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Thermal properties of supernova matter: The bulk homogeneous phase
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We investigate the thermal properties of the potential model equation of state of Akmal, Pandharipande, and
Ravenhall. This equation of state approximates the microscopic model calculations of Akmal and Pandharipande,
which feature a neutral pion condensate. We treat the bulk homogeneous phase for isospin asymmetries ranging
from symmetric nuclear matter to pure neutron matter and for temperatures and densities relevant for simulations
of core-collapse supernovae, protoneutron stars, and neutron star mergers. Numerical results of the state variables
are compared with those of a typical Skyrme energy density functional with similar properties at nuclear
densities but which differ substantially at supranuclear densities. Analytical formulas, which are applicable
to nonrelativistic potential models such as the equations of state we are considering, are derived for all state
variables and their thermodynamic derivatives. A highlight of our work is its focus on thermal response functions
in the degenerate and nondegenerate situations, which allow checks of the numerical calculations for arbitrary
degeneracy. These functions are sensitive to the density-dependent effective masses of neutrons and protons,
which determine the thermal properties in all regimes of degeneracy. We develop the “thermal asymmetry free
energy” and establish its relation to the more commonly used nuclear symmetry energy. We also explore the role
of the pion condensate at supranuclear densities and temperatures. Tables of matter properties as functions of
baryon density, composition (i.e., proton fraction), and temperature are being produced which are suitable for
use in astrophysical simulations of supernovae and neutron stars.
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I. INTRODUCTION

The equation of state (EOS) of dense, hot matter is an essen-
tial ingredient in modeling neutron stars and hydrodynamical
simulations of astrophysical phenomena such as core-collapse
supernova explosions, protoneutron stars, and compact object
mergers. In broad terms, two major regions for the EOS can
be identified at relatively low temperatures or entropies. At
subnuclear densities (n of 10−7 to ∼0.1 fm−3), matter is in an
inhomogeneous mixture of nucleons (neutrons and protons),
light nuclear clusters (α particles, deuterons, tritons, etc.),
and heavy nuclei. Leptons, mainly electrons, are also present
to balance the nuclear charges. Uniform matter and heavy
nuclei become progressively more neutron rich as the density
rises. Above about 0.01 fm−3, nuclei deform in response to
competition between surface and Coulomb energies, which
may also lead to pastalike geometrical configurations. By the
density 0.1 fm−3, the inhomogeneous phase gives way to a
uniform phase of nucleons and electrons. Above the nuclear
saturation density, n0 � 0.16 fm−3, the uniform phase may
become populated with more exotic matter, including Bose
(pion or kaon) condensates, hyperons, and deconfined quark
matter. The appearance of Bose condensates and deconfined
quark matter may be through first-order or continuous phase
transitions.

At large-enough temperatures below n0, the inhomoge-
neous phase disappears and is again replaced by a uniform
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phase of nucleons and electrons. At sufficiently high temper-
atures at every density, thermal populations of hadrons and
pions should appear.

The composition and thermodynamic properties of matter
at a given density n, temperature T , and overall charge fraction
(parametrized by the electron concentration Ye = ne/n) is
determined by minimizing the free energy density. In all real-
istic situations, matter is charge-neutral, but the net baryonic
charge is nonzero and equalized by the net leptonic charge. It
can generally be assumed that baryonic species are in strong
interaction equilibrium, but equilibrium does not always exist
for leptonic species which are subject to weak interactions.
In circumstances in which dynamical time scales are long
compared to weak interaction time scales, the free energy
minimization is also made with respect to Ye. Such matter is
said to be in β equilibrium and its properties are a function
of only density and temperature, and, if neutrinos are trapped
in matter, the total number of leptons per baryon. Below n0,
where generally the only baryons are neutrons and protons and
the only leptons are electrons and possibly neutrinos, charge
neutrality dictates that the number of electrons per baryon Ye

equals the proton fraction x = np/n, but, at higher densities,
the charge fractions of muons, hyperons, Bose condensates,
and quarks, if present, have to be included. β equilibrium
may not occur during gravitational collapse or dynamical
expansion, such as occurs in Type II supernovae and neutron
star mergers.

The free energy can be calculated using a variety of
methods, but it is generally a complicated functional of
the main physical variables n, T , and Ye and cannot be
expressed analytically. In order to efficiently describe the
EOS, it is customary to build three-dimensional tables of its
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properties. An essential criterion is that full EOS tables be
thermodynamically consistent so as not to generate spurious
and unphysical entropy during hydrodynamical simulations.
Beginning with the work of Lattimer and Swesty (hereafter
referred to as LS) [1], examples of such tables include the
works of Shen et al. [2], Shen et al. [3,4], and others [5,6].
We refer the reader to Refs. [5,7–9] in which comparisons of
outcomes in supernova simulations, for prebounce evolution
and black hole formation, respectively, have been made using
different EOSs. A parallel study [10] of neutron star mergers
with different EOSs has also been undertaken.

The EOS, in addition to controlling the global hydrody-
namical evolution, also determines weak interaction rates,
including those of electron capture and β-decay reactions and
neutrino-matter interactions. These reaction rates depend sen-
sitively on the properties of matter, including the magnitudes
of the neutron and proton chemical potentials and effective
nucleon masses, among other aspects. Also of considerable
importance are the specific heats and susceptibilities of the
constituents, which determine, respectively, the thermal and
transport properties of matter. Thermal properties, especially,
may be easier to diagnose from neutrino observations of
supernovae: the time scale for black-hole formation, in cases
where that happens, appears to be an important example [10].

One of the most realistic descriptions of the properties
of interacting nucleons is the potential model Hamiltonian
density of Akmal, Pandharipande, and Ravenhall (APR
hereafter) [11], which reproduces the microscopic potential
model calculations of Akmal and Pandharipande (AP) [12].
An interesting feature of the AP model is the occurrence
of a neutral pion condensate at supranuclear densities for all
proton fractions. The AP model is especially relevant because
it satisfies several important global criteria that have been
gleaned from nuclear physics experiments and astrophysical
studies of neutron stars, especially those concerning the
neutron star maximum mass and their typical radii.

Both isospin-symmetric and isospin-asymmetric properties
of cold baryonic (neutron-proton) matter in the vicinity of n0

are of considerable importance, as they govern the masses
of nuclei, nucleon-pairing phenomena, collective motions of
nucleons within nuclei, the transition density from inhomo-
geneous to homogeneous bulk matter, the radii of neutron
stars, and many observables in medium-energy heavy-ion
collisions [13]. One of the most important isospin-symmetric
properties at n0 is the density derivative of the pressure P or the
incompressibility K0 of matter, which is now rather well de-
termined: K0 = 9(dP/dn)n0,x=1/2,T =0 � 230 ± 30 MeV from
Refs. [14,15] and 240 ± 20 MeV from Ref. [16]

Another isospin-symmetric nuclear constraint stems from
the thermal properties of nuclei and bulk matter. Fermi liquid
theory holds that the thermal properties of the equation of
state are largely controlled by the nucleon effective masses. In
short, experiments indicate that nucleon effective masses are
reduced from their bare values (m) at n0 for symmetric matter
to approximately m∗

0/m � 0.8 ± 0.1 [17,18] and microscopic
theory suggests they further decrease at higher densities. The
extraction of m∗

0 from nuclear level densities is complicated
by uncertain contributions from the surface energy as well as
possible energy dependences in m∗.

Additionally, of great significance is the influence of
isospin-asymmetry on the properties of nucleonic matter,
not only on the effective masses but also on its energy
E(n,x,T ), particularly the symmetry energy parameter Sv =
1/8(∂2E/∂x2)n0,x=1/2,T =0 and its stiffness parameter L =
(3n0/8)(∂3E/∂n∂x2)n0,x=1/2,T =0. Starting from the Bethe-
Weizacker mass formula [19,20] and its modernization [21,22]
for nuclei containing a fraction x of protons, most mass
formulas characterize the symmetry energy of nucleonic
matter by these two parameters. From a variety of experiments,
including measurements of nuclear binding energies, neutron
skin thicknesses of heavy nuclei, dipole polarizabilities, and
giant dipole resonance energies [23,24], Sv lies in the range
30–35 MeV and L lies in the range 40–60 MeV. Recent
developments in the prediction of the properties of pure
neutron matter by Gandolfi, Carlson, and Reddy [25] and by
Hebeler and Schwenk [26] suggest very similar values for Sv

and L compared to those derived from nuclear experiments.
It is worth noting that there exists a phenomenological

relation [27] between neutron star radii and zero-temperature
neutron star matter pressures near n0, which is nearly that
of pure neutron matter and largely a function of the L
parameter [23]. Astrophysical observations of photospheric
radius expansion in x-ray bursts [28] and quiescent low-mass
x-ray binaries [29] have been used [30,31] to conclude that the
radii of neutron stars with masses in the range 1.2–1.8 M� are
between 11.5 and 13 km, and therefore predict that L � 45 ±
10 MeV, although the astrophysical model dependence of this
result may significantly enlarge its uncertainty. Nevertheless,
this range overlaps that from nuclear experiments and also
that from neutron matter theory, suggesting that systematic
dependencies are not playing a major role in the astrophysical
determinations.

A potentially more important astrophysical constraint orig-
inates from mass measurements of neutron stars. A conse-
quence of general relativity is the existence of a maximum
neutron star mass for every equation of state. Causality
arguments, together with current radius estimates, indicate
this is in the range of 2–2.8 M� [23]. The largest precisely
measured neutron star masses are 1.97 ± 0.04 M� [32] and
2.01 ± 0.04 M� [33]. It is likely that the true maximum mass
is at least a few tenths of a solar mass larger than these
measurements.

An important issue concerns the quality and relevance of
experimental information that could constrain the thermal
properties of dense matter. Calibrating the thermal properties
of bulk matter from experimental results involves disen-
tangling the effects of several overlapping energy scales
(associated with shell and pairing effects, collective motion,
etc.) that determine the properties of finite-sized nuclei. The
level densities of nuclei (inferred through data on, for example,
neutron evaporation spectra and the disposition of single-
particle levels in the valence shells of nuclei [34,35], depend
on the Landau effective masses, m∗

n,p, of neutrons and protons.
These masses are sensitive to both the momentum and energy
dependence of the nucleon self-energy leading to the so-called
k mass and ω mass, emphasized, for example, in Refs. [36–39].
For bulk matter, in which the predominant effect is from the
k mass, m∗

n,p/m = 0.7 ± 0.1 has been generally preferred.
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The specific heat and entropy of nuclei receive substantial
contributions from low-lying collective excitations, as shown
in Refs. [40,41], a subject that needs further exploration to pin
down the role of thermal effects in bulk matter.

Following the suggestions in Refs. [42,43], the liquid-gas
phase transition has received much attention with the finding
that the transition temperature for nearly isospin symmetric
matter lies in the range 15–20 MeV [44]. Although the critical
temperature depends on the incompressibility parameter K0,
it is also sensitive to the specific heat of bulk matter in the
vicinity of n0 which depends on the effective masses. Further
information about the effective masses can be ascertained
from fits of the optical model potential to data [45], albeit
at low momenta. The density and the saturating aspect of
the high momentum dependence of the real part of the
optical model potential has been crucial in explaining the flow
of momentum and energy observed in intermediate energy
(<1 GeV) collisions of heavy ions, preserving at the same
time the now well-established value of the incompressibility
K0 = 230 ± 30 MeV, as demonstrated in Refs. [46–48].
Notwithstanding these activities, further efforts are needed
to calibrate the finite-temperature properties of nucleonic
matter to reach at least the level of accuracy to which the
zero-temperature properties have been assessed.

Relatively few EOSs have been constructed from underly-
ing interactions satisfying all these important constraints [5].
However, AP and APR satisfy nearly all of them. For APR,
K0 = 266 MeV, S2 � 32.6 MeV, L � 58.5 MeV, and m∗

0/m =
0.7, within two standard deviations of the experimental ranges.
The maximum neutron star mass supported by the APR model
is in excess of 2 M�, and the radius of a 1.4 M� star is
about 12 km. Despite its obvious positive characteristics, no
three-dimensional tabular EOS has been constructed with the
APR equation of state. Furthermore, its finite-temperature
properties for arbitrary degeneracy and proton fractions,
including the effects of its pion condensate, have not been
studied to date. We note, however, that Kanzawa et al. [49] have
performed variational calculations for the EOSs of nuclear and
pure neutron matter at finite temperatures starting from the
nuclear Hamiltonian composed of the Argonne V18 and UIX
potentials. We will contrast our results with those of Ref. [49]
in this work.

The chief motivation for the present study is to perform
a detailed analysis of the EOS of AP through a study of the
properties predicted by its APR parametrization. Particular
attention is paid to the density dependence of nucleon effective
masses which govern both the qualitative and quantitative
behaviors of its thermal properties. Another objective of the
present work is to document the analytic relations describing
the thermodynamic properties of potential models. These
are essential ingredients in the generation of EOS tables
based on modern Skyrme-like energy density functionals.
Importantly, the analytic expressions developed here can
be utilized to update LS-type liquid droplet EOS models
that take the presence of nuclei at subnuclear densities and
subcritical temperatures into account. This would represent
a significant improvement to existing EOS tables in that
they could be replaced with ones including realistic effective
masses.

Some aspects of the thermal properties of hot, dense matter
have been explored in Ref. [50] for isospin symmetric matter,
but the comparative thermal properties of different Skyrme-
like interactions remain largely unexplored. In view of the lack
of systematic studies contrasting the predicted thermodynamic
properties of the APR model with those of other Skyrme energy
density functionals, we are additionally motivated to perform
such studies for one particular case, that of the SKa force due
to Kohler [51]. This is one of the EOSs tabulated in Ref. [52]
which is reproduced here in detail. The methods developed
here are general and can be advantageously used for other
Skyrme-like energy density functions in current use.

For both the APR and Ska models, we compute the EOS
for uniform matter for temperatures ranging up to 50 MeV,
baryon number densities in the range 10−7 fm−3 to 1 fm−3,
and proton fractions between 0 (pure neutron matter) and 0.5
(isospin-symmetric nuclear matter). Ideal gas photonic and
leptonic contributions (both electrons and muons) are included
for all models. The results presented here for densities below
0.1 fm−3 in the homogeneous phase serve only to gauge
differences from the more realistic situation in which super-
nova matter contains an inhomogeneous phase. Work toward
extending calculations to realistically describe the low-density
and -temperature inhomogeneous phase containing finite
nuclei is in progress at various levels of sophistication (droplet
model, Hartree, Hartree-Fock, Hartree-Fock-Boguliobov, etc.)
beginning with an LS-type liquid droplet model approach
and will be reported separately. In addition, hyperons and a
possible phase transition to deconfined quark matter are not
considered in this work.

The organization of this paper is as follows. In Sec. II, we
briefly discuss some of the features of the APR and Ska Hamil-
tonians and the ingredients involved in their construction. We
then present their single-particle energy spectra and potentials
using a variational procedure in Sec III. In Sec. IV, properties
of cold, isospin-symmetric matter and consequences for
small deviations from zero isospin asymmetry are examined.
Analyses of results for the two models include those of
energies, pressures, neutron and proton chemical potentials,
and inverse susceptibilities. Section V contains our study of the
behavior of all the relevant state variables for the APR and SKa
models at finite temperature. The numerical results, valid for all
regimes of degeneracy, are juxtaposed with approximate ones
in the degenerate and nondegenerate limits for which analytical
expressions have been derived. Contributions from leptons and
photons are also summarized in this section. In Sec. VI, we
address the transition from a low-density to a high-density
phase in which a neutral pion condensate is present using a
Maxwell construction. The numerical results of this section
constitute the equation of state of supernova matter for the
APR model in the bulk homogeneous phase. Our summary
and conclusions are given in Sec. VII. The appendices contain
ancillary material employed in this work. In Appendix A,
we provide a detailed derivation of the single-particle energy
spectra for the potential models used. General expressions
for all the state variables of the APR model valid for all
neutron-proton asymmetries are collected in Appendix B. The
formalism to include contributions from leptons (electrons and
positrons) and photons is presented in Appendix C, wherein
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both the exact and analytical representations are summarized.
Numerical methods used in our calculations of the Fermi-
Dirac integrals for arbitrary degeneracy are summarized in
Appendix D. Appendix E contains thermodynamically con-
sistent prescriptions to render EOSs causal when they become
acausal at some high density for both zero- and finite-
temperature cases.

II. POTENTIAL MODELS

In this work, we study the thermal properties of uniform
matter predicted by potential models. We focus on an inter-
action derived from the work of Akmal and Pandharipande
(hereafter AP) [12], using an approximation developed by
Akmal, Pandharipande, and Ravenhall (hereafter APR) [11]
and a Skyrme [53] force developed by Köhler (Ska hence-
forth) [51]. We pay special attention to the finite-temperature
properties of these two models for the physical conditions
expected in supernovae and neutron star mergers, which has
heretofore not received much attention.

The Hamiltonian density of Ska [51] is a typical example of
the approach based on effective zero-range forces pioneered
by Skyrme [53], which are typically called Skyrme forces.
These were further developed to describe properties of bulk
matter and nuclei in Ref. [54]. Skyrme forces are easier to use
in this context than finite-range forces (see, e.g., Ref. [55]). To
date, a vast number of variants of this approach exist in the
literature [56] which have varying success in accounting for
properties of nuclei and neutron stars. The strength parameters
of the Skyrme-like energy density functionals are calibrated at
nuclear and subnuclear densities to reproduce the properties of
many nuclei, their behavior at high densities being constrained
largely by neutron-star data.

The Hamiltonian density of APR is a parametric fit to the
AP microscopic model calculations in which the nucleon-
nucleon interaction is modeled by the Argonne V18 two-body
potential [57], the Urbana UIX three-body potential [58], and
a relativistic boost potential δv [59], which is a kinematic
correction when the interaction is observed in a frame other
than the rest frame of the nucleons. These microscopic
potentials accurately fit scattering data in vacuum and thus in-
corporate the long scattering lengths of nucleons at low energy.
Additionally, they have also been successful in accounting for
the binding energies and spectra of light nuclei. An interesting
feature of AP, incorporated in the Skyrme-like parametrization
of the APR model, is that at supranuclear densities a neutral
pion condensate appears. Despite the softness induced by the
pion condensate in the high-density equation of state, the
APR model is capable of supporting a neutron star of 2.19
M�, in excess of the recent accurate measurements of the
masses of PSR J1614-2230 (1.97 ± 0.04 M�) [32] and PSR
J0348+0432 (2.01 ± 0.04 M�) [33].

Being nonrelativistic potential models, both the APR and
Ska models have the potential to become acausal (that is,
the speed of sound exceeds the speed of light) at high
density. A practical fix to keep their behaviors causal which
is thermodynamically consistent is possible and is adopted in
this work (see Appendix E).

