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Massive neutron stars with a hyperonic core: A case study with the IUFSU
relativistic effective interaction
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The recent discoveries of massive neutron stars, such as PSR J0348 + 0432 and PSR J1614–2230, have raised
questions about the existence of exotic matter such as hyperons in the neutron star core. The validity of many
established equations of states (EoSs) like GM1 and FSUGold are also questioned. We investigate the existence
of hyperonic matter in the central regions of massive neutron stars by using relativistic mean field (RMF) theory
with the recently proposed Indiana University Florida State University (IUFSU) model. The IUFSU model is
extended by including hyperons to study the neutron star in β equilibrium. The effect of different hyperonic
potentials, namely � and � potentials, on the EoS and hence the maximum mass of neutron stars has been
studied. We have also considered the effect of stellar rotation since the observed massive stars are pulsars. It
has been found that a maximum mass of 1.93M�, which is within the 3σ limit of the observed mass of PSR
J0348 + 0432, can be obtained for rotating stars, with certain choices of the hyperonic potentials. The said star
contains a fair amount of hyperons near the core.
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I. INTRODUCTION

The recent discoveries of the massive neutron stars PSR
J0348 + 0432 [1] and PSR J1614–2230 [2] have brought new
challenges for theories of dense matter beyond the nuclear
saturation density. Recently, the radio timing measurements of
the pulsar PSR J0348 + 0432 and its white dwarf companion
have confirmed the mass of the pulsar to be in the range
of 1.97–2.05M� at 68.27% or 1.90–2.18M� at 99.73%
confidence [1]. This is only the second neutron star (NS)
with a precisely determined mass around 2M�, after PSR
J1614–2230, and has a 3σ lower mass limit 0.05M� higher
than the latter. It therefore provides the tightest reliable lower
bound on the maximum mass of neutron stars.

Compact stars provide the perfect astrophysical environ-
ment for testing theories of cold and dense matter. Densities
at the core of neutron stars can reach values of several times
of 1015 gm/cm3. At such high densities, the energies of the
particles are high enough to favor the appearance of exotic
particles in the core. Since the lifetime of neutron stars are
much greater than those associated with the weak interaction,
strangeness conservation can be violated in the core due to
the weak interaction. This would result in the appearance
of strange particles such as hyperons. The appearance of
such particles produces new degrees of freedom, which
results in a softer equation of state (EoS) in the neutron star
interior.

The observable properties of compact stars depend crucially
on the EoS. According to the existing models of dense matter,
the presence of strangeness in the neutron star interior leads to
a considerable softening of the EoS, resulting in a reduction of
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the maximum mass of the neutron star [3–6]. Therefore, many
existing theories involving hyperons cannot explain the large
pulsar masses [7]. Most relativistic models obtain maximum
neutron star masses in the range 1.4–1.8M� [8–15] when
hyperons are included. Some authors have tackled this problem
by including a strong vector repulsion in the strange sector or
by pushing the threshold for the appearance of hyperons to
higher densities [15–22].

In several studies the maximum neutron star masses were
generally found to be lower than 1.6M� [4–6,23–27], which
is in contradiction with observed pulsar masses. However,
neutron stars with maximum mass larger than 2M� have
been obtained theoretically. Bednarek et al. [28] achieved a
stiffening of the EoS by using a nonlinear relativistic mean field
(RMF) model with quartic terms involving the strange vector
meson. Lastowiecki et al. [29] obtained massive stars including
a quark matter core. Taurines et al. [30] achieved large neutron
star masses including hyperons by considering a model with
density-dependent coupling constants. The coupling constants
were varied nonlinearly with the scalar field. Bonanno and
Sedrakian [31] also modeled massive neutron stars including
hyperons and a quark core by using a fairly stiff EoS and
vector repulsion among quarks. The authors of Ref. [32]
incorporated higher-order couplings in RMF theory in addition
to kaonic interactions to obtain the maximum neutron star
mass. Agrawal et al. [33] optimized the parameters of the
extended RMF model by using a selected set of global
observables which includes binding energies and charge radii
for nuclei along several isotopic and isotonic chains and the
isoscalar giant monopole resonance energies for the 90Zr
and 208Pb nuclei. Weissenborn et al. [34] investigated the
vector-meson–hyperon coupling, going from the SU(6) quark
model to a broader SU(3), and concluded that the maximum
mass of a neutron star decreases linearly with the strangeness
content of the neutron star core, independent of the nuclear
EoS. On the other hand, H. Dapo et al. [6] found that, for
several different bare hyperon-nucleon potentials and a wide
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range of nuclear matter parameters the hyperons in neutron
stars are always present.

