulomb repulsion, a positive
symmetry curvature energy is obtained, while taking into
account the nonuniformity of the isospin density distribution,
a negative sign is found.

C. Hints from Hartree-Fock

According to the discussion in Secs. IV A and IV B, an
ambiguity exists in the definition and in the sign of the surface
symmetry energy, as well as of the curvature symmetry energy.
This ambiguity arises from the fact that the bulk asymmetry
of nuclei δ differs from their global asymmetry I because
of the presence of a neutron skin and, to a minor extent,
to the distortion of the density profile due to the Coulomb
interaction. Since I = δ at the thermodynamic bulk limit,
a priori both Eqs. (23) and (25) can be proposed as a definition
of the surface energy, and one may conclude that the surface
symmetry energy is ill defined.

At the level of the ETF approximation however, these two
equations are not equivalent and only Eq. (23) is theoretically
justified. Indeed, as we have discussed in Sec. II B, if we con-
sider only ground-state configurations, the ETF approximation
is equivalent to the solution of a set of coupled local Euler-
Lagrange equations. In the idealized situation of a system
with a locally constant density profile [ρ ′

q(r) = ρ ′′
q (r) = 0 for

a given value of r = r0], these equations simply read

λq = ∂h

∂ρq

(r0). (30)

This equation admits the simple local bulk solution ρq(r0) =
ρsat,q , where the saturation density ρsat,q has to be calculated
at the asymmetry δ(r0) = 1 − 2ρp(r0)/ρ(r0), that is the local
asymmetry. This reasoning implies that the bulk energy has to
be calculated with the local bulk asymmetry δ.

Another argument going in the same direction comes from a
comparison to HF calculations. Indeed, for the quantity defined
in Eq. (25) to vanish at the bulk limit, the ρsat,q parameters
entering the proton and neutron density profiles should be
identified with ρsat,q = (1 ± I )/2ρsat(I ), and the one entering
the total isoscalar density should read ρsat = ρsat(I ). Replacing
these quantities in Eq. (16) leads to a different model both
for the density profiles and for the ETF energy according to
Eq. (21). This alternative model, noted ETF(I) to distinguish
it from the ETF(δ) proposed in Sec. II C, can be compared
to HF calculations using the same Skyrme functional. This
comparison in shown in Table I for the representative case of
the total energy per nucleon and proton mean radius along the
Pb isotopic chain.
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TABLE I. Comparison between HF and ETF along the Pb isotopic
chain. The different columns give, from left to right: the mass number
of the isotope, the average isospin asymmetry, the bulk isospin
asymmetry [Eq. (19)], the mean HF proton radius, the percentage
deviation in the mean proton radius between HF and the ETF(I) and
the ETF(δ) models, the HF energy per nucleon, and the percentage
deviation in the energy per nucleon between HF and the ETF(I) and
the ETF(δ) model. The last line gives the arithmetic average along
the isotopic chain.

A I δ rp(HF ) %(I ) %(δ) EHF /A %(I ) %(δ)

180 0.09 0.08 5.31 −0.5 −1.1 −12.25 −0.3 −0.4
196 0.16 0.13 5.40 +0.8 −0.5 −11.93 +0.4 −0.1
216 0.24 0.19 5.50 +2.7 +0.4 −11.34 +1.8 +0.5
236 0.31 0.25 5.67 +3.4 +0.0 −10.51 +1.8 −0.2
256 0.36 0.29 5.77 +5.0 +0.6 −9.81 +3.6 +0.7
〈〉 0.23 0.19 5.53 +2.3 −0.1 −11.17 +1.4 +0.1

We can see that the ETF(δ) model systematically gives a
better reproduction of HF results, and the deviation between
ETF(δ) and ETF(I) increases with increasing difference be-
tween bulk δ and global I asymmetry parameters. The HF
result supports the intuitive idea behind Eq. (16), which is
related to the local character of the Euler-Lagrange variational
equations: the density in the bulk of a heavy nucleus is
related to the saturation density corresponding to the local bulk
asymmetry, and not to the global asymmetry of the nucleus.

In conclusion, these two arguments show that the model
EFT(δ) is better justified both from a theoretical point of
view and from a comparison to HF calculations. The bulk
energy shall therefore be parameterized in terms of the
bulk asymmetry, and the surface symmetry energy in the
corresponding LDM shall be positive.