Our choice of these two models was motivated by several
considerations, including the facts that (i) both models yield
similar results for the equilibrium density, binding energy,
symmetry energy, and compression modulus of symmetric
matter, as well as for the maximum mass of neutron stars,
and (ii) the two models differ significantly in other properties
such as their Landau effective masses (important for thermal
properties), derivatives of their symmetry energy at nuclear
density (important for the high-density behavior of isospin
asymmetry energies), skewness (i.e., the derivative of the
compression modulus) at nuclear density, and their predicted
radii corresponding to the maximum mass configuration. The
impact of the different features of these two models for
their thermal properties is one of the main foci of our work
here. The methods used to explore their thermal effects are
applicable and easily adapted to other Skyrme-like energy
density functionals.

A. Hamiltonian density of APR

Explicitly, the APR Hamiltonian density is given by [11]

HAPR =
[

�
2

2m
+ (p3 + (1 − x)p5)ne−p4n

]
τn

+
[

�
2

2m
+ (p3 + xp5)ne−p4n

]
τp

+ g1(n)[1 − (1 − 2x)2)] + g2(n)(1 − 2x)2, (1)

where n = nn + np is the baryon density, x = np/n is the
proton fraction, and

ni = 1

π2

∫
dki

k2
i

1 + e(εki
−μi )/T

, (2)

τi = 1

π2

∫
dki

k4
i

1 + e(εki
−μi )/T

, (3)

are the number densities and kinetic energy densities of
nucleon species i = n,p, respectively. The quantities εki

, μi ,
and T are the single-particle spectra, chemical potentials,
and temperature (with Boltzmann’s constant kB set to unity),
respectively. The first two terms on the right-hand side of
this expression are due to kinetic energy and momentum-
dependent interactions while the last terms are due to density-
dependent interactions. Compared to a classical Skyrme
interaction, such as Ska (described below), this model has
a more complex density dependence in the single-particle
potentials and effective masses. Due to the occurrence of a
neutral pion condensate at supranuclear densities, the potential
energy density functions g1 and g2 take different forms on
either side of the transition density. In the low-density phase
(LDP),

g1L = −n2
[
p1 + p2n + p6n

2 + (p10 + p11n)e−p2
9n

2]
, (4)

g2L = −n2

(
p12

n
+ p7 + p8n + p13e

−p2
9n

2

)
, (5)
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TABLE I. Parameter values for the Hamiltonian density of
Akmal, Pandharipande, and Ravenhall [11]. Values in the last column
are specific to the HDP. The dimensions are such that the Hamiltonian
density is in MeV fm−3.

pi Value pi Value

p1 337.2 MeV fm3 p14 0
p2 −382.0 MeV fm6 p15 287.0 MeV fm6

p3 89.8 MeV fm5 p16 −1.54 fm3

p4 0.457 fm3 p17 175.0 MeV fm6

p5 −59.0 MeV fm5 p18 −1.45 fm3

p6 −19.1 MeV fm9 p19 0.32 fm−3

p7 214.6 MeV fm3 p20 0.195 fm−3

p8 −384.0 MeV fm6 p21 0
p9 6.4 fm6

p10 69.0 MeV fm3

p11 −33.0 MeV fm6

p12 0.35 MeV
p13 0

whereas, in the high-density phase (HDP),

g1H = g1L − n2[p17(n − p19) + p21(n − p19)2]ep18(n−p19),

(6)

g2H = g2L − n2[p15(n − p20) + p14(n − p20)2]ep16(n−p20) .

(7)

The values of the parameters p1 through p21, as well as their
dimensions which ensure that HAPR has units of MeV fm−3,
are presented in Table I. Alternate choices for the underlying
microscopic physics lead to different fits to the above generic
form, so even though p13,p14 and p21 are all 0 in our case, we
carry the terms containing these coefficients in the algebra of
Appendix B.

The trajectory in the n-x plane, for any temperature, along
which the transition from the LDP to the HDP occurs, is
obtained by solving

g1L[1 − (1 − 2x)2] + g2L(1 − 2x)2

= g1H [1 − (1 − 2x)2] + g2H (1 − 2x)2. (8)

The solution gives a transition density nt = 0.32 fm−3 for
symmetric nuclear matter (x = 1/2) and nt = 0.195 fm−3 for
pure neutron matter (x = 0). For intermediate values of x,
the transition density is approximated to high accuracy by the
polynomial fit

nt (x) = 0.1956 + 0.3389x + 0.2918x2 − 1.2614x3

+ 0.6307x4. (9)

In calculations of subsequent sections, the transition from
the LDP to the HDP at zero and finite temperatures will
be made through the use of the above polynomial fit. The
mixed-phase region is determined via a Maxwell construction
for the numerical purposes of which nt is used as an input.
We show in Sec. VI that while the transition is independent
of T for any x, the two densities which define the boundary
of the phase-coexistence region do exhibit a weak dependence
on temperature.

TABLE II. Parameter values for the Ska Hamiltonian den-
sity [51]. The dimensions are such that the Hamiltonian density is
in MeV fm−3.

i ti xi ε

0 −1602.78 MeV fm6 0.02 1/3
1 570.88 fm3 0
2 −67.7 fm3 0
3 8000.0 MeV fm7 −0.286

B. Hamiltonian density of Ska

The Hamiltonian density of Ska [51] based on the Skyrme
energy-density-functional approach is expressed as

HSka = �
2

2mn

τn + �
2

2mp

τp

+ n(τn + τp)

[
t1

4

(
1 + x1

2

)
+ t2

4

(
1 + x2

2

)]

+ (τnnn + τpnp)

[
t2

4

(
1

2
+ x2

)
− t1

4

(
1

2
+ x1

)]

+ to

2

(
1 + xo

2

)
n2 − to

2

(
1

2
+ xo

)(
n2

n + n2
p

)

+
[

t3

12

(
1 + x3

2

)
n2 − t3

12

(
1

2
+ x3

)(
n2

n + n2
p

)]
nε.

(10)

Terms involving τi with i = n,p are purely kinetic in origin,
whereas terms involving nτi and niτi arise from the exchange
part of the nucleon-nucleon interaction. The latter determine
the density dependence of the effective masses (see below).
The remaining terms, dependent on powers of the individual
and total densities, give the potential part of the energy
density. The various strength parameters are calibrated to
desired properties of bulk matter and of nuclei chiefly close
to the empirical nuclear equilibrium density. Many other
parametrizations of the Skyrme-like energy density functional
also exist [56] and are characterized by different values of
observable physical quantities (see below). The parameters to
through t3, xo through x3, and ε for the Ska model [51] are
listed in Table II.

III. SINGLE-PARTICLE ENERGY SPECTRA

The single-particle energy spectra εki
,(i = n,p) that ap-

pear in the Fermi-Dirac (FD) distribution functions nki
=

[1 + e(εki
−μi )/T ]−1 are obtained from functional derivatives of

the Hamiltonian density (see Appendix A for derivation),

εki
= k2

i

∂H
∂τi

+ ∂H
∂ni

. (11)

The ensuing results can be expressed as

εki
= �

2k2

2m
+ Ui(n,k), (12)
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where m is the nucleon mass in vacuum and Ui are the
nucleon single-particle momentum-dependent potentials. Uti-
lizing these spectra, the Landau effective masses m∗

i are

m∗
i ≡ �

2kFi

(
∂εki

∂k

∣∣∣∣
kFi

)−1

, (13)

where kFi
are the Fermi-momenta of species i. Physical

quantities such as the thermal energy, thermal pressure,
susceptibilities, specific heats at constant volume and pressure,
and entropy all depend sensitively on these effective masses
as highlighted in later sections.

A. APR single-particle potentials

From Eq. (1) and Eq. (12), the explicit forms of the single-
particle potentials for the LDP Hamiltonian density of APR
are

UiL(n,k) = (p3 + Yip5)ne−p4nk2

+{[p3 + p5 − p4n(p3 + Yip5)]τi

+ [p3 − p4n(p3 + Yjp5)]τj }ep4n

+ 4Yj

g1L

n
+ 2(Yi − Yj )

g2L

n

+ 4YiYjf1L + (Yi − Yj )2f2L; i �= j, (14)

with Yp = x and Yn = 1 − x and where

f1L = dg1L

dn
− 2g1L

n
and f2L = dg2L

dn
− 2g2L

n
. (15)

In the HDP,

UiH (n,k) = UiL(n,k) − 4Yj (Yi − Yj )

n
(δg1 − δg2)

+ 4YiYj δf1 + (Yi − Yj )2δf2; i �= j. (16)

The functions δg1, δg2, δf1, and δf2 are defined in Appendix B.
The corresponding effective masses from Eq. (13) are

m∗
i

m
=

[
1 + 2m

�2
(p3 + Yip5)ne−p4n

]−1

. (17)

Subsuming the k2-dependent parts of Ui(n,k) in Eq. (14)
into the kinetic energy terms in Eqs. (12), the single-particle
energies may be expressed as

εki
= �

2k2

2m∗
i

+ Vi(n) , (18)

where the functional forms of Vi(n) are readily ascertained
from the relations in Eq. (14). The quadratic momentum
dependence of the single-particle spectra, albeit density and
concentration dependent through the effective masses, is akin
to that of free Fermi gases. Consequently, the thermal state
variables can be calculated as for free Fermi gases but with
attendant modifications arising from the density-dependent
effective masses as will be discussed later.

B. Skyrme single-particle potentials

Explicit forms of the single-particle potentials for the Ska
Hamiltonian are given by

Ui(n,k) = (X1 + YiX2)nk2 + (X1 + X2)τi + X1τj

+ 2n(X3 + YiX4) + n1+ε{(2 + ε)X5

+ [2Yi + ε(Yi
2 + Yj

2)]X6}; i �= j , (19)

where

X1 = 1

4

[
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)]

X2 = 1

4

[
t2

(
1

2
+ x2

)
− t1

(
1

2
+ x1

)]
(20)

X3 = t0

2

(
1 + x0

2

)
; X4 = − t0

2

(
1

2
+ x0

)

X5 = t3

12

(
1 + x3

2

)
; X6 = − t3

12

(
1

2
+ x3

)
.

From Eq. (13), the density-dependent Landau effective masses
are

m∗
i

m
=

[
1 + 2m

�2
(X1 + YiX2)n

]−1

. (21)

The single-particle spectra have therefore the same structure
as in Eq. (18) but with the potential terms Vi(n) inferred from
Eq. (19).

IV. ZERO-TEMPERATURE PROPERTIES

At temperature T = 0, nucleons are restricted to their
lowest available quantum states. Therefore, the Fermi-Dirac
distribution functions that appear in the integrals of the number
density and the kinetic energy density become step functions,

nki = θ (εki − εFi), (22)

where εFi is the energy at the Fermi surface for species i.
Consequently,

ni = 1

π2

∫ kFi

0
k2
i dki = k3

Fi

3π2
, (23)

τi = 1

π2

∫ kFi

0
k4
i dki = k5

Fi

5π2
= 3

5
nik

2
Fi . (24)

Thus, the kinetic energy densities can be written as simple
functions of the number density n and the proton fraction x,

τp = 1

5π2
(3π2np)5/3 = 1

5π2
(3π2nx)5/3, (25)

τn = 1

5π2
(3π2nn)5/3 = 1

5π2
[3π2n(1 − x)]5/3. (26)

We can therefore write

H(np,nn,τp,τn; T = 0) = H(n,x)

and use standard thermodynamic relations to get the various
quantities of interest, some examples of which are listed
below beginning with x = 1/2 for isospin symmetric nuclear
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matter. General expressions for arbitrary x are provided in
Appendix B.

A. Isospin symmetric nuclear matter

1. The APR Hamiltonian

It is convenient to write HAPR as the sum of a kinetic part
Hk , a part consisting of momentum-dependent interactions
Hm, and a density-dependent interactions part Hd . The energy
per particle of symmetric nuclear matter E can then be
similarly decomposed as

E ≡ HAPR

n
= Ek + Em + Ed , (27)

where

Ek = 3

5

�
2k2

F

2m
, kF = (3π2n/2)1/3,

Em = 3

5
nk2

F e−p4n(p3 + p5/2), (28)

EdL = g1L

n
, EdH = g1H

n
= EdL + δg1

n
.

The corresponding pressure is

P = n2 ∂E

∂n
= Pk + Pm + Pd

Pk = 2

3
nEk, Pm =

(
5

3
− p4n

)
nEm

(29)
PdL = n(Ed + f1L)

PdH = PdL − δg1 + nδf1.

The nucleon chemical potential takes the form

μ = ∂H
∂n

= μk + μm + μd

μk = 5

3
Ek = �

2k2
F

2m (30)

μm = nk2
F e−p4n

{
p5

(
4

5
− p4n

2

)
+ p3

(
8

3
− p4n

)}

μdL = dg1L

dn
, μdH = μdL + δf1 .

The inverse susceptibility is given by

χ−1 = ∂μ

∂n
= χ−1

k + χ−1
m + χ−1

d

χ−1
k = 2

3

μk

n

χ−1
m = −p4μm + 3

5
k2
F e−p4n

×
{

4

3
p5

(
10

3
− p4n

)
+ 2

3
p3

(
25

3
− 4p4n

)}

χ−1
dL = 8

f1L

n
+ 4h1L

χ−1
dH = χ−1

dL − 2

n2
(δg1 − δg2) + δh1, (31)

where

h1L = df1L

dn
− 2f1L

n
(32)

and δh1 can be found in Appendix B. The nuclear matter
incompressibility is given by

K = 9
dP

dn
= Kk + Km + Kd

Kk = 10Ek = 6
�

2k2
F

2m

Km = (
40 − 48p4n + 9p2

4n
2
)
Em (33)

KdL = 18Ed + 9[4f1L + nh1L]

KdH = KdL + 9nδh1.

The speed of sound can be written in terms of μ and K or χ−1

as

(
cs

c

)2

= K

9(μ + m)
= nχ−1

μ + m
. (34)

From this relation, it can be shown that the APR model
becomes acausal (cs/c = 1) at n = 0.841 fm−3 in the case
of symmetric matter.

The speed of sound cs and the response functions K and χ
are generated by density fluctuations. Evidently, they are not
independent of each other (relationships between them in the
case of general asymmetry are given in Appendix B). Each
quantity, however, is useful in its own right for a number of
applications. For example, cs is necessary in implementing
causality (see Appendix E), K is essential to the calculation
of the liquid-gas phase transition (Sec. V), and χ is required
in the numerical scheme by which the mixed-phase region, at
the onset of pion condensation, is constructed (Sec. VI). At
finite temperature, this group also includes the specific heats
at constant volume and pressure, CV and CP . The latter can be
used to identify phase transitions, address causality at finite T
and, furthermore, are related to hydrodynamic time scales as
in the collapse to black holes.

2. The Skyrme Hamiltonian

Similarly to the APR Hamiltonian we write HSka as the
sum of a kinetic part Hk , momentum-dependent interactions
Hm, and density-dependent interactions Hd . The energy per
particle is then given by

E ≡ HSka

n
= Ek + Em + Ed , (35)

where

Ek = 3

5

�
2k2

F

2m
, Em = 3

5
nk2

F

(
X1 + 1

2
X2

)
(36)

Ed = n

[
X3 + 1

2
X4 + nε

(
X5 + 1

2
X6

)]
.
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Contributions to the pressure arise from

Pk = 2

3
nEk ,Pm = 5

3
nEm

(37)

Pd = n

[
Ed + εnε+1

(
X5 + 1

2
X6

)]
.

The nucleon chemical potential receives contributions from

μk = 5

3
Ek , μm = 8

3
Em

(38)

μd = 2Ed + ε

(
X5 + 1

2
X6

)
nε+1 .

The inverse susceptibility is composed of terms involving

χ−1
k = 2

3

μk

n
, χ−1

m = 25

12

μm

n
+ 4m

�2
X2μk

(39)

χ−1
d = μd

n
+ nε

[(
X5 + 1

2
X6

)
ε + X6

]
+ X4.

The nuclear matter incompressibility is determined by the
terms

Kk = 10Ek, Km = 40Em,
(40)

Kd = 18Ed + 9ε(ε + 3)n1+ε

(
X5 + 1

2
X6

)
.

Combining the above results with Eq. (34) we find that Ska
violates causality for baryon densities above n = 1.028 fm−3.

B. Isospin asymmetric matter

Here, we focus on the energetics of matter with neutron
excess beginning with some general considerations that
are model independent. The neutron-proton asymmetry is
commonly characterized by the parameter α = (nn − np)/n,
which is connected to the proton fraction x through the simple
relation α = 1 − 2x.

The expansion of the energy per particle E(n,α) = H/n of
isospin asymmetric matter in powers of α is given by

E(n,α) = E(n,0) +
∑

l=2,4,...

Sl(n)αl, (41)

where

Sl = 1

l!

∂lE(n,α)

∂αl

∣∣∣∣
α=0

; l = 2,4, . . . . (42)

Similarly, the pressure of isospin-asymmetric matter can be
written as

P (n,α) = n2 ∂E(n,α)

∂n
, (43)

= P (n,0) + n

3

∑
l=2,4,...

Ll(n)αl, (44)

where

Ll = 3n
dSl(n)

dn
. (45)

Evaluating Eqs. (41)–(44) for pure neutron matter at
the saturation density n0 of symmetric matter to O(α2)
gives

E(n0,1) � E0 + Sv, (46)

P (n0,1) � Ln0

3
, (47)

where E0 = E(n0,0) is the saturation energy of nuclear
matter, Sv = S2(n0) is its symmetry energy parameter that
characterizes the energy cost involved in restoring isospin
symmetry from small deviations, and L = L2(n0) is its
stiffness parameter. By the definition of n0, P (n0,0) = 0.

Only even powers of α survive in the two series in
Eqs. (41) and (44) above because the two nucleon species
are treated symmetrically in the Hamiltonian. Furthermore,
due to the near-complete isospin invariance of the nucleon-
nucleon interaction, the density-dependent potential terms
are generally carried only up to O(α2); that is, Sl(n) and
Ll(n) for l > 2 receive contributions just from the kinetic
energy and the momentum-dependent interactions. Finally, as
demonstrated in Refs. [60–63], S2(n) � S4(n),S6(n), . . ., and
hence coefficients with l = 2 suffice in describing bulk matter
even when α ∼ 1.

While the full calculations are rather involved, the domi-
nance of S2(n) can be illustrated in a simple manner by turning
to the isospin-asymmetric free gas whose kinetic energy can
be expressed as

Ekin = 1
3EF

[
1
2 {(1 + α)5/3 + (1 − α)5/3} − 1

]
, (48)

where

EF = �
2k2

F

2m
= �

2

2m

(
3π2n

2

)2/3

(49)

is the Fermi energy of noninteracting nucleons in symmetric
nuclear matter. Through a Taylor expansion of terms involving
α (terms in odd powers of α canceling), the various contribu-
tions from kinetic energy are

Skin
2 (n) = 1

3EF ,Skin
4 (n) = 1

81EF ,Skin
6 (n) = 7

2187EF . . . ,

(50)

the series converging rapidly to the exact result of
(EF /3)(22/3 − 1). At the empirical nuclear equilibrium density
of n0 = 0.16 fm−3, Skin

2 (n0) � 12.28 MeV, whereas its asso-
ciated stiffness parameter is Lkin = (2/3)EF0 � 24.56 MeV.

