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We explore the equation of state for nuclear matter in the quark-meson coupling model, including full Fock
terms. The comparison with phenomenological constraints can be used to restrict the few additional parameters
appearing in the Fock terms which are not present at the Hartree level. Because the model is based upon the
in-medium modification of the quark structure of the bound hadrons, it can be readily extended to include
hyperons and to calculate the equation of state of dense matter in β equilibrium. This leads naturally to a study
of the properties of neutron stars, including their maximum mass, radii, and density profiles.
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I. INTRODUCTION

Bulk nuclear matter properties have served as an excellent
testing ground for models of baryonic many-body systems
for many years. This hypothetical medium possesses many
similarities with matter in the interior of heavy nuclei, neutron
stars, and core-collapse supernovae. The relative simplicity
of the nuclear matter concept, such as the assumption of a
uniform density distribution without surface effects, allows
the derivation of several key variables which are generally
accepted as necessary conditions that must be satisfied by any
successful nuclear model.

The uncertainty in the determination of the forces acting
among baryons and their modification by the medium has led
to a great variety of models. These traditionally start from a
bare nucleon-nucleon interaction, fit to experimental data from
nucleon-nucleon scattering and the properties of the deuteron,
which serves as input to a many-body formalism such as
the relativistic Dirac-Bruckner-Hartree-Fock (DBHF) approx-
imation and its nonrelativistic counterpart Bruckner-Hartree-
Fock (BHF) [1,2], variational methods [3], correlated basis
function models [4], self-consistent Green’s function (SCGF)
models [5,6], quantum Monte Carlo techniques [7], and chiral
effective field theory [8,9]. An alternative is to develop an
effective density-dependent baryon-baryon interaction such as
the nonrelativistic Skyrme or Gogny interaction, or one of
the various relativistic effective Lagrangian models and use it
directly in a many-body theory.

With the exception of the role of the � excitation in the
generation of the three-nucleon force, none of these models
consider the internal structure of the nucleon and, in particular,
its possible modification in the presence of other hadrons. They
depend on a large number of variable parameters which are

determined by fitting calculated observables to experimental
data. The parameters are often correlated, making it difficult
to extract an unambiguous set from such fits, leading to—in
principle—an infinite number of such parameter sets [10].

The quark-meson coupling (QMC) model is based upon a
very different approach to this problem. Rather than starting
with the nucleon-nucleon (NN ) force, it begins with the study
of a hadron built from quarks immersed in a nuclear medium.
The original model, which is employed here, begins with the
MIT bag model. One then self-consistently includes the effects
of the coupling to the u and d quarks of a scalar-isoscalar
meson (σ ) mean field, generated by all the other hadrons in
the medium, on the internal structure of that hadron. As in
earlier boson-exchange models, the σ is a crude but convenient
way to simulate the effects of correlated two-pion exchange
between hadrons. While the quarks are also coupled to ω and
ρ mesons, their Lorentz vector nature means that, at least
at the Hartree level, they simply shift quark energies and do
not generate nontrivial, density-dependent modifications of the
internal structure of the bound hadron.

The QMC model was originally introduced by Gui-
chon [11]. Subsequent development significantly improved
the treatment of center-of-mass corrections [12], which had
generated an unrealistic amount of repulsion in the original
model. This development also included a consistent treatment
of finite nuclei, including the spin-orbit force [12]. When
applied to � hypernuclei, the model provided a very natural
explanation of the very small spin-orbit force observed in those
systems [13–15]. In an important, recent development, the
inclusion of the density dependence of the “hyperfine” interac-
tion between quarks arising from one-gluon exchange (OGE)
gave a parameter-free explanation of the empirical absence of
medium-mass and heavy � hypernuclei, while simultaneously
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yielding a good description of � hypernuclei [15]. For a review
of the many applications of the QMC model, we refer to
Ref. [16].

A clear connection has also been established between the
self-consistent treatment of in-medium hadron structure and
the existence of many-body [17] or density-dependent [18]
effective forces. The Skyrme interaction SQMC700, derived
in Ref. [18], was among the few percent of Skyrme force that
satisfied all the up-to-date constraints on high-density matter
up to 3 times nuclear saturation density recently examined
by Dutra et al. [10]. In particular, in all of the models
explored so far involving confined quarks, the self-consistent
response to the applied mean scalar field tends to oppose
that applied field. This effect can be represented as a “scalar
polarizability,” which effectively reduces the coupling of the
σ to an in-medium baryon as the applied scalar field increases.
We stress that this scalar polarizability is a calculated property
of each hadron and hence introduces no new parameters into
the model. Moreover, it is this scalar polarizability which
yields the density dependence of the derived Skyrme forces, or
equivalently the three-body forces between all combinations
of hadrons. That is, the model predicts the existence and
strength of the three-body forces between not just nucleons,
but nucleons and hyperons and hyperons and other hyperons,
without additional parameters.