V. NUCLEI IMMERSED IN A NUCLEON GAS

We now turn to the second application of this model,
which concerns the evaluation of the in-medium modification
of the nuclear ground-state energy due to the presence of
a surrounding nuclear gas of unbound nucleons. Having in
mind the evaluation of the equation of state and structure of
supernova matter [19], we have to consider excited states
of arbitrarily high energy. Above the particle separation
threshold, vibrations and deformations can be neglected
and the excited configurations essentially correspond to the
coexistence of nuclei of arbitrary isospin with a uniform
neutron gas composed both of protons and neutrons. The
extension of the formalism presented in Sec. II C to this
situation was already presented in Ref. [18]. Here we give
only the main points of the model, and address the reader to
Ref. [18] for further details. In a Wigner-Seitz cell occupied
by a uniform nucleon gas with densities ρg,q , the total density
profile of protons and neutrons in the cell can be decomposed
into a cluster and a gas component. Due to the high nuclear
incompressibility, we assume that the bulk density of the
clusters is not modified by the occupation of unbound particle
states [18]. Equation (16) is then replaced by a more general

ansatz, including the uniform gas, and given by

ρFD,q(r) ≡ ρsat,q(δ) − ρg,q

1 + exp(r − Rq)/aq

+ ρg,q . (31)

The bulk asymmetry δ of the cluster has also to be modified
from the vacuum expression Eq. (19) in order to include the
overlap of the cluster with the uniform gas. Indeed Eq. (19),
being an equation for a bound nucleus, applies only to the
bound part of the cluster Ae. In the spirit of the independent
particle model, this bound part can be defined as the ensemble
of bound states, obtained from the total number of particles
with the subtraction of the gas contribution,

Ae = [1 − ρg/ρsat(δ)]A; Ze = [1 − ρg,p/ρsat,p(δ)]Z, (32)

where ρg = ρg,n + ρg,p is the total isoscalar gas density.
The bulk asymmetry δe of the ensemble of bound cluster

states is given by Eq. (19) with A = Ae, Z = Ze and I =
1 − 2Ze/Ae, while the local asymmetry in the bulk of the
cluster is estimated as a linear combination of the asymmetries
coming from the bound and the unbound components:

δ =
(

1 − ρg

ρsat(δ)

)
δe + ρg

ρsat(δ)
δg, (33)

where δg = 1 − 2ρg,p/ρg is the gas asymmetry.
The total energy in the presence of a gas is still given by

Eq. (21), but it now depends both on the cluster and on the gas
density profiles through Eq. (31):

Etot
ETF =

∫
EETF

sky [ρFD,n + ρFD,p,ρFD,n − ρFD,p]d3r

= Etot
ETF(A,δ,ρg,δg). (34)

For an application to the equation of state at finite temperature
for supernovae matter [12–15], all the possible values of
A,δ,ρg , and δg have to be considered, and the relative weight of
the different configurations is given by the Boltzmann factor. If
we limit ourselves to a neutron-rich nuclear cluster embedded
in a pure neutron gas, the quality of the model can again be
judged in comparison to HF calculations. In Ref. [18], it was
shown that the quality of reproduction of complete HF results
of this model is almost independent of the presence of an
external gas.

The presence of a nucleon gas obviously modifies the
energy of the nuclear cluster. The in-medium modification
of the cluster energy δEm can be computed by subtracting to
the total energy the contribution of the gas alone and of the
nucleus alone, according to [18,19]:

δEm = Etot
ETF − EETF(A,Z) − VWSEETF

sky [ρg,ρgδg], (35)

where VWS is the total volume of the Wigner-Seitz cell, and
EETF(A,Z) is the energy of a nucleus (A,Z) in the vacuum
defined by Eq. (21). We can also express EETF(A,Z) from
Eq. (23) as

EETF(A,Z) = EETF
sky [ρsat(δ),ρsat(δ)δ]

ρsat(δ)
A + ES. (36)
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Finally the total ETF energy can be decomposed as

Etot
ETF =

∫ RHS

0
EETF

sky [ρ(0),ρ(1)]d3r +
∫ RWS

RHS

EETF
sky [ρ(0),ρ(1)]d3r

= EETF
sky [ρsat,ρsatδsat]VHS + EETF

sky [ρg,ρgδg]

× (VWS − VHS) + ES,m. (37)

and, as shown in Refs. [18,19], the total ETF energy is
constituted of both a bulk and a surface term. In Eq. (37),
VHS = A/ρsat the hard-sphere volume of the cluster, and ES,m

represents a surface term since the bulk parts have been
highlighted.