As mentioned earlier, in the presence of interactions,
S4(n),S6(n), . . . are modified solely by the momentum-
dependent terms which, predominantly, give rise to the
effective mass while preserving the relative sizes of the Sl’s and
their derivatives (for APR, at n0, S2/S4 � 35 and L2/L4 � 18,
whereas for Ska S2/S4 � 29 and L2/L4 � 17.). Thus, we can
write

P (n,α) � n2[E′(n,0) + α2S ′
2(n)], (51)

where the primes denote derivatives with respect to the
density n.

By expanding E′(n,0) and S ′
2(n) about the saturation

density n0 of symmetric matter [noting that E′(n0,0) = 0],
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we obtain

E′(n,0) � K0

9n0
δ + Q0

54n0
δ2, (52)

S ′
2(n) � L

3n0
+ KS2

9n0
δ + QS2

54n0
δ2, (53)

where δ = (n/n0) − 1 and

K0 = 9n2
0
d2E(n,0)

dn2

∣∣∣∣
n0

, Q0 = 27n3
0
d3E(n,0)

dn3

∣∣∣∣
n0

, (54)

L = 3n0
dS2(n)

dn

∣∣∣∣
n0

, KS2 = 9n2
0
d2S2(n)

dn2

∣∣∣∣
n0

, (55)

QS2 = 27n3
0
d3S2(n)

dn3

∣∣∣∣
n0

. (56)

The skewness S is related to K0 and Q0 via

S = k3
F

d3E

dk3
F

∣∣∣∣
α=0,n0

= 6K0 + Q0 (57)

and the symmetry term Kτ of the liquid drop formula for the
isospin asymmetric incompressibility [64] is related to Sv , L,
K0, and KS2 via

Kτ = KS2 − LSv

K0
. (58)

At the equilibrium density n0α of isospin asymmetric matter,

P (n0α,α) = 0 = n2
0α[E′(noα,0) + S ′

2(n0α)α2]. (59)

The insertion of Eqs. (52) and (53) into Eq. (59), while
retaining terms up to O(δ), leads to [65,66]

δα ≡ n0α

n0
− 1 = −3L

K0
α2 ≡ −Cα2 (60)

to lowest order in α2. This relation allows us to trace the
loci of the minima of the energy per particle for changing
asymmetries. Further improvement to cover higher values of
α requires keeping terms to O(δ2) in Eqs. (52) and (53),

δα = 3K0

Q0

(
1 + KS2

K0
α2

)
(
1 + QS2

Q0
α2

)

×
{

− 1 +
[

1 −
2LQ0α

2
(
1 + QS2

Q0
α2

)
K2

0

(
1 + KS2

K0
α2

)2

]1/2}
. (61)

In this expression, we have discarded terms involving L4

because, as we mentioned earlier, these are very small and
make no significant contributions. Additionally, for APR,
KS2/K0 ∼ 0.4 and QS2/Q0 ∼ −1.2. The large (>1) magni-
tude of |QS2/Q0| means that for α � 0.7 (which was the reason
for going beyond α2 in the first place), we incur significant
error upon expanding Eq. (61) in a Taylor series in α. This
problem does not arise for Ska where KS2/K0 ∼ 0.3 and
QS2/Q0 ∼ −0.6. In the latter case, Eq. (61) can be reduced to
the simple form

δ = −3L

K0
α2

[
1 +

(
Q0L

2K2
0

− KS2

K0

)
α2

]
. (62)

We stress that Eq. (62) is applicable only in situations where
|KS2/K0| and |QS2/Q0| are much smaller than 1. If this
condition does not hold (such as in APR), the more general
expression (61) must be used.

Finally, we calculate the incompressibility at the saturation
density n0α of asymmetric matter in terms of symmetric matter
equilibrium properties, to O(α2) (see also, Refs. [65,66]).
Using Eq. (51) we get, for general n,

K(n,α) = 9
∂P (n,α)

∂n
, (63)

= K(n,0)[1 + A(n)α2], (64)

where

K(n,0) = 9[2nE′(n,0) + n2E′′(n,0)], (65)

A(n) = 9

K(n,0)
[2nS ′

2(n) + n2S ′′
2 (n)]. (66)

At n = n0α ,

K(n0α) � K(n0,0) + dK(n,0)

dn

∣∣∣∣
n0

(n0α − n0), (67)

= K0 +
(

4K0 + Q0

3

)
δα, (68)

� K0

[
1 − 12L

K0

(
1 + Q0

12K0

)
α2

]
, (69)

≡ K0(1 + Bα2), (70)

and

A(n0α) � 9

K0

(
2n0

dS2(n)

dn

∣∣∣∣
n0

+ n2
0
d2S2(n)

dn2

∣∣∣∣
n0

)
, (71)

= 9

K0

(
2n0

L

3n0
+ n2

0
KS2

9n2
0

)
, (72)

= 6L

K0

(
1 + KS2

6L

)
≡ A. (73)

Hence, to O(α2),

K(n0α,α) � K0[1 + (A + B)α2], (74)

≡ K0(1 + Ãα2) , (75)

where the coefficient A represents modifications to the
compressibility evaluated at n0 due to changing asymmetry,
whereas the coefficient B encodes alterations due to the shift
of the saturation point of matter as the asymmetry varies.

C. Results and analysis

In this section, the zero-temperature results obtained from
the APR and Ska Hamiltonians are presented. Columns 2
and 3 in Table III contain the key symmetric nuclear matter
properties for both models at their respective equilibrium
densities (nearly the same). Note that while the energy per
particle E(n0) ≡ E0 and the compression modulus K0 for both
models are similar, the effective masses m∗

0/m somewhat differ
near nuclear densities. Significant differences are seen in the
skewness parametersS, the Ska model being more asymmetric
than the APR model at its equilibrium density.
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TABLE III. Entries in this table are at the equilibrium density n0

of symmetric nuclear matter for the APR and Ska models. E0 is the
energy per particle; K0 is the compression modulus; Q0 is related to
the third derivative of E; S is the skewness; m∗

0/m is the ratio of the
Landau effective mass to mass in vacuum; Sv is the nuclear symmetry
energy parameter; and L, KS2 , and QS2 are related to the first, second,
and third derivatives of the symmetry energy, respectively.

Property APR Ska Experiment Reference

n0 (fm−3) 0.160 0.155 0.17 ± 0.02 [45,67–69]
E0 (MeV) −16.00 −15.99 −16 ± 1 [45,69]
K0 (MeV) 266.0 263.2 230 ± 30 [14,15]

240 ± 20 [16]
Q0 (MeV) −1054.2 −300.2 −700 ± 500 [70]
Sv (MeV) 32.59 32.91 30–35 [23,24]
L (MeV) 58.46 74.62 40–70 [23,24]
KS2 (MeV) −102.6 −78.46 −100 ± 200 This work
QS2 (MeV) 1217.0 174.5 ?
S (MeV) 541.8 1278.9 680 ± 530 This work
m∗

0/m 0.70 0.61 0.8 ± 0.1 [17,18]

Among the most important quantities to be discussed are
the nucleon Landau effective masses as they are critical to the
thermal properties of the equation of state. We show ratios of
the neutron and proton Landau effective masses to the vacuum
mass versus baryon density n for values of x = 0.5, 0.3, and
0.1, respectively, in Fig. 1. Figure 1(a) is for the APR model
from Eq. (17) and Fig. 1(b) contains similar results for the
Ska model from Eq. (21). At the equilibrium density n0 of
symmetric nuclear matter, m∗

0 for Ska is smaller than for APR,
and since |X2| < 2X1 and |p5| < 2p3, this means that m∗
is also smaller for Ska at every x at n0. Therefore, defining
aSka = X1 + YiX2 and aAPR = p3 + Yip5, we must have
aSka > aAPRe−bn0 for any Yi ∈ [0,1] from Eqs. (17) and (21).
It then follows from p4 > 0 that m∗

i is smaller for Ska at all
densities for every value of x ∈ [0,1] and for both neutrons
and protons. Furthermore, since p5 < 0 and X2 < 0, we have
that m∗

n(n,x) > m∗
0 > m∗

p(n,x) for n > 0 and x < 1/2.
Figure 2 shows the energy per particle E as a function

of baryon density n for values of x = 0.5, 0.3, and 0.1 for

-20
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FIG. 2. Zero-temperature energy per particle E versus baryon
number density for the APR (solid curves) using Eqs. (B25)–(B28)
and Ska (dashed curves) models at the indicated values of the proton
fraction x. The crosses on the APR curve for x = 1/2 show values
from column 6 of Table VI in Ref. [11]. Although not shown here,
we have verified that similar agreement is obtained with the APR
results in column 5 of Table VII in Ref. [11] for pure neutron matter
(x = 0). The cusps in the APR curves are due to the onset of neutral
pion condensation.

the two models. Our calculated results of APR (solid curves)
agree well with those tabulated in Tables VI and VII of
Ref. [11] (shown by crosses for x = 0.5 in this figure). We also
contrast the microscopic AP results for pure neutron matter and
symmetric nuclear matter with those obtained from the APR
fit in Table IV. (As noted in the Introduction, results below
n � 0.1 fm−3 can be used to establish differences from the
inhomogeneous phase of supernova matter containing nuclei,
light nuclear clusters, etc.) The asterisks in Fig. 2 show the
densities at which the transition from the LDP to the HDP
occurs due to pion condensation. While there is good agree-
ment between the results of the two models up to and slightly
beyond the equilibrium density, the Ska model is seen to have
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FIG. 1. (a) Ratios of the neutron (solid) and proton (dotted) Landau effective masses to the vacuum mass versus baryon density n for the
APR model from Eq. (17). (b) Same as (a) but for the Ska model from Eq. (21). Values of the proton fraction x are as indicated in the figure.
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TABLE IV. AP vs APR energies in MeV for symmetric nuclear
matter (SNM) and pure neutron matter (PNM) extracted from
Ref. [11].

n (fm−3) AP (SNM) APR (SNM) AP (PNM) APR (PNM)

0.04 −6.48 −5.63 6.45 6.42
0.08 −12.13 −11.56 9.65 9.58
0.12 −15.04 −14.98 13.29 13.28
0.16 −16.00 −16.00 17.94 17.99
0.20 −15.09 −15.16 22.92 23.57
0.24 −12.88 −12.96 27.49 28.04
0.32 −5.03 −5.14 38.82 39.41
0.40 2.13 2.62 54.95 54.72
0.48 15.46 15.14 75.13 74.59
0.56 34.39 32.92 99.74 99.45
0.64 58.35 56.22 127.58 129.57
0.80 121.25 119.97 205.34 206.22
0.96 204.02 207.14 305.87 305.06

both higher energies and pressures (slopes of the energy) than
the APR model at high densities for all values of x. This feature
essentially stems from the emergence of the pion condensate in
the HDP of APR which softens the corresponding EOS. Both
equations of state become acausal at high densities; a scheme
to retain causality will be outlined later.

Rows 5 and 6 in Table III list the symmetry energy Sv and its
slope parameter L for the two models. Although Sv for both
the models are similar, values of L differ significantly. The
higher value of L for the Ska model leads to a greater energy
and pressure of isospin asymmetric matter than for the APR
model near nuclear saturation densities, a feature that persists
to higher densities.

The density-dependent symmetry energy S2(n) can in
general be written as S2 = S2k + S2m + S2d with S2k as in
Eq. (50). Contributions from the momentum-dependent and
density-dependent parts, S2m and S2d , depend on the model
used. For the APR model,

S2m = 1

3
k2
F ne−p4n(p3 + 2p5),

(76)

S2d = 1

n
(−g1 + g2),

whereas for the Ska model

S2m = 1

3
k2
F n(X1 + 2X2) and S2d = n

2
(X4 + X6n

ε).

(77)

Note that the terms S4(n) and S6(n) receive contributions from
the momentum-dependent interaction part as well because of
terms involving niτi in the H’s of Eqs. (1) and (10). Explicitly,

S4m = 1

34
k2
F ne−p4n(p3 − p5),

(78)

S6m = 7

37
k2
F ne−p4n

(
p3 − 1

5
p5

)
,

for the APR model and for the Ska model

S4m = 1

34
k2
F n(X1 − X2),

(79)

S6m = 7

37
k2
F n

(
X1 − 2

5
X2

)
.

In Fig. 3, the extent to which the functions S2(n) (which
we call the symmetry energy), S4(n), and S6(n) from
Eqs. (50), (78), and (79) contribute to the difference between
pure neutron matter and nuclear matter energy, �E(n) =
E(n,α = 1) − E(n,α = 0) (for which we reserve the term
asymmetry energy) is examined. Figures 3(a) and 3(b) show
results for the APR and Ska models. The symmetry energy
S2(n) adequately accounts for the total �E(n) up to twice n0.
However, for densities well in excess of n0, contributions from
S4(n), S6(n) · · · become important, although S2(n) remains
dominant. The jumps in the symmetry energies for APR
at n = p19 = 0.32 fm−3 (at which transition from the LDP
to HDP occurs for x = 0.5) are due to the definitions of
S2(n),S4(n),S6(n) · · · which involve derivatives taken at x =
0.5. As the transition to the HDP occurs at lower values of
n as x decreases toward x = 0, the conventional definitions
of S2(n),S4(n),S6(n) · · · fail to capture the true behavior of
�E(n) in the presence of a phase transition. That is to say,

S(n) ≡
∑

l=2,4,...

Sl(n) �= �E(n) (80)

in the vicinity of a phase transition driven by density and
composition, regardless of the order to which the sum is carried
out. Differences of �E(n) from successive approximations to
it in terms of Sl(n) are shown in Fig. 3(c). In contrast to results
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FIG. 3. (a) Symmetry and asymmetry energies for APR [from Eqs. (50), (76), and (78)] vs baryon density n. (b) Same as shown in (a) but
for Ska [Eqs. (50), (77), and (79)]. (c) Differences of �E from S2, S2 + S4, and S2 + S4 + S6 for the two models.
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TABLE V. Results for the coefficients that describe the isospin
asymmetry dependence to O(δα) of the equilibrium density and
compression moduli.

Model A B C Ã = A + B

APR 0.933 −1.766 0.659 −0.833
Ska 1.403 −3.079 0.851 −1.676

for the SKa model for which the differences are monotonic,
those of the APR model show jumps in the region of the phase
transition, the density of which varies as a function of x [see
Eq. (9)].

Results for the coefficients A, B, C, and Ã that describe the
isospin asymmetry dependence to O(δα) of the equilibrium
density and compression moduli for the APR and Ska
models are displayed in Table V. Since asymmetry lowers
the equilibrium density, transitions occurring at supranuclear
densities do not affect these results. One observes that even
though HAPR and HSka are calibrated to very similar values
of the symmetry energy and the compression modulus, these
asymmetry coefficients vary significantly.

The extent to which Eq. (60), inserted into Eq. (41)
expanded to O(α2), adequately describes the loci of energy
minima in the energy per particle of subnuclear matter
for arbitrary α is demonstrated in Figs. 4(a) and 4(b) for
the two models. The dark circles show locations of the
minima resulting from the exact calculations using Eqs. (1)
and (10) as the proton fraction x is varied toward that of pure
neutron matter. The leading order results shown by the dotted
curves accurately trace the loci of minima down to x = 0.2.
Considering the O(δ2

α) contribution in Eq. (61) improves
agreement with the exact results even down to x = 0.1.

In Fig. 5, we show the pressure as a function of n for
representative values of x. For all x, including for neutron
matter (not shown), the Ska model has higher pressure than
that for the APR model. As with the energy per particle shown
in Fig. 2, the larger stiffness of the Ska model relative to the
APR model is caused by the appearance of a pion condensate
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FIG. 5. Pressure versus baryon density for the APR [Eqs. (B29)–
(B33)] and Ska models at different proton fractions. The jumps in the
APR results are due to phase transition to a pion condensate at the
values of x indicated.

in the HDP of the latter. The distinctive jumps in pressure
for the APR model are due to the phase transition to a pion
condensate, i.e., from the LDP to the HDP which occurs at
lower densities for increasingly asymmetric matter.

The neutron and proton chemical potentials, μn and μp,
versus baryon density for the two models are shown in
Figs. 6(a) and 6(b), respectively. Due to its relative stiffness,
results for the Ska model are systematically larger than those
for the APR model for all values of the proton fraction x.
It is worthwhile to mention here that μ̂ = μn − μp (with
modifications from effects of temperature to be discussed in
subsequent sections), shown Fig. 6(c), controls the reaction
rates associated with electron captures and neutrino interac-
tions in supernova matter.

The inverse susceptibilities are shown in Fig. 7 for the
APR and Ska models at representative proton fractions. The
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FIG. 4. Loci of minima in the energy per particle versus baryon density for the APR (a) and Ska (b) models for different proton fractions.
The dark circles are exact results from Eqs. (1) and (10). The dotted curves show O(δα) results from Eq. (60), whereas the O(δ2

α) [Eq. (61)]
contributions are shown as dashed lines.
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FIG. 6. [(a) and (b)] The neutron and proton chemical potentials versus baryon density n for the APR [Eqs. (B58)–(B62)] and Ska models
for different values of x. (c) μ̂ = μn − μp . The jumps in the APR results are due to phase transitions to a pion condensate.

largest qualitative and quantitative differences between the
two models occur at supranuclear densities for dμn/dnn and
dμp/dnp as seen Figs. 7(a) and 7(b). The cross derivatives
dμn/dnp = dμp/dnn are qualitatively similar for the two
EOSs, but relatively small quantitative differences between the
two models exist [Fig. 7(c)]. In the case of the APR model, in
which a pion condensate appears, these derivatives are required
ingredients in the Maxwell construction which determines
the phase boundary densities at which the pressure and an
average chemical potential are equal (this ensures mechanical
and chemical equilibria). These derivatives are also utilized
in constructing the full dense matter tabular EOS as will be
discussed later.