The parameters of the RMF model are fit to the saturation
properties of the infinite nuclear matter and/or the properties of
finite nuclei. As a result, extrapolation to higher densities and
asymmetry involve uncertainties. Three of these properties
of the infinite nuclear matter are more precisely known:
(a) the saturation density, (b) the binding energy, and (c)
the asymmetry energy, compared with the remaining ones—
the effective nucleon mass and the compression modulus
of the nuclear matter. The uncertainty in the dense matter
EoS is basically related to the uncertainty in these two
saturation properties. It has been seen that, to reproduce
the giant monopole resonance (GMR) in 208Pb, accurately
fit nonrelativistic and relativistic models predict compression
moduli in the symmetric nuclear matter (K) that differ by about
25%. The reason for this discrepancy is the density dependence
of the symmetry energy. Moreover, the correlation alluded to
between K and the density dependence of the symmetry energy
results in an underestimation of the frequency of oscillations
of neutrons against protons; the so-called isovector giant
dipole resonance (IVGDR) in 208Pb. FSUGold is a recently
proposed accurately calibrated relativistic parametrization. It
simultaneously describes the GMR in 90Zr and 208Pb and
the IVGDR in 208Pb without compromising the success in
reproducing the ground-state observables [35]. The main
virtue of this parametrization is the softening of both the EoS
of symmetric nuclear matter and the symmetry energy. This
softening appears to be required for an accurate description of
different collective modes having different neutron-to-proton
ratios. As a result, the FSUGold effective interaction predicts
neutron star radii that are too large and a maximum stellar
mass that is too small [36].

The Indiana University Florida State University (IUFSU)
interaction is a new relativistic parameter set, derived from
FSUGold. It is simultaneously constrained by the properties
of finite nuclei, their collective excitations, and the neutron
star properties by adjusting two of the parameters of the
theory—the neutron skin thickness of 208Pb and the maximum
neutron star mass [37]. As a result the new effective interaction
softens the EoS at intermediate densities and stiffens the
EoS at high density. As it stands now, the new IUFSU
interaction reproduces the binding energies and charge radii
of closed-shell nuclei, various nuclear giant (monopole and
dipole) resonances, the low-density behavior of pure neutron
matter, the high-density behavior of the symmetric nuclear
matter, and the mass-radius relationship of neutron stars.
Whether this new EoS can accommodate the hyperons inside
the compact stars, with the severe constraints imposed by the
recent observations of ∼2M� pulsars, needs to be explored. In
this work we make a detailed study of such a possibility. For
this purpose we extended the IUFSU interaction by including
the full baryon octet. A new EoS is constructed to investigate
the neutron star properties with hyperons.

The paper is organized as follows: In Sec. II, we briefly
discuss the model used and the resulting EoS. In the next
section we use this EoS to look at static and rotating star
properties. We give a brief summary in Sec. IV.

II. IUFSU WITH HYPERONS

One of the possible approaches to describe neutron star
matter is to adopt an RMF model subject to β equilibrium
and charge neutrality. For our investigation of nucleons and
hyperons in the compact star matter we choose the full standard
baryon octet as well as electrons and muons. Contribution from
neutrinos are not taken into account by assuming that they can
escape freely from the system. In this model, the baryon-
baryon interaction is mediated by the exchange of scalar (σ ),
vector (ω), isovector (ρ), and strange vector (φ) mesons. The
Lagrangian density we consider is given by [37]

L =
∑
B

ψ̄B

[
iγ μ∂μ − mB + gσBσ − gωBγ μωμ − gφBγ μφμ

− gρB

2
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2
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)(
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) + 1
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φφμφμ
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μν +
∑

l

ψ̄l[iγ
μ∂μ − ml]ψl, (1)

where the symbol B stands for the baryon octet (p, n, �, �+,
�0, �−, �−, �0) and l represents e− and μ−. The masses mB ,
mσ , mω, mρ , and mφ are, respectively, for baryons and for σ , ω,
ρ, and φ mesons. The antisymmetric tensors of vector mesons
take the forms Fμν = ∂μων − ∂νωμ, Gμν = ∂μ �ρν − ∂ν �ρμ +
g[ �ρμ, �ρν], and Hμν = ∂μφν − ∂νφμ. The isoscalar meson self-
interactions (via κ , λ, and ζ terms) are necessary for the
appropriate EoS of the symmetric nuclear matter [38]. The
new additional isoscalar-isovector coupling (�v) term is used
to modify the density dependence of the symmetry energy
and the neutron-skin thickness of heavy nuclei [36,37]. The
meson-baryon coupling constants are given by gσB , gωB , gρB ,
and gφB .