Using Eqs. (35)–(37), we can express the total in-medium
modification δEm = δEB + δES as a bulk and a surface term,
with

δEB = −A
EETF

sky [ρg,ρgδg]

ρsat(δ)
; δES = ES,m − ES. (38)

Since δES is proportional to two surface terms deduced from
Eqs. (36) and (37), we can expect the following relation to hold:
δES = csA

2/3, where the parameter cs should have a weak
dependence on A, revealing the small effect of the curvature
terms. The validity of this decomposition will be explicitly
tested below.

Finally the in-medium modified cluster energy, including
both the bulk and the surface energy shift, is given by:

Em(A,Z) = EETF(A,Z) + δEm = EB,m + ES,m, (39)

where

EB,m = (EETF
sky [ρsat(δ),ρsat(δ)δ] − EETF

sky [ρg,ρgδg]
) A

ρsat(δ)
(40)

and

ES,m = ES + δES. (41)

In the next section, the medium modification of the bulk
and surface energies are studied. In practice, a large set of
calculations is performed, varying the cluster size and isospin
asymmetry over a large domain of N and Z covering the whole
periodic table well beyond the neutron drip line. Preliminary
results with a simpler TF functional (zero order in �) were
already presented in Refs. [18,19]. As we show in the next
sections, the inclusion of higher-order terms slightly modifies
the absolute values of the energy shifts, but does not modify
the general trends reported in Refs. [18,19].

A. Medium modifications of the bulk energy

The in-medium bulk energy per nucleon EB,m/A, defined
by Eq. (40), and computed with the SLy4 interaction is
displayed in Fig. 7 as a function of the gas density (left side) for
different bulk asymmetries of the nucleus, and as a function of
the bulk asymmetry (right side) for different gas densities. Two
representative cases are considered: a gas asymmetry equal to
the cluster one δg = δ (bottom panels) and a pure neutron gas
δg = 1 (top panels).

For very neutron-rich clusters with δ ≈ 1, the case δg = 1
is relevant both for the ground state of the neutron star

−16

−8

 0 (a) (b)

−16

−8

 0

 0  0.04  0.08  0.12  0.16

   
   

   
   

   
   

   
E

B
,m

/A
 (

M
eV

)

ρg

(c)

 0  0.2  0.4  0.6  0.8

δ

(d)

FIG. 7. (Color online) In-medium bulk energy EB,m/A, defined
by Eq. (40), as a function of the gas density for a fixed bulk asymmetry
(left side) and as a function of the bulk asymmetry for a fixed
gas density (right side). Top: pure neutron gas (δg = 1). Bottom:
gas asymmetry equal to the bulk asymmetry (δg = δ). (a) and (c):
δ = 0.0 (solid red), δ = 0.2 (dashed green), δ = 0.4 (dotted blue),
δ = 0.6 (dash-dotted black). (b) and (d): ρg = 0.01 (solid red),
ρg = 0.04 (dashed green), ρg = 0.06 (dotted blue), ρg = 0.08 (dash-
dotted black).

inner crust, and for the most representative configurations of
neutron-rich matter at finite temperature. For nuclei close to
isospin symmetry, δ ≈ 0, the case δg = δ corresponds to the
most probable configurations at finite temperature. In all cases,
increasing gas density corresponds to physical situations at
higher density and/or temperature.

Imposing the gas asymmetry to be strictly equal to the
cluster asymmetry, amounts to disregarding isospin effects
(isospin fractionation) in the equilibrium. In this case we
recover the well known result that the cluster energy is
reduced by the presence of the surrounding medium, leading
to the dissolution of clusters at the critical Mott density
[38,39]. The critical Mott density can be defined as the density
corresponding to vanishing bulk binding, and is given by the
ending point of each curve in Fig. 7(c). This is the saturation
density ρsat(δ) and we recover that it monotonically decreases
with increasing cluster asymmetry [18].