V. FINITE-TEMPERATURE PROPERTIES

In this section, properties of the APR and Ska models at fi-
nite temperature T are calculated. At finite T , the Hamiltonian
density is a function of four independent variables; namely the
number densities ni and the kinetic energy densities τi of the
two nucleon species. These are, in turn, proportional to the

F1/2 and F3/2 FD integrals [71], respectively,

ni = 1

2π2

(
2m∗

i T

�2

)3/2

F1/2i , (81)

τi = 1

2π2

(
2m∗

i T

�2

)5/2

F3/2i , (82)

where

Fαi =
∫ ∞

0

xα
i

e−ψi exi + 1
dxi, (83)

xi = 1

T

(
k2
i

∂H
∂τi

)
= 1

T

�
2k2

i

2m∗
i

≡ εki

T
, (84)

ψi = 1

T

(
μi − ∂H

∂ni

)
= μi − Vi

T
≡ νi

T
. (85)

The quantity ψi , generally termed as the degeneracy parameter,
is related to the fugacity defined by zi = eψi . In the above
equations, one must keep in mind that m∗

i is a function
of the number densities of both nucleon species i = n,p.
Consequently, derivatives of the FD integrals with respect to
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the densities take the forms

∂F1/2i

∂ni

= F1/2i

ni

(
1 − 3

2

ni

m∗
i

∂m∗
i

∂ni

)
, (86)

and
∂F1/2i

∂nj

= −3

2

ni

m∗
j

∂m∗
i

∂nj

F1/2i . (87)

FD integrals of different order are connected through their
derivatives with respect to ψi ,

∂Fαi

∂ψi

= αF(α−1)i . (88)

Therefore,

∂Fαi

∂ni

= ∂Fαi

∂F1/2i

∂F1/2i

∂ni

= ∂Fαi

∂ψi

(
∂F1/2i

∂ψi

)−1
∂F1/2i

∂ni

= 2α
F(α−1)i

F−1/2i

∂F1/2i

∂ni

. (89)

Similarly, cross derivatives with respect to density of Fermi
integrals are given by

∂Fαi

∂nj

= 2α
F(α−1)i

F−1/2i

∂F1/2i

∂nj

. (90)

Utilizing the relations

∂

∂n
= ∂

∂nn

∂nn

∂n

∣∣∣∣
x

+ ∂

∂np

∂np

∂n

∣∣∣∣
x

= (1 − x)
∂

∂nn

+ x
∂

∂np

∂

∂x
= ∂

∂nn

∂nn

∂x

∣∣∣∣
n

+ ∂

∂np

∂np

∂x

∣∣∣∣
n

= −n
∂

∂nn

+ n
∂

∂np

,

the derivatives of Fαi with respect to n and x are obtained as

∂Fαi

∂n
= 2α

F(α−1)i

F−1/2i

[
(1 − x)

∂F1/2i

∂nn

+ x
∂F1/2i

∂np

]
, (91)

∂Fαi

∂x
= 2α

F(α−1)i

F−1/2i

n

[
∂F1/2i

∂np

− ∂F1/2i

∂nn

]
. (92)

Using Eqs. (89)–(92), we arrive at the following expressions
for the density derivatives of the degeneracy parameter and the
kinetic energy density,

∂ψi

∂ni

= 2

F−1/2i

∂F1/2i

∂ni

, (93)

∂ψi

∂nj

= 2

F−1/2i

∂F1/2i

∂nj

, i �= j, (94)

∂ψi

∂n
= 2

F−1/2i

∂F1/2i

∂n
,

∂ψi

∂x
= 2

F−1/2i

∂F1/2i

∂x
, (95)

∂τi

∂ni

= τi

ni

[
3F 2

1/2i

F3/2iF−1/2i

+ 5

2

ni

m∗
i

∂m∗
i

∂ni

(
1 − 9

5

F 2
1/2i

F3/2iF−1/2i

)]
, (96)

∂τi

∂nj

= 5

2

τi

m∗
i

∂m∗
i

∂nj

(
1 − 9

5

F 2
1/2i

F3/2iF−1/2i

)
, (97)

∂τi

∂n
= τi

[
5

2

1

m∗
i

∂m∗
i

∂n

+ 3F1/2i

F3/2iF−1/2i

(
(1 − x)

∂F1/2i

∂nn

+ x
∂F1/2i

∂np

)]
,

(98)

∂τi

∂x
= τi

[
5

2

1

m∗
i

∂m∗
i

∂x

+ 3F1/2i

F3/2iF−1/2i

n

(
∂F1/2i

∂np

− ∂F1/2i

∂nn

)]
. (99)

These relations will be used in subsequent discussions of the
finite-temperature properties. For a rapid evaluation of the
FD integrals, two numerical techniques that give accurate
results for varying degrees of degeneracy are described in
Appendix D.

A. Thermal effects

To infer the effects of finite temperature we focus on the
thermal part of the various state variables, that is, the difference
between the T = 0 and the finite-T expressions for a given
thermodynamic function X,

Xth = X(n,x,T ) − X(n,x,0). (100)

This subtraction scheme discards terms that do not depend on
the kinetic energy density. The thermal energy is given by

Eth = E(T ) − E(0)

= 1

n

∑
i

[
�

2

2m∗
i

τi − 3

5
TFini

]
, (101)

where

TFi = �
2k2

Fi

2m∗
i

. (102)

The thermal pressure takes the form

Pth = P (T ) − P (0)

= 2

3

∑
i

Qi

[
�

2

2m∗
i

τi − 3

5
TFini

]
, (103)

where Qi = 1 − 3

2

n

m∗
i

∂m∗
i

∂n
. (104)

The quantities Qi are the consequence of the momentum-
dependent interactions in the Hamiltonian which lead to the
Landau effective mass. For a free gas, Qi = 1 and Pth =
2Eth/3 as usual. The entropy per particle can be written as

S = 1

nT

∑
i

[
5

3

�
2

2m∗
i

τi + ni(Vi − μi)

]

= 1

n

∑
i

ni

[
5

3

F3/2i

F1/2i

− lnzi

]
. (105)
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The thermal free energy density can be expressed as

Fth = F(T ) − H(0) = H(T ) − nT S − H(0)

=
∑

i

[
�

2

2m∗
i

τi − 3

5
TFini − T ni

(
5

3

F3/2i

F1/2i

− lnzi

)]
,

(106)

in terms of which the thermal contribution to the chemical
potentials are

μith = μi(T ) − μi(0) = ∂Fth

∂ni

∣∣∣∣
nj

. (107)

where μi(T ) = T ψi + Vi. (108)

The total free energy

F =
∑

i

[
�

2

2m∗
i

τi

n
− T Yi

(
5F3/2i

3F1/2i

− ψi

)]
+ Fd (109)

can be expressed, with the aid of

τi = 2m∗
i T

�2

F3/2i

F1/2i

ni (110)

as

F =
∑

i

[
T Yi

(
− 2F3/2i

3F1/2i

+ ψi

)]
+ Fd. (111)

The second derivative of the above with respect to the proton
fraction x evaluated at x = 1/2 yields the symmetry energy at
finite temperature,

S2(T ) = 1

8

d2F

dx2

∣∣∣∣
x=1/2

(112)

= −T

3

F3/2

F 2
1/2

[
dF1/2

dx
+

(
1

2F1/2
− 3F1/2

4F3/2F−1/2

)

×
(

dF1/2

dx

)2

− 1

4

d2F1/2

dx2

]
+ S2d , (113)

where

Fα ≡ Fαi(x = 0.5)

dF1/2

dx
≡ dF1/2n

dx

∣∣∣∣
x=1/2

= −dF1/2p

dx

∣∣∣∣
x=1/2

= −2F1/2

(
1 + 3

4m∗
dm∗

dx

)
, (114)

d2F1/2

dx2
≡ d2F1/2n

dx2

∣∣∣∣
x=1/2

= d2F1/2p

dx2

∣∣∣∣
x=1/2

= 6F1/2

m∗
dm∗

dx

(
1 + 1

8m∗
dm∗

dx

)
, (115)

m∗ ≡ m∗
n(x = 1/2) = m∗

p(x = 1/2), (116)

dm∗

dx
≡ dm∗

n

dx

∣∣∣∣
x=1/2

= −dm∗
p

dx

∣∣∣∣
x=1/2

. (117)

Note that

d2m∗

dx2
= 2

m∗
dm∗

dx
. (118)

Thus the thermal contributions to the symmetry energy are

S2,th = S2(T ) − S2(0). (119)

For the calculation of the specific heat at constant volume, we
begin by writing the energy per particle as

E = 1

n

∑
i

�
2

2m∗
i

τi + n-dependent terms.

Then

CV = ∂E

∂T

∣∣∣∣
n

= 1

n

∑
i

�
2

2m∗
i

∂τi

∂T

∣∣∣∣
ni

.

The condition that ni are constant implies

dni

dT
= 0 = ∂ni

∂T

∣∣∣∣
F1/2i

+ ∂ni

∂F1/2i

∣∣∣∣
T

∂F1/2i

∂T

∣∣∣∣
ni

⇒ ∂ni

∂T

∣∣∣∣
F1/2i

= − ∂ni

∂F1/2i

∣∣∣∣
T

∂F1/2i

∂T

∣∣∣∣
ni

. (120)

But

∂F1/2i

∂T

∣∣∣∣
ni

= ∂ψi

∂T

∣∣∣∣
ni

∂F1/2i

∂ψi

= 1

2
F−1/2i

∂ψi

∂T

∣∣∣∣
ni

, (121)

where Eq. (88) was used in obtaining the second equality.

Solving for ∂ψi

∂T

∣∣∣
ni

gives

∂ψi

∂T

∣∣∣∣
ni

= −∂ni

∂T

∣∣∣∣
F1/2i

(
∂ni

∂F1/2i

∣∣∣∣
T

1

2
F−1/2i

)−1

.

Using Eq. (81) for the derivatives of ni with respect to T and
F1/2i we get

∂ψi

∂T

∣∣∣∣
ni

= − 3

T

F1/2i

F−1/2i

. (122)

The T derivative of Eq. (82) is

∂τi

∂T

∣∣∣∣
ni

= τi

(
5

2T
+ 1

F3/2i

∂F3/2i

∂T

∣∣∣∣
ni

)

= τi

(
5

2T
+ 1

F3/2i

∂ψi

∂T

∣∣∣∣
ni

∂F3/2i

∂ψi

)

= τi

(
5

2T
− 9

2T

F 2
1/2i

F3/2iF−1/2i

)
, (123)

where Eqs. (88) and (122) have been exploited for the last line.
Thus

CV = 5

2nT

∑
i

�
2τi

2m∗
i

(
1 − 9

5

F 2
1/2i

F3/2iF−1/2i

)
. (124)

The starting point of the calculation of the specific heat at
constant pressure is

CP = CV + T

n2

(
∂P
∂T

∣∣
n

)2

∂P
∂n

∣∣
T

. (125)
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FIG. 8. Pressure of isospin symmetric matter vs baryon density [from Eq. (103)] for the APR (a) and Ska (b) models at the indicated
temperatures. The point (P,n) on the critical temperature curve of each model at which dP/dn = d2P/dn2 = 0 is indicated by the downward
arrow.

The temperature derivative of the pressure at fixed density is
given by

∂P

∂T

∣∣∣∣
n

= 2

3

∑
i

�
2

2m∗
i

Qi

∂τi

∂T

∣∣∣∣
n

= 5

3T

∑
i

�
2

2m∗
i

Qiτi

(
1 − 9

5

F 2
1/2i

F3/2iF−1/2i

)
, (126)

where Eq. (123) was used in going from the first line to
the second. The density derivative of the pressure at fixed
temperature is

∂P

∂n

∣∣∣∣
T

= �
2

3

d

dn

(∑
i

Qiτi

m∗
i

)
+ dPd

dn

= �
2

3

∑
i

[
Qi

m∗
i

dτi

dn
+ τi

m∗
i

dQi

dn
− τiQi

m∗2
i

dm∗
i

dn

]
+ dPd

dn
.

(127)

The density derivatives of the kinetic energy density are given
in Eqs. (96)–(99) and those of m∗, Q, and Pd in Appendix B.

Finally, the inverse susceptibilities are given by

χij,th = χij (T ) − χij (0) =
(

∂μith

∂nj

)−1

, (128)

where

χii(T ) =
(

∂μi

∂ni

)−1

=
(

T
∂ψi

∂ni

+ ∂Vi

∂ni

)−1

=
[
T

(
∂F1/2i

∂ψi

)−1
∂F1/2i

∂ni

+ ∂Vi

∂ni

]−1

=
[

2T

ni

F1/2i

F−1/2i

(
1 − 3

2

ni

m∗
i

∂m∗
i

∂ni

)
+ ∂Vi

∂ni

]−1

, (129)

χij (T ) =
[

− 3T
F1/2i

F−1/2i

1

m∗
i

∂m∗
i

∂nj

+ ∂Vi

∂ni

]−1

; i �= j. (130)

B. Results: APR vs Ska

We now present numerical results. Comparisons of these
results with analytical results in the degenerate and nonde-
generate situations will be presented in the next subsection.

We begin by examining results of the total pressure [from
Eq. (103)] as it varies with temperature and density in the
subnuclear regime for isospin symmetric matter (x = 0.5).
Our results for the APR and Ska models are shown in Fig. 8.
The prominent feature in this figure is the onset of a liquid-gas
phase transition, the critical temperature and density for which
are obtained by the condition

dP

dn

∣∣∣∣
nc,Tc

= d2P

dn2

∣∣∣∣
nc,Tc

= 0. (131)

The critical temperatures (densities) for the APR and Ska
models were found to be 17.91 MeV (0.057 fm−3) and
15.12 MeV (0.056 fm−3), respectively, so

Pc

ncTc

=
{

0.347, for APR

0.303, for Ska
. (132)

These results provide an interesting contrast with the value
0.375 for a Van der Waals–like equation of state and the
experimental values that lie in the range 0.27–0.31 for noble
gases (see, e.g., Ref. [72], p. 69).

In Fig. 9, we show how the critical temperatures and
densities vary as a function of proton fraction x in Fig. 9(a).
Both quantities are scaled to their respective values for
symmetric nuclear matter (x = 0.5). The falloff of the critical
temperature with x is similar for the APR and Ska models,
whereas the falloff of the critical density with x for the Ska
model is steeper than for the APR model [Fig. 9(b)]. The
critical proton fractions beyond which the phase transition
disappears are similar for both models, that for the APR model
being slightly larger than for the SkA model. As is evident from
Figs. 9(c) and 9(d) in this figure, Pc/ncTc exhibits very little
variation with x.

The thermal properties are dominated by the behavior of
the effective masses. For all densities, at a given value of x,
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the APR effective masses are larger than for Ska. As a result,
thermal contributions to entropy, energy, pressure, free energy,
etc., are larger in the case of APR at the same density. This
explains the relative behaviors in Figs. 10, 11, 12, and 14. The
reverse behavior is seen in the thermal part of the chemical
potentials in Fig. 13. This behavior can be understood through
the limiting cases in Eqs. (145) and (162) where the effective
masses enter with an overall negative sign.

The thermal energy [from Eq. (101)] is shown in Fig. 10
for the two models at proton fractions x of 0.5 and 0.1 and
at temperatures T of 20 and 50 MeV, respectively. Common
to both models are the features that the thermal energy (i)
decreases and (ii) is nearly independent of the proton fraction
with increasing density. Maximal differences (with respect
to x) are seen to be in the vicinity of n0 = 0.16 fm−3 for
both models. Differences between the two models increase
with increasing density, particularly for densities in excess
of n0. These common and different features arise due to
a combination of effects involving the dependence of the
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FIG. 10. Thermal energy per particle [Eq. (101)] at the indicated
proton fractions and temperatures for the APR and Ska models.

thermal energy on the effective masses as the degree of
degeneracy changes with density, as will be discussed in the
next subsection with analytical results in hand.

In Fig. 11, the difference between the pure neutron matter
and nuclear matter free energies �Fth = F (n,T ,x = 0) −
F (n,T ,x = 0.5) is shown for the two models at T = 20 and
50 MeV, respectively. For both temperatures shown, the APR
model has a larger �Fth than that of the Ska model. This feature
can be understood in terms of the larger thermal energies of
the APR model relative to those of the Ska model at the same
density and temperature which dominate over the opposing
effects of entropy.

The thermal pressures [from Eq. (103)] for the two models
are shown in Fig. 12 for x = 0.5 and 0.1 and T = 20 and
50 MeV as functions of density. Both models display the
same trend of rising almost linearly with density until around
1.5 n0 before beginning to saturate at higher densities. This
trend is independent of proton fraction and temperature;
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FIG. 11. Difference between the pure neutron matter and nuclear
matter free energies [Eq. (106)] at the indicated temperatures for the
APR and Ska models.
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FIG. 12. Thermal pressure vs baryon density [Eq. (103)] at the
indicated proton fractions and temperatures.

however, the stiffness in pressure is more pronounced for the
higher-temperature and lower-proton fraction. The agreement
between the results of the two models becomes progressively
worse as the density increases. As with the thermal energy
in Fig. 10, these results are a consequence of the increasing
degeneracy with increasing density and the behavior of the
effective masses in the two models as our discussion in the
next subsection will reveal.

The neutron and proton thermal chemical potentials [from
Eq. (107)] plotted as functions of baryon density are presented
in Figs. 13(a)–13(d). Chemical potentials of fermions inclusive
of their zero-temperature parts decrease with temperature at
a fixed density, hence the negative values of their thermal
counterparts. We observe larger neutron and proton thermal
chemical potentials from the Ska model when compared with
the APR model for all but the lowest baryon densities and at
both temperatures. The difference between the two models is
greatest at intermediate densities (between n0 and 2n0) and at
high temperatures. In the case of the neutron thermal chemical
potential there is little difference between isospin symmetric
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FIG. 14. Entropy per baryon in units of kB vs baryon density
[Eq. (105)].

(x = 0.5) and neutron-rich matter (x = 0.1). This is not the
case for the proton chemical potential which displays a much
greater difference as isospin asymmetry increases.

In Fig. 14, we present our results for the entropy per
baryon for the APR and Ska models. Our results show that
the APR model provides a larger entropy per baryon than
the Ska model for all baryon densities, proton fractions, and
temperatures. The magnitude of the observed difference is
independent of proton fraction x and increases with baryon
density n and temperature T . For extremely low densities
(n  n0), the difference in entropy per baryon between the
models is negligible as interactions play a minor role in a
nearly ideal gas for this quantity.

In Figs. 15 through 17 we present results from Eqs. (128)
and (129) of the thermal inverse susceptibilities for the APR
and Ska models. The neutron-neutron and proton-proton
thermal inverse susceptibilities (Figs. 15 and 16, respectively)
show no significant difference between the two models at
all baryon densities, proton fractions, and temperatures. The
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FIG. 13. Thermal neutron [(a) and (b)] and proton [(c) and (d)] chemical potentials vs baryon density [Eq. (107)].
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FIG. 15. Neutron-neutron inverse susceptibility vs baryon den-
sity [Eqs. (128) and (129)] for the APR and Ska models at
the indicated proton fractions x. The two models are visually
indistinguishable at both temperatures and proton fractions.

neutron-proton thermal inverse susceptibility (Fig. 17) shows
a significant difference between the two models at densities
less than n0. The magnitude of this discrepency is independent
of proton fraction and only mildly dependent on temperature.
This difference can be attributed to the effective masses as it
is explicitly shown in Eqs. (166) and (167) (the nondegenerate
limit is appropriate for small densities). The leading terms
in χ−1

ii go as T/ni , thus APR and Ska are similar because
the effective mass enters only as a correction. On the other
hand, χ−1

ij differ significantly since their leading terms are
proportional to (T/m∗

i )(dm∗
i /dnj ) and therefore their behavior

is primarily influenced by the effective mass.
In Fig. 18 results for the specific heats at constant volume

and at constant pressure, CV and CP [from Eqs. (124)
and (125)] are shown as functions of baryon density for the
APR and Ska models at temperatures of 20 and 50 MeV,
respectively. Beginning with the value of 1.5 characteristic
of a dilute ideal gas, CV steadily decreases with increasing
density as degeneracy begins to set in Figs. 18(a) and 18(b).
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FIG. 16. Proton-proton inverse susceptibility vs baryon density
[Eqs. (128) and (129)]. Just as in the case of χ−1

nn , the two models are
indistinguishable at both temperatures and proton fractions.
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FIG. 17. Neutron-proton susceptibility vs baryon density
[Eqs. (128) and (130)]. Because dμn/dnp = dμp/dnn, only one of
the cross derivatives is shown. Unlike χ−1

nn and χ−1
pp , χ−1

np exhibits
strong model dependence at low densities.