All the nucleon-meson parameters used in this work are
shown in Table I. The saturation properties of the symmetric
nuclear matter produced by IUFSU are saturation density n0 =
0.155 fm−3, binding energy per nucleon ε0 = −16.40 MeV,
and compression modulus K = 231.2 MeV.

TABLE I. Parameter sets for the two models discussed in the
text. The nucleon mass and the meson masses are kept fixed at mn =
939 MeV, mσ = 491.5 MeV, mω = 782.5 MeV, mρ = 763 MeV, and
mφ = 1020 MeV in both of the models.

Model g2
σn g2

ωn g2
ρn κ λ ζ �v

(MeV)

FSU 112.1996 204.5469 138.4701 1.4203 0.023762 0.06 0.030
IUFSU 99.4266 169.8349 184.6877 3.3808 0.000296 0.03 0.046
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The hyperon-meson couplings are taken from the SU(6)
quark model [39,40] as

gρ� = 0, gρ� = 2gρ� = 2gρN,

gω� = gω� = 2gω� = 2

3
gωN,

2gφ� = 2gφ� = gφ� = −2
√

2

3
gωN .

The scalar couplings are determined by fitting the hyperonic
potential,

U
(N)
Y = gωY ω0 + gσY σ0, (2)

where Y stands for the hyperon and σ0, ω0 are the values of the
scalar and vector meson fields at saturation density [9]. The
values of U

(N)
Y are taken from the available hypernuclear data.

The best known hyperonic potential is that of �, having a value
of about U

(N)
� = −30 MeV [41]. In case of � and � hyperons,

the potential depths are not as clearly known as in the case
of �. However, analyses of laboratory experiments indicate
that, at nuclear densities, the �-nucleon potential is attractive
but the �−-nucleon potential is repulsive [42]. Therefore, we
have varied both U

(N)
� and U

(N)
� in the range of −40 MeV to

+40 MeV to investigate the properties of neutron star matter.
For neutron star matter, with baryons and charged leptons,

the β-equilibrium conditions are guaranteed with the following
relations between chemical potentials for different particles:

μp = μ�+ = μn − μe,

μ� = μ�0 = μ�0 = μn,
(3)

μ�− = μ�− = μn + μe,

μμ = μe,

and the charge neutrality condition is fulfilled by

np + n�+ = ne + nμ− + n�− + n�− , (4)

where ni is the number density of the ith particle. The effective
chemical potentials of baryons and leptons can be given by

μB =
√

kB
F

2 + m∗2

B + gωBω + gρBτ3Bρ, (5)

μl =
√

Kl
F

2 + m2
l , (6)

where m∗
B = mB − gσBσ is the baryon effective mass and Kl

F

is the Fermi momentum of the lepton (e, μ). The EoS of
neutron star matter can be given by

ε = 1

2
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24
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3
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where ε and P stand for energy density and pressure,
respectively, and γB is the baryon spin-isospin degeneracy
factor.

In Fig. 1 we plot the EoS for different values of the
hyperonic potentials. The upper branch is for the usual nuclear
matter which does not contain any strange particles.
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FIG. 1. (Color online) (a) EoS obtained with varying U
(N)
� at fixed U

(N)
� . The upper branch shows the EoS for a system containing nucleons,

leptons, and all the nonstrange mesons. The middle branch shows the EoS for a system containing the whole baryon octet, the leptons, and
the σ , ω, ρ, and φ mesons. The lower branch shows the EoS for the particles contained in the middle branch except φ. (b) EoS obtained with
varying U

(N)
� at fixed U

(N)
� . The compositions of the upper, middle and lower branches are same as those of panel (a), respectively.
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The middle and lower branches are for the full baryon octet,
leptons, and σ , ω, and ρ mesons. In addition, the middle branch
contains the φ meson. In the left panel, [i.e., in Fig. 1(a)], we
keep U

(N)
� fixed at −18 MeV, this value is generally adopted

from hypernuclear experimental data [43]. For the middle and
lower branches we vary the � potential from −40 MeV to
+40 MeV in steps of 20 MeV. The lower branch shows that, for
an attractive � potential, the EoS gets stiffer as U

(N)
� increases.