As we have already observed, in a recent development of the
QMC model [15], the self-consistent inclusion of the gluonic
hyperfine interaction led to a successful description of the
binding energies of � hypernuclei, as well as the observed
absence of medium- and heavy-mass � hypernuclei, with
no additional parameters. We stress that these results were
obtained under the minimal assumption (consistent with the
Okubo–Zweig–Iizuka rule) that the σ , ω, and ρ mesons do not
couple to strange quarks.

In this paper we present the latest development of the QMC
model in which we include the full vertex structure of the
exchange term, including not only the Dirac vector term, as
was done in Ref. [19], but also the Pauli tensor term. These
terms were already included within the QMC model by Krein
et al. [20] for symmetric nuclear matter and more recently
by Ref. [21]. We generalize the work of Krein et al. by
evaluating the full exchange terms for all octet baryons and
adding them, as additional contributions, to the energy density.
A consequence of this increased level of sophistication is that,
if we insist on using the hyperon couplings predicted in the
simple QMC model, with no coupling to the strange quarks,
the � hyperon is no longer bound.

The present paper compliments the work of Ref. [21] which
also considered the tensor interaction in a variation of the
QMC model by investigating an extended set of nuclear matter
properties with comparisons to heavy-ion collision data and
other theoretical models. The present version of the QMC
model differs from that of Ref. [21] as we use couplings as
derived within the model and treat contact terms differently.
As is very well known from quantum hadrodynamics [22,23]
and QMC [20] Hartree-Fock calculations the scalar �s(k) and
temporal vector �0(k) self-energy components are essentially
independent of momentum and the spatial vector component
is very small. For these reasons we make the assumption

that the self-consistency can be treated approximately as in
Ref. [19] and as in Ref. [20], where the latter included a Fock
correction to the scalar field. To state this more precisely, we
neglect the small spatial vector component of the self-energy
such that �k∗ = �k + k̂�v(k) � �k and the remaining components
are treated as momentum independent. This approximate
self-energy,

�(k) = �s(k) − γ 0�0(k) + �γ · �k�v(k)

� �s − γ 0�0, (1)

has a form identical to the usual mean-field (Hartree) result
and the Fock corrections to these components can be included
by requiring thermodynamical consistency, which amounts to
minimizing the total energy density with respect to the meson
fields. This results in a small correction to the scalar field.

In Sec. II we present the basic features of the QMC model
used in this work. The application of the model leading to the
equation of state (EoS) of dense matter and a description of its
parameters is given in Sec. III A. Results obtained for infinite
nuclear matter, symmetric and asymmetric, as well as β-
equilibrium matter are followed by those for cold neutron stars
and their comparison with experimental and observational
constraints can be found in Secs. III B–III E. The main results,
sensitivity of the EoS and related quantities to variation of
some model parameters, are summarized in Sec. III F. We
then make a comparison between the present work and recent
variations of the QMC model studied in Refs. [21,24] and
others in Sec. III G. Discussion and concluding remarks are
presented in Sec. IV.

II. THE QMC MODEL

The QMC model is based upon the self-consistent mod-
ification of the structure of a baryon embedded in nuclear
matter. It is a relativistic mean-field model which incorporates
the internal quark structure of the baryons, represented as MIT
bags containing three quarks in a color-singlet configuration.
Interactions occur between quarks in distinct bags via the
exchange of mesons coupled locally to the quarks.