As the EOS of the Ska model is stiffer than that of the APR
model at high densities, the falloff of CV with density is
correspondingly more rapid. For both models, CV exhibits
little dependence on proton fraction for both temperatures
shown. Results of CP , shown in Figs. 18(c), 18(d), and 18(e),
exhibit characteristic maxima that indicate the occurrence of
a liquid-gas phase transition at low densities. At n = nc and
T = Tc, dP/dn → 0 (see Fig. 8 in which P vs n for the two
models are shown at various temperatures) which causes CP

(which is inversely proportional to dP/dn) to diverge. For
isospin symmetric matter at T = 20 MeV, the maximum in
CP is greater for the APR model than that for the Ska model.
This feature can be understood in terms of T = 20 MeV being
closer to the Tc = 17.91 MeV of the APR model than to the
Tc = 15.12 MeV for the Ska model. As for CV , there is little
dependence on the proton fraction for CP . Note that an abrupt
jump in CP also occurs for the APR model at the densities for
which a transition from the LDP to the HDP takes place due to
the onset of pion condensation [see Fig. 18(d)] for its presence
also at T = 20 MeV.

1. Comparison with the results of Kanzawa et al.

As mentioned in the Introduction, the variational calcula-
tions of Kanzawa et al. [49] (KOST hereafter) are based on
the same Hamiltonian as of AP but without the relativistic
boost corrections. Also absent in this work is the transition
to the HDP due to neutral pion condensation. As results from
this work are available at zero and finite temperatures but
for isospin symmetric nuclear matter and pure neutron matter
only, we will restrict comparisons with our results for these
two cases. For reference, the compression modulus for KOST
is 250 MeV (266 MeV for APR) and the symmetry energy is
30 MeV (32.6 MeV for APR). The zero-temperature nuclear
matter EOS of KOST (see their Fig. 2) closely tracks that of
APR until n = 0.32 fm−3 but turns stiffer for larger densities,
resembling that of APR were the LDP phase to be continued
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FIG. 18. [(a) and (b)] Specific heat at constant volume, CV [from Eq. (124)] vs baryon density. [(c), (d), and (e)] Specific heat at constant
pressure, CP [from Eq. (125)] vs baryon density.

beyond the transition to the HDP phase. The zero-temperature
pure neutron matter EOS of KOST is slightly stiffer than that
of APR from n � 0.1 − 0.5 fm−3 but merges with the APR
result thereafter. Both KOST and APR models for pure neutron
matter yield similar maximum masses (�2.2 M�).

Turning to thermal effects, isospin symmetric nuclear
matter becomes unbound (P � 0 for all n) for T ∼ 12 MeV
in both models. The liquid-gas phase transition occurs at
T ∼ 18 MeV for both EOSs. Picking T = 20 MeV and
n = 0.6 fm−3 for the sake of comparison, both KOST and
APR models yield similar results for the thermal energy,
Eth, for nuclear matter (∼5 MeV) and pure neutron matter
(∼4 MeV). For the same temperature and density, results
for the entropy per particle, S(kB), are ∼0.6 (for symmetric
nuclear matter) and ∼0.45 (for pure neutron matter) for
KOST, while the corresponding numbers are 0.5 and 0.25,
respectively, for the APR model. These results are intriguing
inasmuch as the treatment of the effective mass is very different
in the two approaches. In KOST, the single-particle energy
is written as ε(k) = �

2k2/(2m∗) [see their Eq. (43)], with
m∗ being treated as a density- and temperature-dependent
variational parameter. As a result, the effective mass acquires a
temperature dependence that is absent in the treatment of APR
but the density dependence arises from potential interactions.
While the latter conforms to traditional treatments in Landau’s
Fermi liquid theory, the former does not. Lacking information
on thermal pressures and chemical potentials from KOST, it
is difficult to offer more insights into the differences found
in the entropy per particle. Also worth mentioning is the fact
that the T -dependent effective mass found by KOST (and
which is unattainable in our framework) could, potentially,
have considerable influence on the thermal response functions
χ−1

ij , CV , and CP (not available from KOST).

C. Limiting cases

In this section, we study the limiting cases when degenerate
(low T , high n such that T/EFi

 1) and nondegenerate (high
T , low n such that T/EFi

� 1) conditions prevail. In these

limits, compact analytical expressions for all thermodynamic
variables can be obtained. From a comparison of the exact,
but numerical, results with their analytical counterparts, the
density and temperature ranges in which supernova matter
is degenerate, partially degenerate, or nondegenerate can be
established. In addition, such a comparison also provides
a consistency check on our numerical calculations of the
thermal variables. Because of the varying concentrations of
neutrons and protons (and leptons, considered in a later
section) encountered, one or the other species may well lie
in different regimes of degeneracy.

D. Degenerate limit

In this case, we make use of Landau’s Fermi liquid
theory (FLT) [73,74], which allows for a model-independent
discussion of the various thermodynamical functions. The
temperature dependence of these functions is governed by
the nature of the single-particle spectrum. For the APR and
Skyrme Hamiltonians, this dependence is characterized by a
density-dependent effective mass.

In FLT, the entropy density s and the number density n
maintain the same functional forms as those of a free Fermi
gas. For a single-component gas,

s = −
∑
k,σ

[nkσ lnnkσ + (1 − nkσ )ln(1 − nkσ )], (133)

n =
∑
k,σ

nkσ and nkσ = 1

e(εkσ −μ)/T + 1
, (134)

where k is the wave number, and σ stands for spin degrees
of freedom, respectively. Note that the quasiparticle energy
εk is itself a function of the distribution function nk . The
distribution of particles close to the zero temperature Fermi
energy EF determines the general behavior (degenerate versus
nondegenerate) of the system.
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The low-temperature expansion of s is standard and to order
T yields

s = π2

3
N (0)T = π2

kF vF

nT , (135)

where N (0) is the density of states at the Fermi surface,

N (0) =
∑

�k
δ(εkσ − μ) = 3n

kF vF

. (136)

The quantity vF is the Fermi velocity,

vF = ∂εo
ks

∂k

∣∣∣∣
k=kF

= kF

m∗ . (137)

The above equation serves as a definition of the quasiparticle
effective mass m∗. Including the 2 spin degrees of freedom,
n = k3

F /(3π2) so N (0) = m∗kF /π2. The entropy density in
Eq. (135) is often written as

s = 2anT = π2

2
n

[
T

TF

]
. (138)

Above, the level-density parameter a and the Fermi tempera-
ture TF are

a = π2N (0)

6n
= π2

2kF vF

= π2

4TF

TF = 1

2
kF vF = k2

F

2m∗ . (139)

In normal circumstances, the leading correction to s above is of
order (T/TF )2 unless there exist soft collective modes which
give rise to a (T/TF )3ln(T/TF ) behavior [74].

The generalization to a multicomponent gas is straightfor-
ward. The sums in Eq. (133) and Eq. (134) go over particle
species so the end result for the entropy density reads as

s = π2

3
T

∑
i

Ni(0) = 2T
∑

i

aini, (140)

where ai = π2

2kFivF i

= π2

2

m∗
i

k2
Fi

. (141)

The rest of the thermal variables follow from thermodynam-
ics, particularly the Maxwell relations. The thermal energy is
obtained from∫

dE =
∫

T dS = 2

n

∑
i

aini

∫
T dT

⇒ Eth = T 2

n

∑
i

aini . (142)

The thermal pressure arises from∫
dp =

∫ T

0

(
s − n

ds

dn

)
dT =

∑
i

[
aini − n

d(aini)

dn

]
T 2.

Using ai = π2

2
m∗

i

(3π2ni )2/3 , we get

n
d(aini)

dn
= aini − 2ain

3

(
1 − 3

2

n

m∗
i

dm∗
i

dn

)
. (143)

This allows us to write the thermal pressure as

Pth = 2T 2

3

∑
i

ainiQi, (144)

where Qi is given by Eq. (104). The thermal chemical
potentials are obtained from

∫
dμi = −

∫
ds

dni

dT = − d

dni

⎛
⎝∑

j

ajnj

⎞
⎠ T 2

⇒ μith = −T 2

⎡
⎣ai

3
+

∑
j

njaj

m∗
j

dm∗
j

dni

⎤
⎦ . (145)

Thus, the susceptibilities are

dμi,th

dni

= −T 2

3

(
− 2

3

ai

ni

+ 2
ai

m∗
i

dm∗
i

dni

+ 3
niai

m∗
i

d2m∗
i

dn2
i

+ 3
njaj

m∗
j

d2m∗
j

dn2
i

)
, (146)

dμi,th

dnj

= −T 2

3

(
ai

m∗
i

dm∗
i

dnj

+ aj

m∗
j

dm∗
j

dni

+ 3
niai

m∗
i

d2m∗
i

dnidnj

+ 3
njaj

m∗
j

d2m∗
j

dnidnj

)
. (147)

The free energy is given by

Fth = Eth − T S = −Eth = −T 2
∑

i

aiYi, (148)

from which we get the symmetry energy

S2,th = T 2a

9

[
1 + 3

2m∗
dm∗

dx
− 9

4m∗2

(
dm∗

dx

)2]
, (149)

a = π2

2

m∗

�2

1(
3π2n

2

)2/3 , (150)

where m∗ and dm∗/dx are given by Eqs. (116) and (117),
respectively.

From the relation for the thermal energy, the specific heat
at constant volume is

CV = 2T

n

∑
i

aini = S = 2Eth

T
. (151)

In the degenerate limit, to lowest order in temperature,

CP = CV . (152)

E. Nondegenerate limit

In the nondegenerate (ND) limit, the degeneracy (and hence
the fugacity) is small, so the FD functions can be expanded in
a Taylor series about z = 0 as follows:

Fαi � �(α + 1)

(
zi − z2

i

2α+1
+ . . .

)
. (153)
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Then the F1/2 series is perturbatively inverted to get the
fugacity in terms of the number density and the temperature,

zi = niλ
3
i

γ
+ 1

23/2

(
niλ

3
i

γ

)2

, (154)

where λi =
(

2π�
2

m∗
i T

)1/2

(155)

and γ = 2 (the spin orientations).

Subsequently, these are used in the other FD integrals so that
they, too, are expressed as explicit functions of the number
density and the temperature as follows:

F3/2i = 3π1/2

4

niλ
3
i

γ

[
1 + 1

25/2

niλ
3
i

γ

]
, (156)

F1/2i = π1/2

2

niλ
3
i

γ
, (157)

F−1/2i = π1/2 niλ
3
i

γ

[
1 − 1

23/2

niλ
3
i

γ

]
. (158)

Finally, we insert these into Eqs. (101)–(107) from which we
get

Eth = 1

n

∑
i

{
3

2
T ni

[
1 + ni

4

(
π�

2

m∗
i T

)3/2]
− 3

5
TFini

}
,

(159)

Pth =
∑

i

{
T Qini

[
1 + ni

4

(
π�

2

m∗
i T

)3/2]
− 2

5
TFini

}
, (160)

S = 1

n

∑
i

ni

{
5

2
− ln

[(
2π�

2
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i T

)3/2
ni

2

]
+ ni
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(161)
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Thus

Fth =
∑

i

{
T Yi

[
− 1 + ln

[(
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2
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4

(
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, (163)

S2,th = T

8

{
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, (164)

TF =
(

3π2n

2

)2/3
�

2

2m∗ , (165)
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CV = 1

n

∑
i

{
3

2
ni

[
1 − ni

8

(
π�

2

m∗
i T

)3/2]}
. (168)

The second derivatives and the squares of the first derivatives
of the effective mass are neglected because they represent
higher-order corrections.

For CP , we need the temperature and density derivatives
of pressure in the ND limit, for which we use Eq. (125) in
conjuction with

P =
∑

i

{
T Qini

[
1 + ni

4

(
π�

2

m∗
i T

)3/2]}
+ Pd (169)

to get

∂P

∂T

∣∣∣∣
n

=
∑

i

{
Qini

[
1 − ni

8

(
π�

2

m∗
i T

)3/2]}
, (170)

∂P

∂n

∣∣∣∣
T

=
∑

i

{
T

[
1 + ni

4

(
π�

2

m∗
i T

)3/2](
∂Qi

∂n
ni + QiYi

)}

+
∑

i

[
T Q2

i ni

Yi

4

(
π�

2

m∗
i T

)3/2]
+ dPd

dn
. (171)

F. Results: Exact vs Limits

This section is devoted to comparisons of results from the
analytical formulas obtained in the previous section for the
limiting cases with those from the exact calculations presented
earlier. In addition to providing us with physical insights about
the general trends observed, these comparisons will allow
us to delineate the range of densities for which matter with
varying isospin asymmetry and temperature can be regarded
as either degenerate or non-degenerate. We will restrict our
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FIG. 19. Thermal energy per particle [Eq. (101)] and limiting
cases [Eqs. (142) and (159)] vs baryon density at the indicated
temperatures and proton fractions.

comparisons to results from the APR model only as those for
the Ska model yield similar conclusions.

In Fig. 19, we show the thermal energies Eth as a function
of baryon density n for T = 20 MeV [Fig. 19(a)] and
50 MeV [Fig. 19(b)] for proton fractions of x = 0.5 and 0.1,
respectively. The T 2 dependence implied by the degenerate
approximation in Eq. (142) is borne out by the the exact results
at high densities. Also, the larger the temperature, the larger
the density at which the degenerate approximation approaches
the exact result. The effective masses introduce an additional
density dependence to the ∼n−2/3 behavior characteristic of
a free gas of degenerate fermions for which Eth would be
larger than that with momentum-dependent interactions. Note
that in the degenerate limit, both the approximate and exact
results are nearly x independent. With increasing temperature,
the nondegenerate approximation in Eq. (159) reproduces the
exact results the agreement extending up to nuclear density and
even slightly beyond. As for a free Boltzmann gas, the thermal
energy is predominantly linear in T in the nondegenerate limit
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FIG. 20. Thermal contributions to the symmetry energy, S2,th,
from Eq. (113) compared with its limiting cases [Eqs. (149) and (164)]
at the indicated temperatures.
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FIG. 21. Thermal symmetry and asymmetry free energies Si,th

and their contributions to �Fth = ∑
i Si,th as defined in the insets.

and is only slightly modified by the density dependence of the
effective masses. The ∼n−2/3 falloff with density arises from
the last term in Eq. (101) (the degeneracy energy of fermions at
T = 0) with subdominant corrections from the density depen-
dence of the effective masses. Effects of isospin asymmetry are
somewhat more pronounced in the nondegenerate case when
compared to the degenerate limit. Results for highly asym-
metric matter from Eq. (159) begin to deviate from the exact
results at lower densities than for symmetric matter because
the two components are in different regimes of degeneracy.

In Fig. 20, thermal contributions to the symmetry energy,
S2,th, from Eq. (113) and its limiting cases from Eqs. (149)
and (164) for the APR model, are shown as functions of
baryon density at temperatures of 20 and 50 MeV, respectively.
Agreement between the degenerate limit and the exact result
is obtained around 3n0 for T = 20 MeV and at much larger
densities (n > 1 fm−3) for the T = 50 MeV. The nondegen-
erate limit coincides with the exact result for densities less
than ≈0.5n0 for the 20 MeV temperature. At T = 50 MeV the
nondegenerate limit has a greater range of baryon densities for
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FIG. 22. Thermal free energy [Eq. (106)] and its limiting cases
[Eqs. (148) and (163)] vs baryon density at the indicated proton
fractions and temperatures.
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FIG. 23. Thermal pressure [Eq. (103)] and limiting cases
[Eqs. (144) and (160)] vs baryon density.

which it agrees with the exact result, reaching up to 1–1.5 n0.
A noteworthy feature in this figure is that both the exact and
the degenerate result for S2,th become negative after a certain
baryon density. Note that for free fermions, S2,th in Eq. (149) is
strictly positive, pointing to the fact that derivatives of m∗ with
respect to proton fraction x are at the root of driving S2,th nega-
tive. In what follows, we examine the rate at which the identity
�Fth = ∑

i Si,th with i even (odd terms canceling) is fulfilled.
Figure 21(a) shows the difference of the exact free energies

�Fth = Fth(n,x = 0,T ) − Fth(n,x = 0.5,T ) at T = 20 MeV.
Also shown are contributions from various Si,th at the same
temperature. To be specific, we consider only the degenerate
limit results for Si,th in this comparison. It turns out that
only S2 turns negative at a finite baryon density, whereas
S4,S6, · · · which contain higher derivatives of m∗ with respect
to the proton fraction x are all positive and their magnitudes
decrease very slowly. We have calculated up to 30 terms
in Si,th and show how their sums compare with �Fth. It is
clear that the convergence to the exact thermal result is poor

when viewed in relative terms. At high densities, where the
degenerate limit is applicable, the difference is about 50%
in contrast to the rapid convergence of symmetry energies at
zero temperature [see Fig. 3(b)]. In absolute terms, however,
the difference is about 0.5 MeV, its significance being further
diminished by the fact that the thermal part is only a minor
correction to the total symmetry energy (about two orders
of magnitude smaller than the zero-temperature component,
at high n). The situation is considerably better for �Fth =
Fth(n,x = 0.02,T ) − Fth(n,x = 0.5,T ) at T = 20 MeV [see
the scale on the right of Fig. 21(b)]. These results indicate that
the origin of poor convergence for moderate temperatures and
large isospin asymmetries lie in the asymptotic nature of the
Taylor series expansion of �Fth in even powers of (1 − 2x) at
finite temperature. Exact, albeit numerical, calculations of the
Fermi integrals are necessary for high isospin asymmetry and
temperatures of relevance to supernova matter.

In Fig. 22, we show results for the thermal free energy from
Eq. (106) and its limiting cases from Eqs. (148) and (163)
as functions of baryon density. The degenerate limit and the
exact result of Fth are in agreement for densities greater than
1.5n0 for T = 20 MeV and only for much larger densities
(n � 5n0) for T = 50 MeV. The convergence between the
degenerate limit and the exact result of Fth is independent
of proton fraction for both temperatures. The nondegenerate
limit begins to differ from the exact result at around n0 for T =
20 MeV and about 2n0 for T = 50 MeV. For both temperatures
shown, the convergence between the nondegenerate limit and
the exact solution is nearly independent of proton fraction.