However as U
(N)
� becomes positive the EoS seems to become

independent of U
(N)
� . We see from Fig. 1(a) that, for U

(N)
� >

0 MeV, the EoS remains identical to that for U
(N)
� = 0 MeV.

However, once we add a φ meson to the system, the EoS
continues to get stiffer as U

(N)
� moves to more positive side

[middle branch of Fig. 1(a)].
We then fix U

(N)
� and vary U

(N)
� . This is represented in

Fig. 1(b), where we have fixed the value of U
(N)
� = +30 MeV

(adopted from hypernuclear experimental data [43]). We
vary U

(N)
� from −40 MeV to +40 MeV. We see that, for

the lower branch, i.e., the case without the φ meson, the
EoS gets stiffer with the increase in the � potential up to
U

(N)
� = 0 MeV. However, for positive values of U

(N)
� the EoS

remains unchanged. Adding an extra repulsion to the system
by including the φ meson changes the scenario altogether.
The EoS becomes totally independent of the � potential
[middle branch of Fig. 1(b)]. From Figs. 1(a) and 1(b), one
can generally conclude that the inclusion of φ meson makes
the EoS stiffer; however, the hyperonic EoS is much softer
than the usual nuclear matter EoS.

In Fig. 2 we plot the particle fractions for an attractive �

potential U
(N)
� = −30 MeV and a repulsive potential U

(N)
� =

+30 MeV, keeping U
(N)
� fixed at −18 MeV, with and without

φ in each case. From Fig. 2(a), when φ is not present, we
see that all the hyperons contribute to the particle fractions
for an attractive � potential whereas for repulsive U

(N)
� there

is no � present in the matter [Fig. 2(b)]. The appearance
of � is also pushed to higher density compared to the case
of an attractive potential. When φ is included in the system
�0 and �− appear with � for U

(N)
� = −30 MeV [Fig. 2(c)].

However, for U
(N)
� = +30 MeV [Fig. 2(d)], the threshold of

�− is pushed to higher density compared to the case of U
(N)
� =

−30 MeV, �0 disappears, and �− appears in the system. We
also note that, in the case of the attractive � potential, �− is
always the first hyperon to appear in the system. For repulsive
U

(N)
� , �− appears before others in the “σωρ” case and � is

the the first hyperon to appear in case of “σωρφ.”
From Fig. 2 we see that, for negative values of U

(N)
� , the

�s are bound in matter and the effective mesonic interaction
would be more attractive as the potential gets deeper. As a
result, the EoS gets softer with a more attractive U

(N)
� [see

Fig. 1(a)]. For U
(N)
� � 0, the �s are no longer bound to

matter and the effective mesonic interaction becomes more and
more repulsive with increasing U

(N)
� . This should, in principle,

stiffen the EoS. However, for the “σωρ” case, up to neutron
star densities, i.e., about nB � (4–7)n0, �s are not present in
the matter when the potential is repulsive and hence the EoS
up to these densities becomes insensitive to U

(N)
� .
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FIG. 2. (Color online) Particle fractions for different � potential
depths: (a) for “σωρ” with U

(N)
� = −30 MeV, (b) for “σωρ” with

U
(N)
� = +30 MeV, (c) for “σωρφ” with U

(N)
� = −30 MeV, and (d)

for “σωρφ” with U
(N)
� = +30 MeV. U

(N)
� is fixed at −18 MeV in

each case.

In Fig. 3 the particle fractions are plotted for an attractive �

potential U
(N)
� = −30 MeV and a repulsive potential U

(N)
� =

+30 MeV keeping U
(N)
� fixed at +30 MeV. We see that, in

the first case, i.e., when φ is not present and the potential
is attractive [Fig. 3(a)], all the hyperons except the �s are
present in the system and the � hyperon dominates. When
the � potential becomes positive [Fig. 3(b)], �0 disappears
and the threshold for appearance of �− shifts to much higher
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FIG. 3. (Color online) Particle fractions for different � potential
depths: (a) for “σωρ” with U

(N)
� = −30 MeV, (b) for “σωρ” with

U
(N)
� = +30 MeV, (c) for “σωρφ” with U

(N)
� = −30 MeV, (d) for

“σωρφ” with U
(N)
� = +30 MeV. U

(N)
� is fixed at +30 MeV in each

case.

density. However �− is present in matter in this potential and
it appears before �−. When φ is introduced into the system,
for an attractive � potential [Fig. 3(c)], again �− and �− are
present along with �. However, the difference from Fig. 3(b),
i.e., the “σωρ” case and U

(N)
� � 0, is that here, �− appears

much before �−. In the last case [Fig. 3(d)], we see that, as a
result of the combined effects of inclusion of φ and repulsive
potentials, only the � and �− are present in the system. From

both Figs. 2 and 3, we see that the inclusion of φ meson
decreases the density of hyperons. Since φ is a strange particle,
further strangeness is suppressed and, as a result, the hyperon
densities are reduced compared to the “σωρ” case.