In the case of stellar matter at β equilibrium the fractiona-
tion effect cannot be neglected, and the gas is systematically
more neutron rich than the clusters. In particular, in the specific
case of cold neutron star crust, the uniform gas is uniquely
constituted of neutrons [40]. The limiting case δg = 1 is thus
close to the physical condition of the low-temperature stellar
environment. In this case the trend with respect to the density
(at fixed asymmetry δ) is reversed.

The reduction of the in-medium bulk energy with respect
to the density at fixed δ is simple to understand: the first
term in Eq. (40) is constant at fixed δ, as well as the
common factor A/ρsat(δ), while the second term in Eq. (40)
is increasing with the gas density at fixed δg = 1. While this
effect seems a bit academic in Fig. 7(a), the consequence of
the shift is more interesting to comment in Fig. 7(b). It is
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known that in the sequence of nuclei predicted in the crust of
neutron stars [40], as the density increases, the asymmetry
in the bulk of the nuclear clusters δ also increases. This
sequence can be understood in part from Fig. 7(b) since as
ρg increases, the constant bulk energy path is going towards
more and more asymmetric clusters. Taking the sequence of
ground-state nuclei predicted in the crust of neutron stars
[40], the bulk energy departs from a quadratic behavior with
respect of the bulk asymmetry δ [18] since increasing the gas
density shifts down the bulk energy, as shown in Figs. 7(a)
and 7(b). This simple mechanism explains why clusters can
survive in environment extremely neutron rich as neutron star
crusts.

It is however surprising that for the gas densities considered
in Fig. 7, the medium modifications to the bulk energy
remain mostly quadratic with respect to δ at fixed ρg .
Nonquadraticities in δ are only observed for δ � 0.6, with or
without gas. (right part of Fig. 7). The quadratic dependence
of the bulk energy with respect to δ is therefore a robust
prediction, which goes beyond the case of isolated nuclei and
can be generalized to dilute nuclei to a large extent.

B. Medium modification of the surface energy

Figure 8 illustrates the surface tension, defined as the
scaled in-medium surface energy ES,m/A2/3, cf. Eq. (41), as
a function of the gas density ρg and of the bulk asymmetry
δ for the same gas compositions as for Fig. 7. The almost
perfect scaling with A2/3 shows that indeed the in-medium
modification of the binding energy is mainly a surface effect.
There are only few cases where the curves acquire a finite
width, reflecting a small contributions from curvature terms:
In Fig. 8(a) where δg = 1 and for the most neutron-rich clusters
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FIG. 8. (Color online) In-medium surface energy [see Eq. (41)]
as a function of the gas density for a fixed bulk asymmetry (left) and
as a function of the bulk asymmetry for a fixed gas density (right) (see
text). Top panels: pure neutron gas. Bottom panels: gas asymmetry
equal to the bulk asymmetry. (a) and (c): δ = 0.0 (solid red), δ = 0.2
(dashed green), δ = 0.4 (dotted blue), δ = 0.6 (dash-dotted black).
(b) and (d): ρg = 0.01 (solid red), ρg = 0.04 (dashed green),
ρg = 0.06 (dotted blue), ρg = 0.08 (dashed-dotted black).

(black curves), and in Fig. 8(c) where δg = δ and here also for
the most neutron-rich curves (for, e.g., black curves at ρg = 0).
The curvature terms have been discussed in Sec. IV B, and are
observed here to be maximal in the most asymmetric clusters
as the gas density increases.

Neglecting fractionation effects in Fig. 8(c), the surface
energy is reduced as the gas density increases and whatever the
cluster asymmetry. It vanishes at the corresponding saturation
density ρsat(δ), showing again the dissolution of clusters in
the dense medium. In Fig. 8(d), the dependence of the surface
energy with δ is mostly quadratic, even for the largest densities
considered here. The quadratic behavior of the surface energy
is well satisfied up to δ � 0.6, as in the case of the bulk energy.

It is quite surprising to find in the case of pure neutron gas,
Figs. 8(a) and 8(b), that the surface energy not only decreases
as the gas density increases, but can even become negative.
This can be understood from the fact that the surface energy
as defined by Eq. (37) represents the interface contribution
between the cluster and the gas. At finite gas density, this
interface energy contains contributions from both the cluster
and the gas. The contribution of the pure neutron gas to the
interface region is largely negative, since the interface region is
more symmetric than the gas. The negative contribution of the
gas dominates as the gas density increases, leading to negative
surface energy as shown in Fig. 8(a). This effect is lowered
when the cluster is more neutron rich, see Fig. 8(b).