Results for the exact thermal pressures Pth [from Eq. (103)]
and those of its limiting cases [Eqs. (144) and (160)] are
presented in Fig. 23 for the APR model. For both temperatures
considered, the initial rise of Pth (in the nondegenerate regime)
is approximately linear in density, modulated by the factors
Qi , with slope ∝T highlighting the role of density-dependent
effective masses relative to a free Fermi gas for which the slope
would be T . The linear rise is halted as matter begins to become
increasingly degenerate when effective mass corrections begin
to gain importance. Quantitative agreement of the exact results
with those from the limiting form of the degenerate expression
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FIG. 24. Neutron [(a) and (b)] and proton [(c) and (d)] thermal chemical potentials [Eq. (107)] with limits [Eqs. (145) and (162)] vs baryon
density. Temperatures and proton fractions are as shown in the legends.
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FIG. 25. Entropy per baryon [Eq. (105)] and its limiting cases
[Eqs. (140) and (161)] vs baryon density at the indicated proton
fractions and temperatures.

is, however, reached at densities much larger than shown
in this figure. Note that isospin asymmetry effects are more
pronounced for Pth than for Eth except at very low and very
high densities.

Thermal contributions to the neutron and proton chemical
potentials μn,th and μp,th versus baryon density n are shown
in Fig. 24 in which comparisons between results from the
exact [Eq. (107)] and limiting cases [Eqs. (145) and (162)]
are made. For μn,th [Fig. 24(a) and 24(b)], good agreement
is found between the nondegenerate limit and the exact
result for densities up to n0 for T = 20 MeV and up to
2n0 for T = 50 MeV. Results in the degenerate limit rapidly
approach the exact results, unlike in the cases of Eth and
Pth. Note that this level of quantitative agreement, in both
nondegenerate and degenerate cases, required derivatives of
the density-dependent effective masses [Eqs. (145) and (162)].
Isospin asymmetry effects are not very pronounced for μn,th.
The thermal contribution to the proton chemical potential μp,th

[Fig. 24(c) and 24(d)] exhibits a greater difference between
isospin symmetric and asymmetric matter when compared to
μn,th. The agreement between the exact results for μp,th and
those of the limiting cases is much the same as it was for
μn,th. Both the degenerate and nondegenerate limits agree to
a greater degree for the higher temperature and for isospin
symmetric matter.

In Fig. 25, we present the exact results for the entropy per
baryon [Eq. (105)] and its limiting cases [Eqs. (140) and (161)]
as functions of baryon density n. The exact results show
little difference between isospin symmetric and asymmetric
matter. A comparison of the results in Figs. 25(a) and 25(b)
reveals the range of densities over which the nondegenerate and
degenerate approximations reproduce the exact results. The
agreement between the exact results and those of the limiting
cases is almost independent of proton fraction, although what
little difference there is points to isospin symmetric matter
having a slightly better agreement.

In Figs. 26, 27, and 28, thermal contributions to the
inverse susceptibilities χ−1

nn , χ−1
pp , and χ−1

np [Eqs. (128), (129),
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FIG. 26. Neutron-neutron inverse susceptibility vs baryon den-
sity [Eqs. (128) and (129)] for the APR model and its limiting cases at
the indicated proton fractions x. The degenerate limit from Eq. (146)
[(a) and (c)] and the nondegenerate limit from Eq. (166) [(b) and (d)]
are both shown.

and (130)] are shown together with their limiting cases in
Eqs. (146), (147), (166), and (167) (the nondegenerate limits
are in the insets of all three figures). Note that, where expected,
the degenerate and nondegenerate approximations provide an
accurate description of the exact results. It is intriguing that
for densities slightly above the nuclear density, neither of the
approximations works very well.

In Figs. 29(a) and 29(b), we present our results of the
specific heat at constant volume from Eq. (124) and its limiting
cases from Eqs. (151) and (168) for the APR model. Results
shown are for for isospin symmetric (x = 0.5) and neutron-
rich matter (x = 0.1) at temperatures of 20 and 50 MeV,
respectively. The degenerate limit Eq. (151) converges with the
exact result for densities larger than 0.4 fm−3 at T = 20 MeV
and for densities larger than (1 fm−3) for T = 50 MeV with
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FIG. 27. Proton-proton inverse susceptibility vs baryon density
[Eqs. (128) and (129)] and its limiting cases. The dotted curves in
(a) and (c) show the degenerate limit [Eq. (146)] results. The insets
in (b) and (d) compare the nondegenerate limit [Eq. (166)] with the
exact result.
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FIG. 28. Mixed inverse susceptibilities [Eqs. (128) and (130)]
and the limiting cases [from Eq. (147) for the degenerate limit in (a)
and (c) and from Eq. (167) for the nondegenerate limit in (b) and (d)]
vs baryon densities. As dμn/dnp = dμp/dnn, only one of the mixed
derivatives is shown.

little to no dependence on proton fraction. As expected, the
nondegenerate limit holds at low densities, the agreement
with the exact result extending to slightly above n0 at the
higher temperature. The extent of disagreement is somewhat
dependent on the proton fraction with neutron-rich matter
differing from the exact result at slightly lower baryon densities
than for symmetric matter.

Figures 29(c) and 29(d) show the specific heat at constant
pressure from Eq. (125) and its limiting cases from Eqs. (152)
and (125) using Eqs. (168), (170), and (171) as functions
of baryon density. The degenerate limit of CP [Eq. (152)]
provides good agreement with the exact solution at densities
greater than about n0 at T = 20 MeV. At T = 50 MeV, the
degenerate limit of CP provides a good approximation to the
exact result at densities greater than 2n0 but does not converge
until large densities (n > 1 fm−3). The nondegenerate limit
of CP in Eq. (125) using Eqs. (168), (170), and (171) is in
agreement with the exact solution up to n0 for T = 20 MeV
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FIG. 30. Contribution to energy per particle from leptons vs
baryon density at the indicated temperatures and proton fractions. The
solid lines are obtained using the approximate analytical expression
Eq. (C10) and the crosses correspond to a full numerical calculation
using Eq. (D9).

and up to almost 2n0 for T = 50 MeV. However, the liquid-gas
phase transition pushes the exact solution to larger CP when
compared to the effect of this transition on the degenerate limit.
Even including the effects of the liquid-gas phase transition,
the agreement between the nondegenerate limit and the exact
solution is very good. The rate of converence between the two
limits and the exact solution is independent of proton fraction.

G. Results for leptons

Here we present results of our calculations for the lepton
contribution Ee to the total energy per baryon and the electron
chemical potential μe as functions of baryon density n. Other
state variables follow in a straightforward manner and are
summarized in Appendix C. We present the exact results
obtained using the scheme in Ref. [75] [Eqs. (D9) and (D11)
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labeled JEL in figures] and those of the relativistic approach
with mass corrections [Eqs. (C10) and (C9) labeled “Rel.” in
figures]. Comparisons are made both at T = 0 and 50 MeV
and in isospin symmetric and neutron-rich matter.

In Fig. 30, we display the energy per baryon Ee of electrons
and positrons as a function of baryon density n. The two
approaches (JEL and Rel) are in complete agreement at
all n for both temperatures and for isospin symmetric and
asymmetric matter. Isospin-symmetric matter provides a larger
contribution to the energy of leptons than neutron-rich matter.
This is expected as the system is charge neutral, thus the
quantity of leptons is dependent on the number of protons. For
both temperatures considered, the contribution from positrons
is negligible.

The electron chemical potential μe is shown as a function
of baryon density n in Fig. 31. As was the case with the
contribution to energy from leptons, the two approaches (JEL
and Rel.) are in complete agreement for all baryon densities
at both temperatures and for both isospin symmetric and
asymmetric matter.

VI. EQUATION OF STATE WITH A PION CONDENSATE

We have seen in earlier sections that the APR Hamiltonian
density incorporates a phase transition involving a neutral pion
condensate and that at the transition density several of the state
variables exhibited a jump. In this section, we discuss how an
equation of state that satisfies the physical requirements of
stability is constructed in the presence of this first-order phase
transition.

Mechanical stability requires that the inequality

dP

dn
� 0 (172)

is always satisfied. However, in the case of APR model, the
transition from the LDP to the HDP is accompanied by a
decrease in pressure pointing to a negative incompressibility.
We deal with this unphysical incompressibility by means
of a Maxwell construction which takes advantage of the
thermodynamic equilibrium conditions

PL(nL) = PH (nH ), (173)

μL(nL) = μH (nH ), (174)

to establish the mixed-phase region such that

dP

dn
= 0 . (175)

The entropy density is discontinuous across the region (even
though it contains none of the terms in the Hamiltonian that
drive the phase change) thus generating a latent heat

l = T [sH (nH ) − sL(nL)] , (176)

which signifies a first-order transition.
The numerical implementation of the coexistence condi-

tions in Eqs. (173) and (174) is accomplished as in Ref. [76]
where the average chemical potential (as electrons contribute
similarly in both phases)

μ =
∑

i=n,p,e

Yiμi (177)

(where Yn = 1 − x,Yp = Ye = x) and the function

E = ntμ − P (178)

are expanded in a Taylor series about nt (the density at which
transition from the LDP to HDP occurs) to first and second
order, respectively, yielding

μ(n) = μ(nt ) + (n − nt )
dμ

dn

∣∣∣∣
nt

, (179)

E(n) = E(nt ) + (n − nt )2

2

dμ

dn

∣∣∣∣
nt

. (180)

Then the LDP and the HDP counterparts are set equal, as
stipulated by equilibrium, forming a system of two equations
the solution of which gives the densities that define the
boundary of the coexistence region

nL = nt + μH (nt ) − μL(nt )

μ′
L(nt )1/2[μ′

L(nt )1/2 + μ′
H (nt )1/2]

, (181)

nH = nt + μL(nt ) − μH (nt )

μ′
H (nt )1/2[μ′

L(nt )1/2 + μ′
H (nt )1/2]

. (182)

The primes (′) denote derivatives with respect to the number
density n.

These results serve as initial guesses which are further
improved by adopting an iterative procedure. We define the
functions

f (nL,nH ) = PL(nL) − PH (nH ), (183)

g(nL,nH ) = μL(nL) − μH (nH ). (184)
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and expand to first order in Taylor series about the mth iterative
solution

f
(
nm+1

L ,nm+1
H

) = f
(
nm

L,nm
H

) + (
nm+1

L − nm
L

) ∂f

∂nL

∣∣∣∣
nm

L

+ (
nm+1

H − nm
H

) ∂f

∂nH

∣∣∣∣
nm

H

, (185)

g
(
nm+1

L ,nm+1
H

) = g
(
nm

L,nm
H

) + (
nm+1

L − nm
L

) ∂g

∂nL

∣∣∣∣
nm

L

+ (
nm+1

H − nm
H

) ∂g

∂nH

∣∣∣∣
nm

H

. (186)
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FIG. 34. Free energy [Eq. (111)] vs baryon density for the APR
(solid) and Ska (dashed) models. Results for x = 0.1 and 0.4 at
T = 20 MeV (a) and 50 MeV (b) are presented. The onset of pion
condensation appears as a cusp at the appropriate densities.

Equations (185) and (186) are independent of each other and
thus can be used to determine nL and nH . If we assume that
nm+1

L and nm+1
H are the “true” solutions of the system [i.e.,

f (nm+1
L ,nm+1

H ) = g(nm+1
L ,nm+1

H ) = 0], then

nm+1
L = nm

L +
f

(
nm

L,nm
H

)
∂g

∂nH

∣∣
nm

H

− g
(
nm

L,nm
H

)
∂f

∂nH

∣∣
nm

H

∂f
∂nH

∣∣
nm

H

∂g
∂nL

∣∣
nm

L

− ∂f
∂nL

∣∣
nm

L

∂g
∂nH

∣∣
nm

H

, (187)

nm+1
H = nm

H +
f

(
nm

L,nm
H

)
∂g
∂nL

∣∣
nm

L

− g
(
nm

L,nm
H

)
∂f
∂nL

∣∣
nm

L

∂f
∂nL

∣∣
nm

L

∂g
∂nH

∣∣
nm

H

− ∂f
∂nH

∣∣
nm

H

∂g
∂nL

∣∣
nm

L

. (188)

This process is repeated until the difference nm+1 − nm is less
than some prescribed value.
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A. Results

The transition densities between the LDP and HDP phases
from Eq. (9) are shown by the solid curve (and crosses) in
Fig. 32 as a function of proton fraction at zero and 50 MeV,
respectively. In addition, results from the determination of
the mixed-phase region (curves labeled nL and nH ) using a
Maxwell construction are presented as a function of proton
fraction. The range of baryon densities in the mixed-phase
region has only slight dependence on the proton fraction and
temperature. As the neutral pion condensate is mainly driven
by density effects in the APR model, effects of temperature in
the range considered are small.

In Fig. 33, we show the total pressure (a) and the average
chemical potential (b) as functions of baryon density using
a Maxwell construction. Results of our calculations are
shown for x = 0.1, 0.3, and 0.5, and at T = 20 and 50 MeV,

respectively. The mixed-phase region exists in the horizontal
portions of the pressure and chemical potential curves. For both
P and μ, the abrupt transitions into and out of the mixed-phase
regions after Maxwell construction are evident.

A comparison between the free energies of APR and Ska is
presented in Fig. 34. The two models are in close agreement
up to n ∼ 0.2 fm−3 but for higher densities APR is softer due
to pion condensation.

In Fig. 35, the total entropy as a function of the average
chemical potential is shown for representative proton fractions
at temperatures of 20 and 50 MeV, respectively. The vertical
portions in these curves show the entropy jumps across the
mixed-phase region after Maxwell construction.

In Fig. 36, we present the individual contributions of
nucleons and leptons to the total specific heat densities at
constant volume and pressure. The contribution from leptons
was obtained using the JEL scheme (see Appendix D) while the
nucleonic contribution was calculated by adapting the general
results of Sec. V [Eqs. (124) and (125)] to APR and Ska. The
two models are in agreement for densities up to n0, whereas for
larger densities, the specific heat densities of APR are higher
(both cV and cP ). Except for the highest densities shown in
these figures, the dominant contributions arise from nucleons.

The individual contributions of nucleons and leptons to the
total entropy density for the APR and Ska models are displayed
in Fig. 37. Note that in the degenerate limit s � cV � cP .
As with the specific heat densities, the largest contributions
are from nucleons for densities of relevance in core-collapse
supernovae.

Thermal variables for constant entropy, that is, isentropes,
often provide valuable guidance to the hydrodynamic evolu-
tion of a system, as in ideal hydrodynamics (meaning without
viscous terms) the entropy density current is conserved. Ever
since the observation by Bethe et al. [77], who pointed out
that the entropy in supernova evolution is low, a great deal
of qualitative understanding has been gained by studying
isentropes for the various thermodynamical variables. In view
of this, we present some isentropes in what follows.
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FIG. 36. Contributions from nucleonic and leptonic constituents for the specific heat densities at constant volume [(a) and (b)] and constant
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Isentropes of the APR model in the T -n plane are shown
in Fig. 38. The crosses in this figure show results from the
degenerate limit expression

T = S

2
∑

i=n,p,e aiYi

(189)

with excellent agreement for S � 1. The level density param-
eters an and ap above are as in Eq. (141), whereas that for the
electrons is ae = (π2/2)(εFe/k2

Fe) as electrons are relativistic
for near nuclear and supranuclear densities. We have verified
that a similarly excellent agreement is obtained for the Ska
model (results not shown).

Isentropes of the APR model in the Pth-n plane are shown
in Fig. 39 in which the exact numerical results are compared
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FIG. 38. Curves of constant entropy in the T -n plane for the APR
model. Solid curves show results from exact numerical calculations
and the crosses show results from the degenerate limit expression in
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with those in the degenerate limit [78],

Pth = 2n

3π2
S2

∑
i

Yi

TF i
Qi( ∑

i
Yi

TF i

)2 ; i = n,p,e. (190)

We observe nearly identical results for S � 2. For nucleons,
Qi are those from Eq. (104). For electrons, Qe = 1/2 and
TFe = k2

Fe/(2εFe) = π2/(4ae).
Isentropes of the APR model in the μth-n plane are shown

in Fig. 40. To compare the exact results with those from
the degenerate limit results, it was necessary to expand the
expressions for the entropy and the nucleon thermal chemical
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FIG. 40. Isentropes in the μth-n plane for the APR model. Solid
curves are results from the exact numerical calculations and the
crosses are from expressions in the degenerate limit in Eqs. (193)
and (194) at the indicated proton fractions.
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potentials to O(T 3) and O(T 4), respectively,

S = 2T
∑

i=n,p,e

aiYi − 16T 3

5π2

∑
i=n,p,e

a3
i Yi, (191)

μi=n,p = −T 2

[
ai

3
+ aini

m∗
i

dm∗
i

dni

+ ajnj

m∗
j

dm∗
j

dni

]

+ 4T 4

5π2

[
−a3

i + 3a3
i ni

m∗
i

dm∗
i

dni

+ 3a3
j nj

m∗
j

dm∗
j

dni

]
; i �= j.

(192)

Then the average thermal chemical potential is given by

μav,th = −T 2
∑
i=n,p

[
Yiai

3

(
1 + 3n

m∗
i

dm∗
i

dn

)]

+ 4T 4

5π2

∑
i=n,p

[
− Yia

3
i

(
1 − 3n

m∗
i

dm∗
i

dn

)]
− 2T 2

3
Yeae.

(193)

The temperature used in the above expression is obtained from
Eq. (191) by perturbative inversion as follows:

T = S

2
∑

aiYi

[
1 + 2S2

5π2

∑
a3

i Yi(∑
aiYi

)3

]
; i = n,p,e. (194)

At this level of approximation (made necessary by the weak
density dependence of the chemical potential in the degenerate
limit), we get fairly good consistency between the exact and
the approximate results for S � 1.

VII. CONCLUSIONS

Our primary objective in this work has been to build an
equation of state of supernova matter in the bulk homoge-
neous phase based on the zero-temperature APR Hamiltonian
density which has been devised to reproduce the results
of the microscopic potential model calculations of Akmal
and Pandharipande for nucleonic matter with varying isospin
asymmetry. One of the main features of the APR model is
that it incorporates a neutral pion condensate at supranuclear
densities found in the calculations of AP for all values
of proton fraction. Consequently, its high-density behavior
is somewhat soft in its pressure variation, yet it is able
to support a neutron star in excess of 2 M� required by
recent observations. Our principal contribution in this work
is the extension of the APR model to finite temperature for
use in numerical simulations of core-collapse supernovae.
In order to provide a contrast, we have also calculated the
finite-temperature properties of a model (termed Ska) using
an energy density functional stemming from Skyrme effective
forces. The methods developed in this work are applicable
and easily adapted to investigate thermal properties of other
Skyrme-like energy density functionals.

We have studied the behavior of the state variables energy
E, pressure P , the neutron and proton chemical potentials μn

and μp, entropy per baryon S, and the free energy F and the

response functions such as the compressibility K , the inverse
susceptibilities χ−1

ij , and specific heats CV and CP of the APR
and the Ska models as functions of the temperature T , the
baryon density n, and the proton-to-baryon fraction x. The
two EOSs are quantitatively similar for densities up to ∼1.5
n0 but differ significantly at higher densities. The cross inverse
susceptibilities χ−1

np , χ−1
pn and the ratio Pc/(ncTc) evaluated at

the critical density nc of the liquid-gas phase transition are the
only exceptions to the above general observation.