Thus, in addition to the usual terms in the Lagrangian
density of the MIT bag, the QMC model adds the simplest local
couplings of σ , ω, and ρ mesons to the confined quarks. That
is, the couplings are g

q
σ q̄qσ , g

q
ωq̄γ μqωμ, and g

q
ρ q̄γ μ �τ

2 q · �ρμ,
respectively [11,12]. Here q represents the SU(2) doublet
of u and d quarks and the coupling of these mesons to
the s quark is taken to be zero. These QMCs describe the
interaction between quarks in different hadrons. They act as
the source of mean fields in medium as well as serving to
modify the equation of motion of the confined quarks. This
leads to a self-consistency problem which is highly nontrivial
for the scalar field, whereas the vector couplings in uniform,
infinite nuclear matter involve only time components—e.g.,
ωμ = ω̄δμ0—and so they simply shift energy levels. As a
result, the effective strength of the coupling of the scalar
meson to a hadron containing light quarks is suppressed as the
scalar field increases, or equivalently, as the density increases.
Thus, as a result of this self-consistent calculation at the quark
level, one can express the in-medium baryon masses, M∗

B ,
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as functions of the scalar field (as in Ref. [15]) through a
calculated, density-dependent, scalar coupling, gσB(σ̄ ).

The saturation of symmetric nuclear matter [11] is a
natural effect of the self-consistent response of the quark wave
functions to the mean scalar field, a direct consequence of
which is the reduction of the effective σN coupling as the σ
field increases. By analogy with the electric polarizability of an
atom, which tends to arrange its internal structure to oppose
an applied electric field, this reduction of the σN coupling
is characterized as the scalar polarizability of the nucleon. It
is remarkable that the influence of baryon substructure, in a
mean-field approximation, is entirely described in terms of the
parametrization of the effective mass of the baryon through
the density-dependent scalar coupling derived from the quark
model of the baryon and g

q
σ . One can therefore replace the

explicit description of the internal structure of the baryons by
constructing an effective Lagrangian on the hadronic level,
with the calculated nonlinear σ -baryon couplings given in
Ref. [15],

M∗
B = MB − wσBgσN σ̄ + d

2
w̃σB (gσN σ̄ )2 (2)

(where the weightings wσB and w̃σB simply allow the use
of a unique coupling to nucleons), and proceed to solve the
relativistic mean-field equations in a standard way [22].

The QMC Lagrangian density used in this work is given by
a combination of baryon, meson, and lepton components,

L =
∑
B

LB +
∑
m

Lm +
∑

�

L�, (3)

for the octet of baryons B ∈ {N,�,�,}, selected mesons
m ∈ {σ,ω,ρ,π}, and leptons � ∈ {e−,μ−} with the individual
Lagrangian densities,

LB = �̄B

[
iγμ∂μ − MB + gσB(σ )σ − �

μ
ωBωμ

− ��μ
ρB · �ρμ − ��πB · �π]

�B, (4)∑
m

Lm = 1

2

(
∂μσ∂μσ − m2

σ σ 2
) − 1

4
�μν�

μν + 1

2
m2

ωωμωμ

− 1

4
�Rμν · �Rμν + 1

2
m2

ρ �ρμ · �ρμ

+ 1

2

(
∂μ �π · ∂μ �π − m2

π �π · �π)
, (5)

for which the vector meson field strength tensors are �μν =
∂μων − ∂νωμ and �Rμν = ∂μ �ρν − ∂ν �ρμ, and

L� = �̄�(iγμ∂μ − m�)��. (6)

For the baryon masses we take the average over the isospin
multiplet of their experimental values, where as for the mesons
and leptons we simply use the experimental values.

In a mean-field description of infinite nuclear matter with
uniform density, one can set spatial derivatives of all fields
to zero and replace the meson field operators with their
expectation values:

σ → 〈σ 〉 ≡ σ̄ , (7)

ωμ → 〈ωμ〉 = 〈δμ0ωμ〉 ≡ ω̄, (8)

�ρμ → 〈�ρμ〉 = 〈δμ0δa3ρμa〉 ≡ ρ̄, (9)

�π → 〈�π〉 = 0. (10)

This is usually called the Hartree mean-field approximation.
The next step is to include the Fock level contributions

involving the meson-baryon vertices which are expressed as

�σB = gσBCB(σ̄ )Fσ (k2)1 = −∂M∗
B

∂σ̄
F σ (k2)1, (11)

��ηB = εμ
η

��μηB = εμ
η

[
gηBγμF

η
1 (k2) + ifηBσμν

2M∗
B

kνF
η
2 (k2)

]
�t ;

η ∈ {ω,ρ}, (12)

��πBB ′ = igπBB ′Fπ (k2)γ μkμγ5 �τ , (13)

with the isospin matrix �t only applicable to isovector mesons.
For nucleons and cascade particles �t = �τ

2 . For the ρ meson
the flavor dependence is contained completely in the isospin
matrix, such that gρB = gρN = gρ . The pion-baryon inter-
action is assumed to be described by an SU(3) invariant
Lagrangian with the mixing parameter α = 2/5 [19] from
which the hyperon-pion coupling constants can be given in
terms of the pion-nucleon coupling, gπBB ′ = gπNNχBB ′ =
gA

2fπ
χBB ′ [19,25].