It should also be remarked that the density as which
the surface energy becomes negative increases as the bulk
asymmetry increases. Since the ground-state configurations
predicted for the crust of neutron stars [40], have increasing
δ for increasing ρg , these configurations always correspond
to systems where the surface energy is positive [18,19].
Concerning the dependence of the surface energy on δ in
Fig. 8(b), we can see a very different behavior compared
with the previous cases: the quadratic approximation in δ is
completely lost due to the contribution of the gas, which is not
quadratic in δ, but in δg .

C. Dependence on the effective interaction

In this section, we show that the qualitative behaviors
that we have discussed in this paper are not modified if a
different Skyrme interaction is employed. In particular, the
positive sign of the surface symmetry energy that we have
discussed in Sec. IV A does not depend on the particular
effective interaction. However the quantitative values of the
clusters bulk and surface energies obviously depend on the
effective interaction parameters, and for a realistic treatment
of the stellar matter equation of state it is very important to
consistently treat within the same effective interaction both the
cluster and the free gas [18,19].

To study how the in-medium effects depend on the model,
we represent in Fig. 9 two representative situations of a
symmetric nucleus in a symmetric gas, and a neutron rich
nucleus in a pure neutron gas, with different Skyrme models.
We have chosen these specific interactions in order to span the
present uncertainties in the bulk parameters. These latter are
reported in Table II.
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FIG. 9. (Color online) In-medium bulk (left) and surface (right)
energy as a function of the gas density (see text). (a): clusters with
bulk asymmetry δ = 0 immersed in a symmetric gas. (b): clusters
with δ = 0.3 immersed in a pure neutron gas. Different models are
considered: Sly4 [17] (solid red), SkI3 [41] (dashed green), SGI [42]
(dotted blue), LNS [43] (dash-dotted black).

We can see that the qualitative behavior of the different
models is the same. A more complete study of the effective
interactions parameter space is needed to reach sound con-
clusions on the quantitative model dependence, but from the
representative chosen interactions we can dress some tentative
partial interpretation. The differences in bulk energy directly
reflect the uncertainties in present models of the bulk properties
of matter. These uncertainties are very small in the isoscalar
part, and the curves of the bulk symmetric systems, see curves
labeled (a) on the left panel, are indistinguishable except LNS
(dashed-dotted black lines). The LNS Skyrme model is known
to have a saturation density larger than the expected one, see
Table II, which is reflected in the fact that at ρg = 0 fm−3,
the LNS bulk energy is different from the others. It also leads
to slightly reduced in-medium modification, as observed in
Fig. 9. Concerning medium modifications to the bulk energy
in the neutron rich system, see curves labeled (b) on the left
panel, it is observed that SLy4 Skyrme interaction (solid red)
leads to slightly more important binding energy shift. This
is due to a nontrivial interplay of slightly different values
of Esym, Lsym, Ksym. Concerning the surface energies, the
behavior appears very stable. The only exception is the gas
density behavior of the neutron-rich system, curves (b) in the
right panel, calculated with SkI3 (dashed green). This steep in

TABLE II. Bulk nuclear properties for the different Skyrme
interactions examined in this paper.

NN potential ρsat K Lsym Ksym Esym

(fm−3) (MeV) (MeV) (MeV) (MeV)

SLY4 0.159 230.0 46.0 −119.8 32.00
SGI 0.154 261.8 63.9 −52.0 28.33
SkI3 0.158 258.2 100.5 73.0 34.83
LNS 0.175 210.8 61.5 −127.4 33.43

medium modification is probably due to the very stiff isovector
properties of this effective interaction.

To conclude, we can see that, independent of the model,
the in-medium modifications are not negligible and should
be accounted for in a realistic equation of state. Due to the
simple expression (37), these corrections can be tabulated as a
function of (A,I,ρg,n,ρg,p) and straightforwardly introduced
in the equation-of-state calculations [18,19] as a modification
of the cluster energy functional with no extra computational
cost.