We have also calculated several properties of isospin-
symmetric matter at the saturation density and compared with
experimental results, although the latter, in some cases, are
associated with large uncertainties. Considerable attention
has been paid to the symmetry energy S2 as a function of
the density and the temperature. Our results reveal a weak
dependence on the temperature which leads to the conclusion
that S2 is determined mainly by the density-dependent effective
mass. It is also evident herein that, in the case of matter
with a phase transition, the quantities S2, and Fsym = F (x =
0) − F (x = 1/2) fundamentally differ.

We also find that the density jump across the coexistence
region of the LDP to the HDP transition of the APR model
depends weakly on the temperature, the proton fraction, and
the leptonic contributions.

That thermal effects are, in general, less pronounced in
degenerate matter is expected as this is the regime where
T/TF  1; i.e., temperature effects are overwhelmed by
density effects. However, when looking at the thermal part
of any given thermodynamic quantity, the aforementioned
density effects are entirely determined by the effective masses.
As we have seen, the density dependence of the effective
mass for nucleons interacting via Skyrme or Skyrme-like
forces is responsible for several degenerate limit effects not
encountered in a free gas. In particular, as a function of
density the thermal pressure Pth flattens (whereas in a free
gas it increases monotonically), μi,th become positive (strictly
negative in the free case), and S2,th becomes negative (always
positive for a free gas). The results of Eqs. (144), (145),
and (149) in which terms involving the derivatives of the
effective mass with respect to the density encode effects of
momentum dependent interactions and modify the expressions
from what would have been their free forms. The role of the
effective mass in the nondegenerate limit, although present,
is minimal for most of the state variables. Intriguingly, our
results indicate that, for the temperatures (up to 30 MeV) and
proton fractions (0.38–0.42) of most relevance to supernova
evolution, densities in the vicinity of the nuclear saturation
density can be considered neither degenerate nor nondegener-
ate. The quantitative results presented in this work (particularly
the neutron and proton chemical potentials) can be used to ad-
vantage to determine the rates of electroweak reactions such as
electron capture and neutrino-matter interactions in hot dense
matter.

Based on the APR model, work on the inhomogeneous
phase at subnuclear densities where nuclei coexist with
leptons, nucleons, nuclei, and light nuclear clusters as well
as pastalike configurations is in progress and will be reported
in a separate work.
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APPENDIX A: SINGLE-PARTICLE SPECTRA

Here we provide a derivation of the expression in Eq. (11)
which is a direct consequence of the fact that the expectation
value of the Hamiltonian is stationary with respect to variations
of its eigenstates [54,79],

δ

δφk

[
E −

∑
k

εk

∫
|φk(�r)|2d3r

]
= 0, (A1)

where εk is the eigenvalue corresponding to the eigenstate φk ,
E = 〈H 〉, and k is the set of all relevant quantum numbers.

For a many-body Hamiltonian, φk are the single-particle
states making up the Slater determinant, and therefore the set of
all εk is the single-particle energy spectrum of the Hamiltonian.

Consider now a nucleonic Hamiltonian density
H = H(τi,ni), where

τi(�r) =
∑
k,s

|∇φk(�r,s,i)|2, (A2)

ni(�r) =
∑
k,s

|φk(�r,s,i)|2, (A3)

are the kinetic energy density and number density, respectively,
of the nucleon species with isospin i.

The variation of the number density with respect to φ is

δni =
∑
k,s

[δφ∗(�r,s,i)φ(�r,s,i) + φ∗(�r,s,i)δφ(�r,s,i)].

(A4)

Imposing time-translational invariance leads to

φ(�r,s,i) = i2sφ∗(�r, − s,i), (A5)

and δφ(�r,s,i) = i2sδφ∗(�r, − s,i). (A6)

Therefore,

δni =
∑
k,s

[δφ∗φ + (−1)φ(−s) × (−1)δφ∗(−s)]

=
∑
k,s

[δφ∗φ + δφ∗(−s)φ(−s)] = 2
∑
k,s

δφ∗φ, (A7)

as the sum is over all spins. Similarly,

δτi = 2
∑
k,s

∇δφ∗
k · ∇φk. (A8)

Furthermore,

E =
∑

i

∫
d3rH(τi,ni). (A9)

Combining this with (A4) and (A6) implies

δE =
∑

i

∫
d3r

[
∂H
∂τi

δτi + ∂H
ni

δni

]

=
∫

d3r
∑

i

[
∂H
∂τi

(
2
∑
k,s

∇φ∗
k · ∇φk

)

+ ∂H
ni

(
2
∑
k,s

δφ∗
k φk

)]

=
∫

d3r
∑
k,s

[
2δφ∗

k

∑
i

(
−∇ ∂H

∂τi

∇ + ∂H
ni

)
φk

]
.

(A10)

The minus sign is a consequence of the antihermiticity of the
∇ operator: 〈∇φ| = 〈φ|∇† = 〈φ|(−∇).

Finally, by inserting (A10) into (A1) we get

0 =
∫

d3r
∑
k,s

2δφ∗
k

[∑
i

(
−∇ ∂H

∂τi

∇ + ∂H
∂ni

)]
φk

−
∫

d3r
∑
k,s

2δφ∗
k εkφk

=
∫

d3r
∑
k,s

2δφ∗
k

[∑
i

(
−∇ ∂H

∂τi

∇ + ∂H
∂ni

)
− εk

]
φk

⇒
∑

i

(
−∇ ∂H

∂τi

∇ + ∂H
∂ni

)
− εk = 0

⇒ −∇ ∂H
∂τi

∇ + ∂H
∂ni

− εki = 0. (A11)

Thus, in momentum space,

k2
i

∂H
∂τi

+ ∂H
∂ni

= εki . (A12)

APPENDIX B: APR STATE VARIABLES

In this appendix, we summarize results pertaining to the
zero-temperature state variables of APR. Combining the
density-dependent parts (see below) of these with the ap-
propriate thermal expressions from Secs. V and VI yields
the corresponding expressions at finite temperature. It is
convenient to write HAPR as the sum of a kinetic part Hk , a
part consisting of the momentum-dependent interactions Hm,
and a density-dependent interactions part Hd as follows:

HAPR = Hk + Hm + Hd , (B1)

where

Hk = �
2

2m
(τn + τp), (B2)

Hm = [p3 + (1 − x)p5]ne−p4nτn + (p3 + xp5)ne−p4nτp,

(B3)

Hd = g1(n)[1 − (1 − 2x)2)] + g2(n)(1 − 2x)2. (B4)
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Furthermore, the following quantities are necessary:

δg1 = g1H − g1L = −n2[p17(n − p19) + p21(n − p19)2]ep18(n−p19), (B5)

δg2 = g2H − g2L = −n2[p15(n − p20) + p14(n − p20)2]ep16(n−p20), (B6)

f1L = dg1L

dn
− 2g1L

n
= −n2

[
p2 + 2p6n + (p11 − 2p2

9p10n − 2p2
9p11n

2)e−p2
9n

2]
, (B7)

f1H = f1L + δf1, (B8)

δf1 = [2p19(p17 − p19p21)n + {3(2p19p21 − p17) + p18p19(p17 − p19p21)}n2

+{p18(2p19p21 − p17) − 4p21}n3 − p18p21n
4]ep18(n−p19), (B9)

h1L = df1L

dn
− 2f1L

n
= −n2

[
2p6 − 2p2

9(p10 + 3p11n − 2p2
9p10n

2 − 2p2
9p11n

3)e−p2
9n

2]
, (B10)

h1H = h1L + δh1, (B11)

δh1 = [
2p19(p17 − p19p21) + {6(2p19p21 − p17) + 4p18p19(p17 − p19p21)}n

+ {
6p18(2p19p21 − p17) + p2

18p19(p17 − p19p21) − 12p21
}
n2

+ {
p2

18(2p19p21 − p17) − 8p18p21
}
n3 − p2

18p21n
4
]
ep18(n−p19), (B12)

w1L = dh1L

dn
− 2h1L

n
= −n2

(−3p11 + 6p2
9p10n + 12p2

9p11n
2 − 4p4

9p10n
3 − 4p4

9p11n
4
)
2p2

9e
−p2

9n
2
, (B13)

w1H = w1L − δw1, (B14)

δw1 = [
6{(2p19p21 − p17) + p18p19(p17 − p19p21)} + {

18p18(2p19p21 − p17) + 6p2
18p19(p17 − p19p21) − 24p21

}
n

+ {
9p2

18(2p19p21 − p17) + p3
18p19(p17 − p19p21) − 36p18p21

}
n2

+ {
p3

18(2p19p21 − p17) − 12p2
18p21

}
n3 − p3

18p21n
4
]
ep18(n−p19), (B15)

f2L = dg2L

dn
− 2g2L

n
= −n2

(
−p12

n2
+ p8 − 2p2

9p13ne−p2
9n

2

)
, (B16)

f2H = f2L + δf2, (B17)

δf2 = [2p20(p15 − p20p14)n + {3(2p20p14 − p15) + p16p20(p15 − p20p14)}n2

+{p16(2p20p14 − p15) − 4p14}n3 − p16p14n
4]ep16(n−p20), (B18)

h2L = dh2L

dn
− 2h2L

n
= −n2

[
2p12

n3
− 2p2

19p13(1 − 2p2
9n)e−p2

9n
2

]
, (B19)

h2H = h2H + δh2, (B20)

δh2 = [
2p20(p15 − p20p14) + {6(2p20p14 − p15) + 4p16p20(p15 − p20p14)}n

+ {
6p16(2p20p14 − p15) + p2

16p20(p15 − p20p14) − 12p14
}
n2

+ {
p2

16(2p20p14 − p15) − 8p16p14
}
n3 − p2

16p14n
4]ep16(n−p20), (B21)

w2L = dw2L

dn
− 2w2L

n
= −n2

[
−6p12

n4
+ 4p4

9p13(1 + n − 2p2
9n

2)e−p2
9n

2

]
, (B22)

w2H = w2L + δw2, (B23)

δw2 = [
6{(2p20p14 − p15) + p16p20(p15 − p20p14)} + {

18p16(2p20p14 − p15) + 6p2
16p20(p15 − p20p14) − 24p14

}
n

+ {
9p2

16(2p20p14 − p15) + p3
16p20(p15 − p20p14) − 36p16p14

}
n2

+ {
p3

16(2p20p14 − p15) − 12p2
16p14

}
n3 − p3

16p14n
4
]
ep16(n−p20). (B24)

The subscripts L and H imply the low-density and the high-density phases, respectively.
Expressions for the state variables are collected below.
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1. Energy per particle

E

A
= Ek

A
+ Em

A
+ Ed

A
= H

n
, (B25)

Ek

A
= (3π2)5/3

5π2

�
2

2m
n2/3[(1 − x)5/3 + x5/3], (B26)

Em

A
= (3π2)5/3

5π2
{p3[(1 − x)5/3 + x5/3]

+p5[(1 − x)8/3 + x8/3]}n5/3e−p4n, (B27)

Ed

A
= 1

n
{g1[1 − (1 − 2x)2)] + g2(1 − 2x)2}. (B28)

2. Pressure

P = Pk + Pm + Pd = n2 ∂H/n

∂n
, (B29)

Pk = 2

3
n
Ek

A
, (B30)

Pm =
(

5

3
− p4n

)
n
Em

A
, (B31)

PdL = n

{
EdL

A
+ f1L[1 − (1 − 2x)2] + f2L(1 − 2x)2

}
,

(B32)

PdH = PdL + (−δg1 + nδf1)[1 − (1 − 2x)2]

+ (−δg2 + nδf2)(1 − 2x)2. (B33)

3. Incompressibility

K = Kk + Km + Kd = 9
∂P

∂n
, (B34)

Kk = 10
Ek

A
, (B35)

Km = (
40 − 48p4n + 9p2

4n
2
)Em

A
, (B36)

KdL = 18
Ed

A
+ 9{(4f1 + nh1)[1 − (1 − 2x)2]

+ (4f2 + nh2)(1 − 2x)2}, (B37)

KdH = KdL + 9n{δh1[1 − (1 − 2x)2] + δh2(1 − 2x)2}.
(B38)

4. Second derivative of pressure with respect to density

d2P

dn2
= d2Pk

dn2
+ d2Pm

dn2
+ d2Pd

dn2
, (B39)

d2Pk

dn2
= 20

27

1

n

Ek

A
, (B40)

d2Pm

dn2
=

(
200

27
− 56

3
p4n + p2

9n
2 − p3

4n
3

)
1

n

Em

A
,

(B41)

d2PdL

dn2
= 2

n

EdL

A
+

(
10f1L

n
+ 7h1L + nw1L

)
[1 − (1 − 2x)2]

+
(

10f2L

n
+ 7h2L + nw2L

)
(1 − 2x)2, (B42)

d2PdH

dn2
= d2PdL

dn2
+ (δh1 + nδw1)[1 − (1 − 2x)2]

+ (δh2 + nδw2)(1 − 2x)2, (B43)

5. Symmetry energy

S2 = S2k + S2m + S2d = 1

8

∂2H/n

∂x2

∣∣∣∣
x=1/2

, (B44)

S2k = 10

9

1

25/3

(3π2)5/3

5π2

�
2

2m
n2/3, (B45)

S2m = 10

9

1

25/3

(3π2)5/3

5π2

�
2

2m
n5/3e−p4n(p3 + 2p5), (B46)

S2d = 1

n
(−g1 + g2). (B47)

6. First derivative of symmetry energy with respect to density

dS2

dn
= dS2k

dn
+ dS2m

dn
+ dS2d

dn
, (B48)

dS2k

dn
= 2

3

S2k

n
, (B49)

dS2m

dn
= S2m

n

(
5

3
− p4n

)
, (B50)

dS2dL

dn
= S2dL

n
+ 1

n
(−f1L + f2L), (B51)

dS2dH

dn
= dS2dL

dn
+ 1

n2
(δg1 − δg2) − 1

n
(δf1 − δf2).

(B52)

7. Second derivative of symmetry energy with respect to density

d2S2

dn2
= d2S2k

dn2
+ d2S2m

dn2
+ d2S2d

dn2
, (B53)

d2S2k

dn2
= −2

9

S2k

n2
, (B54)

d2S2m

dn2
= S2m

n2

(
10

9
− 10

3
p4n + p2

4n
2

)
, (B55)

d2S2dL

dn2
= 1

n2
(−2f1L + 2f2L − nh1L + nh2L), (B56)
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d2S2dH

dn2
= d2S2dL

dn2
− 2

n3
(δg1 − δg2)

+ 2

n2
(δf1 − δf2) − 1

n
(δh1 − δh2). (B57)

8. Chemical potentials

μi = μik + μim + μid = ∂H
∂ni

, (B58)

μik = 5

3

(3π2)5/3

5π2

�
2

2m
n

2/3
i , (B59)

μim = (3π2)5/3

5π2
e−p4n

×
{
p5

[
8

3
n

5/3
i − p4

(
n

8/3
i + n

8/3
j

)]

+p3

[
8

3
n

5/3
i + 5

3
n

2/3
i nj + n

5/3
j

−p4
(
n

8/3
i + n

5/3
i nj + nin

5/3
j + n

8/3
j

)]}
, (B60)

μidL = 1

n2
[4njg1L + 4ninjf1L

+ 2(ni − nj )g2L + (ni − nj )2f2L], (B61)

μidH = μidL − 4

n3
nj (ni − nj )(δg1 − δg2)

+ 1

n2
[4ninj δf1 + (ni − nj )2δf2]. (B62)

9. Inverse susceptibilities

χ−1
ii = χ−1

iik + χ−1
iim + χ−1

iid = ∂μi

∂ni

, (B63)

χ−1
iik = 2

3

μik

ni

, (B64)

χ−1
iim = −p4μim + (3π2)5/3

5π2
e−p4n

×
{
p5

[
40

9
n

2/3
i − 8

3
p4n

5/3
i

]
+ p3

[
40

9
n

2/3
i + 10

9
n

−1/3
i nj

−p4

(
8

3
n

5/3
i + 5

3
n

2/3
i nj + n

5/3
j

)]}
, (B65)

χ−1
iidL = 1

n2
[8njf1L + 4ninjh1L

+ 4(ni − nj )f2L + (ni − nj )2h2L], (B66)

χ−1
iidH = χ−1

iidL + 8

n4
nj (ni − 2nj )(δg1 − δg2)

− 8

n3
nj (ni − nj )(δf1 − δf2)

+4ninj

n2
δh1 + (ni − nj )2

n2
δh2, (B67)

χ−1
ij = χ−1

ijk + χ−1
ijm + χ−1

ijd = ∂μi

∂nj

, (B68)

χ−1
ijk = 0, (B69)

χ−1
ijm = −p4μim + (3π2)5/3

5π2
e−p4n

×
{

− 8

3
p4p5n

5/3
j + p3

[
5

3
n

2/3
i + 5

3
n

2/3
j

−p4

(
n

5/3
i + 5

3
n

2/3
i nj + 8

3
n

5/3
j

)]}
, (B70)

χ−1
ijdL = 1

n2

[
4g1L + 4nf1L + 4ninjh1L

−2g2L + (ni − nj )2h2L

]
, (B71)

χ−1
ijdH = χ−1

ijdL − 4

n4
[(ni − nj )2 − 2ninj ](δg1 − δg2)

+ 4

n3
(ni − nj )2(δf1 − δf2)

+ 4ninj

n2
δh1 + (ni − nj )2

n2
δh2. (B72)

10. Speed of Sound

(
cs

c

)2

= dP

dε
(B73)

= 1

(1 − x)μn + xμp + m

K

9
(B74)

= n

(1 − x)μn + xμp + m
(B75)

×[χ−1
nn (1 − x)2 + x(1 − x)(χ−1

np + χ−1
pn ) + χ−1

pp x2].

Here, ε includes the nucleon rest mass.