III. STATIC AND ROTATING STARS

In this section we are going to discuss the properties of
static and rotating axisymmetric stars using the EoS which we
have studied in the last section. The EoS without φ meson is
softer compared to that with φ meson. So we do not discuss
the EoS without φ because it results in less maximum mass.

The stationary, axisymmetric spacetime used to model the
compact stars are defined through the metric

ds2 = −eγ+ρdt2 + e2α(dr2 + r2dθ2)

+ eγ−ρr2 sin2 θ (dφ − ωdt)2, (9)

where α, γ , ρ, and ω are the gravitational potentials which
depend on r and θ only.

In this work we adopt the procedure of Komatsu et al. [44]
to look into the observable properties of static and rotating
stars. Einstein’s equations for the three gravitational potentials
γ , ρ, and ω can be solved by using the Green’s function
technique. The fourth potential α can be determined by using
these three potentials. Once these potentials are determined
one can calculate all the observable quantities using those.
The solution of the potentials and hence the determination of
physical quantities is numerically quite an involved process.
For this purpose the RNS code [45] is used in this work. This
code, developed by Stergoilas, is very efficient in calculating
the rotating star observables.

We discuss the properties of static stars first. In Fig. 4
we plot the mass-radius curves of static stars using the EoS
with “σωρφ.” A plot for the pure nuclear matter case is also
given for comparison (uppermost curve of both panels). The
maximum mass of the pure nuclear matter star in the static case
is 1.92M� with a radius of 11.24 km. We found that the mass
of a hyperonic star becomes maximum for UN

� = +40 MeV
and UN

� � 0 MeV. Hence, in Figs. 4 and 5 we have shown
the effect of these potentials on the maximum mass of
neutron stars by fixing one of the potentials at +40 MeV and
varying the other. The left panel [i.e., Fig. 4(a)] corresponds to
U� = +40 MeV and U� varying from −40 MeV to +40 MeV.
In the right panel [i.e., in Fig. 4(b)] it is the other way around.
From Fig. 4(a) one can see that the maximum mass of the star
increases with U

(N)
� . For U

(N)
� = +40 MeV the maximum

mass is 1.62M� with a radius of 10.82 km. The central energy
density of such a star is εc = 2.46 × 1015 gm/cm3. This is
a reflection of the EoS shown in Fig. 1(a), which shows that
the EoS becomes stiffer with increasing U

(N)
� . However, as

seen from Fig. 4(b), the maximum mass of static stars is
insensitive to U

(N)
� , which should be obvious from Fig. 1(b)

because the EoS is independent of the cascade potential.
Furthermore, from Fig. 3(d) one can see that there is no
cascade present in the medium. So the insensitivity of the EoS
and hence the maximum mass, towards the cascade potential
is expected. One should note that the maximum mass we
obtain for the static stars is less than the observed mass of PSR
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FIG. 4. (Color online) Mass-radius curves for static star fixing the (a) � potential depth at U
(N)
� = +40 MeV and varying the U

(N)
� . (b) �

potential depth at U
(N)
� = +40 MeV and varying the U

(N)
� . The uppermost curve in each case corresponds to the pure nuclear matter.

J0348 + 0432. So the static stars with hyperons in the IUFSU
parameter set cannot incorporate a maximum mass ∼2M�.
However, since both of the observed ∼2M� stars are pulsars,
it would be a better idea to compare the observations with
results from the rotating stars, which we do in the next part.

In Fig. 5 we plot the mass-radius curves for stars rotating
with Keplerian velocities, for two cases. In Fig. 5(a) we fix the
cascade potential at U

(N)
� = +40 MeV and vary U

(N)
� from

−40 MeV to +40 MeV. In Fig. 5(b) it is the other way
around. The pure nuclear matter case is also shown in the
uppermost curve. The maximum mass for the pure nucleonic
star is 2.29M� with a radius of 15.31 km. We see that the
maximum mass obtained for a rotating star with hyperonic core
is 1.93M� with a radius of 14.7 km in the Keplerian limit with
angular velocity � = 0.86 × 104 s−1, for U

(N)
� = +40 MeV

and U
(N)
� � 0. As in the case of a static sequence, we see that

the maximum mass for the rotating case also increases with
U

(N)
� as we go towards more positive values of this potential.