VI. CONCLUSIONS

In this paper we have considered a simple analytical mod-
eling of the nuclear density profiles allowing us to calculate
nuclear binding energies within the extended Thomas-Fermi
approximation at the second order in �. Through a comparison
to HF calculations for some representative nuclei, we have
shown that a simple Fermi-Dirac profile is sufficiently flexible
to reach a precision in the energy of the order of a 100–200
keV/nucleon, and the widening of the variational space
considering FGD trial densities does not introduce any sizable
improvement of the predictive power of the model.

Two different applications of the model were presented. The
first one concerns the definition of the bulk and surface part of
the symmetry energy of finite nuclei, which is important for
the extraction of equation-of-state parameters for astrophysical
applications. We have shown that the variational character of
the ETF formalism suggests that the bulk part of the nuclear
energy depends on the central bulk asymmetry δ rather than
on the global asymmetry of the nucleus I , which is usually
considered in LDM. This statement, which is confirmed
by a detailed comparison to HF calculations, implies that
the surface symmetry energy contributes positively to the
total symmetry energy of the nucleus. The choice of the
global asymmetry parameter I considered in LDM, while not
consistent with ETF, explains the ambiguities reported in the
literature concerning the sign of the surface symmetry energy.

The second application concerns the evaluation of the
in-medium energy shift, which is experienced by a nucleus
immersed in the gas of its continuum states, as it is the case
in supernova matter and in the inner crust of (proto)neutron
stars. We have shown that the presence of an external gas
induces both a bulk and a surface energy shift, which depend,
in a highly complex and nonlinear way, on the asymmetry
of the cluster and the asymmetry and density of the gas. The
absolute values of these energy shifts can be comparable to
or higher than the nuclear binding energy, meaning that the
coexistence of nuclei and free particles in stellar matter cannot
be modelized as a mixture of noninteracting nuclear species
as it is done in the current models of stellar equations of state
[12,14,19].
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APPENDIX A: COEFFICIENTS OF
THE SKYRME FUNCTIONAL

Here we write the coefficients of the Skyrme functional as
given by Ref. [21],

C
ρ
0 = 3

8 t0 + 3
48 t3ρ

(0)α(r) (A1)

C
ρ
1 = − 1

8 t0(2x0 + 1) − 1
48 t3(2x3 + 1)ρ(0)α(r) (A2)

C
�ρ
0 = 1

64 [−9t1 + t2(4x2 + 5)] (A3)

C
�ρ
1 = 1

64 [3t1(2x1 + 1) + t2(2x2 + 1)] (A4)

Cτ
0 = 1

16 [3t1 + t2(4x2 + 5)] (A5)

Cτ
1 = 1

16 [−t1(2x1 + 1) + t2(2x2 + 1)] (A6)

C∇J
0 = − 3

4W0 (A7)

C∇J
1 = − 1

4W0 (A8)

CJ
0 = − 1

16 [t1(2x1 − 1) + t2(2x2 + 1)] (A9)

CJ
1 = − 1

16 [−t1 + t2]. (A10)

APPENDIX B: ANALYTICAL DENSITY PROFILE FOR
SYMMETRIC NUCLEI IN SPHERICAL SYMMETRY

Following the derivation of Ref. [2]. our starting point is
the one-dimensional Euler equation given by Eq. (13),

λ = dh

dρ
+ C∇ (∇ρ)2 + C��ρ. (B1)

In the limit of very large r , this equation simplifies to:

λ = 1

36

�
2

2m

[(
ρ ′

ρ

)2

− 2
ρ ′′

ρ

]
, (B2)

which gives

ρ(r) ∝ e−r/aout with aout =
√

− �2

2m

1

36λ
. (B3)

The value of λ is obtained by considering the bulk limit of
Eq. (B1). In this limit we have:

λ = ∂EETF
sky

∂ρ

∣∣∣∣
ρsat

= EETF
sky

ρ

∣∣∣∣
ρsat

≡ λsat, (B4)

where we can recognize λsat as the chemical potential of
symmetric nuclear matter at saturation.