11. Landau effective mass

m∗
i =

[
1

m
+ 2

�2
(np3 + nip5) e−p4n

]−1

. (B76)

12. Derivatives of m∗
i with respect to n, x, ni , and n j

dm∗
i

dn
= −m∗

i

n

(
1 − m∗

i

m

)
(1 − np4), (B77)

dm∗
i

dx
= ±(n)

(p)

2

�2
p5m

∗2
i ne−p4n, (B78)

dm∗
i

dni

= − 2

�2
m∗2

i [p3(1 − np4) + p5(1 − nip4)] e−p4n,

(B79)

dm∗
i

dnj

= − 2

�2
m∗2

i [p3(1 − np4) − nip4p5)]e−p4n, (B80)
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d2m∗
i

dn2
= m∗

i

n2

(
1 − m∗

i

m

)
− 1

n

dm∗
i

dn
(1 − np4), (B81)

d2m∗
i

dndni

= m∗
i

n2

(
1 − m∗

i

m

)
− 1

n

dm∗
i

dni

(1 − np4), (B82)

d2m∗
i

dndnj

= m∗
i

n2

(
1 − m∗

i

m

)
− 1

n

dm∗
i

dnj

(1 − np4). (B83)

13. Single-particle energy spectrum

εki = k2
i Ti + Vi, (B84)

Ti = ∂H
∂τi

= �
2

2m∗
i

, (B85)

Vi = ∂H
∂ni

= ∂Hm

∂ni

+ ∂Hd

∂ni

, (B86)

∂Hm

∂ni

= {[p3 + p5 − p4(np3 + nip5)]τi

+ [p3 − p4(np3 + njp5)]τj }e−p4n, (B87)

∂Hd

∂ni

= μid . (B88)

14. Derivatives of Vi with respect to ni and n j

(for use in the finite-T susceptibilities)

∂Vim

∂ni

=
{

[p3 + p5 − p4(np3 + nip5)]

(
∂τi

∂ni

− p4τi

)
−p4(p3 + p5)τi − p4p3τj

+ [p3 − p4(np3 + njp5)]

(
∂τj

∂ni

− p4τj

)}
e−p4n,

(B89)

∂Vid

∂ni

= χiid , (B90)

∂Vim

∂nj

=
{

[p3 + p5 − p4(np3 + nip5)]

(
∂τi

∂nj

− p4τi

)
−p4p3τi − p4(p3 + p5)τj

+ [p3 − p4(np3 + njp5)]

(
∂τj

∂nj

− p4τj

)}
e−p4n,

(B91)

∂Vid

∂nj

= χijd . (B92)

15. Derivatives of Qi with respect to n, ni , and n j

dQi

dn
= − 3

2m∗
i

[
dm∗

i

dn
− n

m∗
i

(
dm∗

i

dn

)2

+ n
d2m∗

i

dn2

]
, (B93)

dQi

dni

= − 3

2m∗
i

[
dm∗

i

dn
− n

m∗
i

dm∗
i

dn

dm∗
i

dni

+ n
d2m∗

i

dndni

]
, (B94)

dQi

dnj

= − 3

2m∗
i

[
dm∗

i

dn
− n

m∗
i

dm∗
i

dn

dm∗
i

dnj

+ n
d2m∗

i

dndnj

]
. (B95)

APPENDIX C: CONTRIBUTIONS FROM
LEPTONS AND PHOTONS

Charge neutrality requires that the total charge of the protons
be exactly canceled by that of the electrons. At T = 0, this
can be stated in terms of the number densities as np = ne− ,
where the electron (with its 2 spin degrees of freedom) number
density ne− is given by

ne− = 2
∫ kFe−

0

d3k

(2π )3
= k3

Fe−

3π2
(C1)

so the electron Fermi momentum is kFe− = (3π2ne− )1/3. The
chemical potential of the electrons is equal to their energy on
the Fermi surface:

μe− = εFe− = (
k2
Fe− + m2

e

)1/2
. (C2)

Because electromagnetic interactions yield negligible correc-
tions [80], electrons can be treated as a free Fermi gas and
hence their contributions to the energy density and the pressuse
of the system are

εe− = 2
∫ kFe−

0

d3k

(2π )3

(
k2 + m2

e

)1/2

= 1

8π2

[
kFe−εFe−

(
2k2

Fe− + m2
e

) + m4
e ln

(
me

kFe− + εFe−

)]
,

(C3)

pe− = 2

3

∫ kFe−

0

d3k

(2π )3

k2

(k2 + m2
e)1/2

= 1

24π2

[
kFe−εFe−

(
2k2

Fe− − 3m2
e

)

+ 3m4
e ln

(
kFe− + εFe−

me

)]
. (C4)

At finite T , one must consider the net electric charge of
electrons and positrons because in supernovae temperature
rises well above the 1 MeV threshold for e−e+ pair production.
Accordingly, the charge neutrality condition becomes np =
ne− − ne+ ≡ ne, where the net lepton density is given by

ne = 2
∫ kFe−

0

d3k

(2π )3

[
1

1 + e
k−μe

T

− 1

1 + e
k+μe

T

]
(C5)

with the chemical potentials of electrons and positrons being
equal in magnitude but opposite in sign. In the range of
densities and temperatures pertaining to supernovae μe,T �
me and thus the relativistic limit applies:

εk = (k2 + me)1/2 � k

(
1 + m2

e

2k2

)
, (C6)

1

1 + e
εk±μe

T

� 1

1 + e
k±μe

T

± ∂

∂μe

(
m2

e

2k

1

1 + e
k±μe

T

)
. (C7)
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Then, Eq. (C5) can be integrated analytically with the result

ne = μ3
e

3π2

[
1 + μ−2

e

(
π2T 2 − 3

2
m2

e

)]
, (C8)

which can be solved for the chemical potential

μe =
(

3π2ne

2

)1/3

×
{(

1 −
[

1 +
(

π2T 2

3
− m2

e

2

)3( 2

3π2ne

)2]1/2)1/3

+
(

1 +
[

1 +
(

π2T 2

3
− m2

e

2

)3( 2

3π2ne

)2]1/2)1/3}
.

(C9)

The total energy density, total pressure, and total entropy
density of the leptons in the relativistic regime are

εe = εe− + εe+

= μ4
e

4π2

[
1 + μ−2

e

(
2π2T 2 − m2

e

)

+π2T 2μ−4
e

(
7π2T 2

15
− m2

e

3

)]
, (C10)

pe = pe− + pe+

= μ4
e

12π2

[
1 + μ−2

e

(
2π2T 2 − 3m2

e

)

+π2T 2μ−4
e

(
7π2T 2

15
− m2

e

)]
, (C11)

se = εe + pe − μene

T

= μ2
eT

3

[
1 + μ−2

e

(
7π2T 2

15
− m2

e

2

)]
. (C12)

In the limit me → 0, pe = 1
3εe. The specific heats at constant

volume and constant pressure can be obtained by

CV e = 1

ne

∂εe

∂T

∣∣∣∣
ne

= 1

ne

(
∂εe

∂μe

∣∣∣∣
T

∂μe

∂T

∣∣∣∣
ne

+ ∂εe

∂T

∣∣∣∣
μe

)
, (C13)

CPe = ∂

∂T

(
εe + pe

ne

)∣∣∣∣
pe

= 1

ne

(
∂εe

∂μe

∣∣∣∣
T

∂μe

∂T

∣∣∣∣
pe

+ ∂εe

∂T

∣∣∣∣
μe

)

− (εe + pe)

n2
e

(
∂ne

∂μe

∣∣∣∣
T

∂μe

∂T

∣∣∣∣
pe

+ ∂ne

∂T

∣∣∣∣
μe

)
, (C14)

where

∂εe

∂μe

∣∣∣∣
T

= μ3
e

π2

[
1 + μ−2

e

(
π2T 2 − m2

e

2

)]
, (C15)

∂μe

∂T

∣∣∣∣
ne

= − 2π2T

3μe

[
1 + π2μ−2

e

(
T 2

3 − m2
e

2π2

)] , (C16)

∂εe

∂T

∣∣∣∣
μe

= T μ2
e

[
1 + μ−2

e

(
7π2T 2

15
− m2

e

6

)]
, (C17)

∂μe

∂T

∣∣∣∣
pe

= − μ2
eT

3π2ne

[
1 + 3π2

μ2
e

(
7π2T 2

15
− m2

e

2

)]
, (C18)

∂ne

∂μe

∣∣∣∣
T

= μ2
e

π2

[
1 + π2μ−2

e

(
T 2

3
− m2

e

2π2

)]
, (C19)

∂ne

∂T

∣∣∣∣
μe

= 2μeT

3
. (C20)

Finally, we present the derivatives of the electron chemical
potential with respect to the proton and neutron number
densities. These are essential for our subsequent discussion
of the low-to-high-density phase transition of HAPR and of our
treatment of it by means of a Maxwell construction. At T = 0,
we have

∂μe

∂np

= k2
Fe−

3ne−μe

and
∂μe

∂nn

= 0 , (C21)

whereas at finite temperature (T > 1 MeV)

∂μe

∂np

= 3π2

π2T 2 − m2

2 + 3μ2
e

and
∂μe

∂nn

= 0 . (C22)

When T < 1 MeV, numerical evaluation of the relevant FD
integrals is required. The numerical methods adopted in this
work are outlined in Appendix D.

The contributions from photons are adequately given by
the standard blackbody relations for the energy density, the
pressure, and the entropy density,

εγ = π2

15

T 4

(�c)3
, pγ = εγ

3
, and sγ = 4

3

εγ

T
, (C23)

respectively. These remain very small compared to the bary-
onic and leptonic contributions for all temperatures relevant to
the supernova problem and, for most practical purposes, can
be ignored with no repercussions.

APPENDIX D: NUMERICAL NOTES

The electronic state variables involve relativistic Fermi-
Dirac integrals, the general form of which is

Fλ(ψ,x) =
∫ ∞

0

αλ
(

α
2x

+ 1
)1/2

1 + eα−ψ
dα, (D1)

where

x = me

T
, (D2)

α =
(
k2 + m2

e

)1/2

T
− x, (D3)

ψ = μe − me

T
, (D4)

In particular, the number density, the energy density, and the
pressure are given by

ne =
√

2

π2
T 5/2m1/2

e (F3/2 + xF1/2), (D5)
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εe =
√

2

π2
T 7/2m1/2

e (F5/2 + 2xF3/2 + x2F1/2), (D6)

pe =
√

2

3π2
T 7/2m1/2

e (F5/2 + 2xF3/2), (D7)

respectively.
We evaluate these quantities numerically, using the JEL

method [75] whereby they are expressed algebraically in terms
of the mass, the temperature, and the chemical potential as
follows:

ne = m3
e

π2

fg3/2(1 + g)3/2

(1 + f )M+1/2(1 + g)N (1 + f/a)1/2

×
M∑

m=0

N∑
n=0

pmnf
mgn

[
1 + m +

(
1

4
+ n

2
− M

)
f

1 + f

+
(

3

4
− N

2

)
fg

(1 + f )(1 + g)

]
, (D8)

Ue = εe − mene

= m4
e

π2

fg5/2(1 + g)3/2

(1 + f )M+1(1 + g)N

M∑
m=0

N∑
n=0

pmnf
mgn

×
[

3

2
+ n +

(
3

2
− N

)
g

1 + g

]
, (D9)

pe = m4
e

π2

fg5/2(1 + g)3/2

(1 + f )M+1(1 + g)N

M∑
m=0

N∑
n=0

pmnf
mgn, (D10)

where

ψ = μe − me

T
= 2(1 + f/a)1/2 + ln

[
(1 + f/a)1/2 − 1

(1 + f/a)1/2 + 1

]
,

(D11)

g = T

me

(1 + f )1/2 ≡ t(1 + f )1/2. (D12)

The coefficients pmn for M = N = 3 and a = 0.433 are
displayed in Table VI.

The entropy density and the free energy density follow from
standard thermodynamic relations,

se = 1

T
(εe + pe − μene), (D13)

Fe = εe − T se. (D14)

Furthermore, by taking derivatives of ne, Ue, and pe with
respect to ψ and t we can get the susceptibilities and the

TABLE VI. JEL coefficients pmn for M = N = 3 and a = 0.433.

m n 0 1 2 3

0 5.34689 18.0517 21.3422 8.53240
1 16.8441 55.7051 63.6901 24.6213
2 17.4708 56.3902 62.1319 23.2602
3 6.07364 18.9992 20.0285 7.11153

specific heats as follows:

∂μe

∂np

∣∣∣∣
nn

= T

(
∂ne

∂ψ

∣∣∣∣
t

− t2 ∂ne

∂t

∣∣∣∣
ψ

)−1

, (D15)

∂μe

∂nn

∣∣∣∣
np

= 0, (D16)

CV e = 1

neme

(
∂Ue

∂t

∣∣∣∣
ψ

− ∂Ue

∂ψ

∣∣∣∣
t

∂ne

∂t

∣∣
ψ

∂ne

∂ψ

∣∣
t

)
, (D17)

CPe = 1

neme

(
∂Ue

∂t

∣∣∣∣
ψ

− ∂Ue

∂ψ

∣∣∣∣
t

∂pe

∂t

∣∣
ψ

∂pe

∂ψ

∣∣
t

)

−Ue + pe

n2
eme

(
∂ne

∂t

∣∣∣∣
ψ

− ∂ne

∂ψ

∣∣
t

∂pe

∂t

∣∣
ψ

∂pe

∂ψ

∣∣
t

)
, (D18)

where

∂

∂ψ

∣∣∣∣
t

= f

1 + f/a

(
∂

∂f

∣∣∣∣
g

+ t2

2g

∂

∂g

∣∣∣∣
f

)
, (D19)

∂

∂t

∣∣∣∣
ψ

= g

t

∂

∂g

∣∣∣∣
f

. (D20)

The nonrelativistic Fermi-Dirac integrals

Fλ(ψ) =
∫ ∞

0

xλ

1 + ex−ψ
dx, (D21)

x = 1

T

�
2k2

2m∗ , ψ = μ − V (n)

T
, (D22)

that are relevant to the thermodynamics of the nucleons are
treated by the method developed in Ref. [81]. There three
different approximations and corresponding intervals are given
for each of F3/2, F1/2, and F−1/2 as follows:

Fλ(ψ) = eψ

[
�(λ + 1) + eψ

∑n
s=0 pse

sψ∑n
s=0 qsesψ

]
, − ∞ < ψ � 1,

(D23)

Fλ(ψ) =
∑n

s=0 psψ
s∑n

s=0 qsψs
, 1 � ψ � 4, (D24)

Fλ(ψ) = ψλ+1

[
1

λ + 1
+ 1

ψ2

∑n
s=0 psψ

−s∑n
s=0 qsψ−2s

]
, 4 � ψ < ∞.

(D25)

In our code, we have used the coefficients of the n = 4 case as
they appear in Ref. [81].
These integrals have also been computed using the nonrela-
tivistic version of the JEL approach,

F3/2 = 3f (1 + f )1/4−M

2
√

2

M∑
m=0

pmf m, (D26)

F1/2 = f (1 + f )1/4−M

√
2(1 + f/a)

×
M∑

m=0

pmf m

[
1 + m −

(
M − 1

4

)
f

1 + f

]
, (D27)
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F−1/2 = − f

a(1 + f/a)3/2
F1/2

+
√

2f (1 + f )1/4−M

1 + f/a

M∑
m=0

pmf m

[
(1 + m)2

−
(

M − 1

4

)
f

1 + f

(
3 + 2m −

[
M + 3

4

]
f

1 + f

)]
,

(D28)

with

ψ = μ − V (n)

T
= 2(1 + f/a)1/2 + ln

[
(1 + f/a)1/2 − 1

(1 + f/a)1/2 + 1

]
.

(D29)

The coefficients M , a, and pm in the above equations are
contained in Table VI under the n = 0 column. The agreement
between the two methods is excellent.

APPENDIX E: CAUSAL EQUATIONS OF STATE

It is not unusual for equations of state from nonrelativstic
potential models to become acausal at some high density.
Causality is preserved as long as the speed of sound cs is
less than or equal to the speed of light c. In this appendix,
we present a thermodynamically consistent method by which
an EOS based on a nonrelativistic potential model can be
modified so it remains causal at arbitrary high densities, both
at zero temperature and at finite temperature.

1. Zero-temperature case

In terms of the pressure P and energy density ε, the
condition for an EOS to remain casual is(

cs

c

)2

≡ β = dP

dε
= dP

dn

(
dε

dn

)−1

� 1 . (E1)

Including the rest-mass energy density mn, the total energy
density is

ε = ε + mn, (E2)

where ε is the internal (or specific) energy density of matter.
The pressure and its density derivative are then

P = n
dε

dn
− ε = nμ − ε and

dP

dn
= n

dμ

dn
. (E3)

We can thus write (E1) as a first-order differential equation as
follows:

dμ

dn
− β

n
μ = βm

n
. (E4)

The integrating factor of Eq. (E4) is given by

f (n) = exp

{
− β

∫
dn

n

}
= n−β (E5)

and has the property

d

dn
[n−βμ] = n−β βm

n
. (E6)

Integration of Eq. (E6) leads to

μ = dε

dn
= −m + c1n

β, (E7)

where c1 is a constant of integration. A second integration
results in

ε = −mn + c1n
β+1

β + 1
+ c2 (E8)

with another constant of integration c2, and therefore

P = c1
β

β + 1
nβ+1 − c2. (E9)

The integration constants c1 and c2 are determined by the
boundary conditions

ε(nf ) = εf and P (nf ) = Pf , (E10)

where nf is the causality fixing density, about 0.9–0.95 na (at
which the EOS becomes acausal), which is chosen such that

dP

dε

∣∣∣∣
na

= 1, (E11)

and the functional forms of ε(n) and P (n) are those obtained
from the original Hamiltonian density.

From Eqs. (E10), we get

c1 = εf + Pf

n
β+1
a

and c2 = 1

β + 1
(βεf − Pf ). (E12)

Thus the energy density and the pressure are given by

ε = −mn + (εf + Pf )

β + 1

(
n

nf

)β+1

+ βεf − Pf

β + 1
, (E13)

P = β

β + 1
(εf + Pf )

(
n

nf

)β+1

− βεf − Pf

β + 1
. (E14)

Equations (E13) and (E14) can be used for n � na with β � 1
so causality is never violated. Thermodynamic consistency
is built in, because Eqs. (E13) and (E14) obey the general
identity (E3).

2. Finite-temperature case

At finite temperature, the causality condition becomes

β = dP

dε

∣∣∣∣
s

= dP

dn

∣∣∣∣
s

(
dε

dn

∣∣∣∣
s

)−1

� 1. (E15)

We transform the first term to the variables n and T by the use
of Jacobians to get

dP

dn

∣∣∣∣
s

= γ
dP

dn

∣∣∣∣
T

with γ = CP

CV

. (E16)

The second term of (E15) can be written as

dε

dn

∣∣∣∣
s

= d(ε + mn)

dn

∣∣∣∣
s

= μ + m (E17)

by employing the identity

μ = dε

dn

∣∣∣∣
s

= dF
dn

∣∣∣∣
T

, (E18)
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where F is the free-energy density.
The pressure and its density derivative at finite temperature

change to

P = n
dF
dn

∣∣∣∣
T

− F = nμ − F and
dP

dn

∣∣∣∣
T

= n
dμ

dn

∣∣∣∣
T

.

(E19)

Thus the finite-T equivalent of (E4) is as follows:

dμ

dn

∣∣∣∣
T

− β/γ

n
μ = β/γm

n
, (E20)

which leads to (by full analogy with the zero-T case)

c1 = Ff + mnf + Pf

n
β/γ+1
a

, (E21)

c2 = 1

β/γ + 1

[
β

γ
(Ff + mnf ) − Pf

]
, (E22)

F = −mn + (Ff + mnf + Pf )

β/γ + 1

(
n

nf

)β/γ+1

+ β/γ (Ff + mnf ) − Pf

β/γ + 1
, (E23)

P = β/γ

β/γ + 1
(Ff + mnf + Pf )

(
n

nf

)β/γ+1

− β/γ (Ff + mnf ) − Pf

β/γ + 1
. (E24)

Note that β and γ should be evaluated at nf .
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[26] T. Krüger, I. Tews, K. Hebeler, and A. Schwenk, Phys. Rev. C
88, 025802 (2013).

[27] J. M. Lattimer and M. Prakash, Astrophys. J. 550, 426 (2001).
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