At U
(N)
� = −40 MeV we get a maximum mass of 1.79M�

whereas for U
(N)
� = +40 MeV the maximum mass is 1.93M�.

The effect of U
(N)
� is much less significant on the maximum

mass. From U
(N)
� = −40 MeV to U

(N)
� = +40 MeV, mass is

changed only by �M = 0.03M�.

In order to have a look at the composition of the maximum
mass star, we plot the particle densities as a function of
radius along the equator in Fig. 6. For U

(N)
� = 0 and U

(N)
� =

+40 MeV, we see that a fair amount of hyperons are present in
the core. There are �, �−, and �− present. Another interesting
observation is that, near the core, the density of � is much more
compared with that of protons and it continues up to a distance
of about 5 km from the center.

IV. SUMMARY AND CONCLUSIONS

To summarize, we studied the static and rotating axisym-
metric stars with hyperons by using the IUFSU model. The
original FSUGold parameter set has been very successful in
describing the properties of finite nuclei. With the discovery
of highly massive neutron stars the reliability of this model
was questioned. It was then revised in the form of IUFSU
to accommodate such highly massive stars leaving the low-
density finite nuclear properties unchanged. In this work we
studied this new parameter set in the context of the possibility
of having a hyperonic core in such massive stars.

We included the full octet of baryons in IUFSU. The EoS
gets softened due to the inclusion of hyperons whereas the
inclusion of the φ meson makes the EoS stiffer. We also
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� = +40 MeV and −40 MeV � U
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� � +40 MeV and
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investigated the influence of the � and � potentials on the
EoS.

For static stars with a hyperonic core we get a maximum
mass of 1.62M�. So IUFSU with hyperons cannot reproduce

the observed mass of static stars. However, because the
observed ∼2M� neutron stars are both pulsars, we compare
the results in the rotating limit. In the Keplerian limit we get
a maximum mass of 1.93M�, which is within the 3σ limit
of the mass of PSR J0348 + 0432 and the 1σ limit of the
earlier observation of PSR J1614–2230. We looked at the
particle densities inside the star having the maximum mass
and found that a considerable amount of hyperons are present
near the core. Therefore, our results are consistent with the
recent observations of highly massive pulsars confirming the
presence of hyperons in the core of such massive neutron stars.

To conclude, the IUFSU model, which reproduces the
properties of finite nuclei quite successfully, also reproduces
the recent observations of ∼2M� stars, in the case of stars
having exotic cores and rotating in the Keplerian limit. It will
be interesting to see whether such a star can hold a quark core.
Related work is in progress.

ACKNOWLEDGMENTS

This work is funded by the University Grants Commission
(RFSMS, DSKPDF, and DRS) and the Department of Science
and Technology, Government of India.

[1] J. Antoniadis et al., Science 340, 6131 (2013).
[2] P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts,

and J. W. T. Hessels, Nature (London) 467, 1081 (2010).
[3] E. Massot, J. Margueron and G. Chanfray, Europhys. Lett. 97,

39002 (2012).
[4] M. Baldo, G. F. Burgio, and H.-J. Schulze, Phys. Rev. C 61,

055801 (2000).
[5] I. Vidana, A. Polls, A. Ramos, L. Engvik, and M. Hjorth-Jensen,

Phys. Rev. C 62, 035801 (2000).
[6] H. Ðapo, B.-J. Schaefer, and J. Wambach, Phys. Rev. C 81,

035803 (2010).
[7] J. M. Lattimer and M. Prakash, From Nuclei to Stars: Festschrift

in Honor of Gerald Brown (World Scientific, Singapore, 2011),
p. 275.

[8] N. K. Glendenning, Astrophys. J. 293, 470 (1985).
[9] N. K. Glendenning and S. A. Moszkowski, Phys. Rev. Lett. 67,

2414 (1991).
[10] R. Knorren, M. Prakash, and P. J. Ellis, Phys. Rev. C 52, 3470

(1995).
[11] S. Balberg and A. Gal, Nucl. Phys. A 625, 435 (1997).
[12] S. Pal, M. Hanauske, I. Zakout, H. Stöcker, and W. Greiner,
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