Close to the bulk limit, that is for r → 0 and Rν → ∞,
linearizing Eq. (B1) introducing ρ(r) = ρsat + δρ gives

λsat = dh

dρ
(ρsat) + d2h

dρ2
(ρsat)δρ + C�(ρsat)δρ

′′, (B5)

where we have defined fsat = f (ρsat) = 1 + κρsat. Solving
Eq. (B5) leads to

δρ(r) ∝ e(r−Rν )/ain (B6)

with

Ksat

9
a2

in = �
2

2m

1

3

[
1

6
− 7

3
κρsat + κρsat

2fsat

]

−C∇J
0 BJ

ρ2
sat

fsat
+ 2C

�ρ
0 ρsat, (B7)

where Ksat = 9ρsat∂
2EETF

sky /∂ρ2|ρ=ρsat is the nuclear matter
incompressibility. To achieve the two asymptotic behaviors,
the density profile can be represented as a generalized Fermi
function (GFD) ρ = ρGFD = ρsatFν with

Fν(r) = (1 + e(r−Rν )/aν )−ν . (B8)

Comparing equations (B3) and (B6) with (B8), we have

aν = ain; ν = ain

aout
= 6aν

�

√
−2mλsat. (B9)

The link between the parameter Rν and the particle number
is deduced from the leptodermous series development of aν/Rν

of the integral giving the particle number:

A = 4π

∫ ∞

0
drρGFD(r)r2. (B10)

The moments Im
ν of the GFD ansatz have been calculated in

Ref. [44], as,

Im
ν =

∫ +∞

0
drFν(r)rm

� Rm+1
ν

m + 1

[
1 + (m + 1)

m∑
n=0

(
m

n

)
η(n)

ν

(
aν

Rν

)n+1 ]
, (B11)

where

η(n)
ν = (−1)n

∫ ∞

0
du

[
1 + (−1)n e−νu

(1 + e−u)ν
− 1

]
un, (B12)

Replacing in Eq. (B10) gives

A= 4

3
πρsatR

3
ν

[
1 + 3η(0)

ν

aν

Rν

+ 6η(1)
ν

(
aν

Rν

)2

+ 3η(2)
ν

(
aν

Rν

)3]
.

If aν  Rν this expression can be inverted giving at third order
in the leptodermous expansion:

Rν

RHS
� 1 − η(0)

ν

a

RHS
+ [(

η(0)
ν

)2 − 2η(1)
ν

]( a

RHS

)2

−
[

2

3

(
η(0)

ν

)3 − 2η(0)
ν η(1)

ν + η(2)
ν

](
a

RHS

)3

, (B13)

where RHS = (3A/4πρsat)1/3 is the equivalent homogeneous
sphere radius.

In conclusion, the parameters of the GFD ansatz given by
the parametric form (15) and (B6) can be determined in the
following way: ρsat is the saturation density of nuclear matter,
aν is given by Eq. (B8), ν is given by Eq. (B9) and Rν is given
by Eq. (B13).
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APPENDIX C: INCLUSION OF THE SPIN-ORBIT
CURRENT FOR SYMMETRIC NUCLEI

IN SPHERICAL SYMMETRY

The nuclear interactions considered in this work neglect
the contribution of the spin-orbit current J (t)2 in the functional
(1). In this section, we give the corrections to be applied to the
Euler equation without neglecting the spin-orbit current.

In symmetric nuclei, the spin-orbit potential W (9) reduces
to the simpler form,

W = CJ
0 J − C∇J

0 ∇ρ. (C1)

Injecting Eq. (C1) into Eq. (8) gives

J = BJ (ρ)
ρ∇ρ

f
, (C2)

with

BJ (ρ) = 2m

�2

C∇J
0

1 + 2m
�2 CJ

0
ρ
f

. (C3)

Setting CJ
0 = 0 in Eq. (C3) allows to recover the definition

of the constant BJ used in this work. Now the coefficient
BJ (C3) is a function of the density, and it will modify the
Euler-Lagrange equation (12).

The correction to Eq. (13) induced by the spin-orbit current
is given by the modification of only two terms:

C∇(ρ) → C∇(ρ) + 1

2
C∇J

0
dBJ (ρ)

dρ

ρ

f
(C4)

dh

dρ
→ dh

dρ
− CJ2

0 BJ (ρ)
dBJ (ρ)

dρ
ρ. (C5)
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[3] M. Centelles, M. Pi, X. Viñas, F. Garcias, and M. Barranco,

Nucl. Phys. A 510, 397 (1990).
[4] E. Surand and D. Vautherin, Phys. Lett. B 138, 325 (1984).
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