The ratios of tensor to vector couplings κB
(ω,ρ) =

fB(ω,ρ)/gB(ω,ρ) given in Table I are rescaled using the free
proton mass

κB
(ω,ρ) → κB

(ω,ρ) × M∗
B

Mp

. (14)

Equation (14) is used in all variants of the model (“scenarios”),
considered in this work except where a result is labeled “Eff.
Proton Mass.” The reason for this choice is that the derivation
of the QMC model is based on an order-by-order expansion
in the effect of the scalar field; using the effective mass of the
proton in the Pauli term coupling assumes that the scalar field
does not appear in some other way at the level of momentum-
dependent couplings. A systematic expansion would ensure
that all effects are included consistently to a given order. In
the absence of such a derivation it would be natural to write
the couplings in terms of the free baryon mass as is done in

TABLE I. Relations between baryon magnetic moments and
anomalous isoscalar and isovector magnetic moments κB

(IS,IV ) =:
κB

(ω,ρ) = fB(ω,ρ)/gB(ω,ρ) using experimental magnetic moments [29].

Relation Magnetic moments κB
(IS,IV ) =: κB

(ω,ρ)

(nm)

μp = 1 + 1
2

(
κN

IS + κN
IV

)
μn = −1.913 κN

IS = −0.12

μn = 1
2

(
κN

IS − κN
IV

)
μp = 2.793 κN

IV = 3.706

μ� = κ�
IS μ� = −0.61 κ�

IS = −0.61

μ�+ = 1 + (
κ�

IS + κ�
IV

)
μ�− = −1.16 κ�

IS = 0.649

μ�− = −1 + (
κ�

IS − κ�
IV

)
μ�+ = 2.458 κ�

IV = 0.809

μ0 = 1
2

(
κ

IS + κ
IV

)
μ− = −0.65 κ

IS = −0.9

μ− = −1 + 1
2

(
κ

IS − κ
IV

)
μ0 = −1.25 κ

IV = −1.5993
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Ref. [21,26] and not include just one effect of the scalar field
at this order.

The σ , ω, ρ, and π form factors are all taken to have the
dipole form F (k2) � F (�k2) with the same cutoff �. Clearly,
these form factors are only of concern for the Fock terms.
We make specific note of the two terms which contribute to
the vector meson vertices, a vector “Dirac” term and a tensor
“Pauli” term.

Through the Euler-Lagrange equations, we obtain from this
Lagrangian density a standard system of coupled, nonlinear
partial differential equations for the meson mean fields [12].
Meson retardation effects are not included and contact terms
are subtracted; see the Appendix for details. We note that
the mean-field approximation becomes progressively more
reliable with increasing density. Finally, we note that we
have also neglected any modification of the Dirac sea of
negative energy states with increasing density (see, however,
the discussion of such effects within the NJL model in
Ref. [27]).

III. EQUATION OF STATE OF BARYONIC MATTER

A. Formalism

The EoS relates energy density, pressure, and temperature
to baryon number densities ρB . In this work, we include
contributions from the full baryon octet in the limit T = 0.
The total energy density is given as a sum of the baryonic,
mesonic, and leptonic contributions,

εtotal = εB + εσωρ + εF + ε�. (15)

The nonleptonic energy density can be divided into a direct
(Hartree) part, εH = εB + εσωρ , where

εB = 2

(2π )3

∑
B

∫
|p|�pF

dp
√

p2 + M∗ 2
B , (16)

εσωρ =
∑

α=σ,ω,ρ

1

2
m2

αᾱ2, (17)

where ᾱ refers to the mean-field value of meson α, plus an
exchange (Fock) contribution

εF = 1

(2π )6

∑
m=σ,ω,ρ,π

∑
BB ′

Cm
BB ′

∫
|p|�pF

∫
| p′|�pF ′

dpdp′m
BB ′ .

(18)

The coefficients Cσ
BB ′ = Cω

BB ′ = δBB ′ , C
ρ
BB ′ , and Cπ

BB ′ , which
arise from symmetry considerations, are given in Ref. [19].
This nonleptonic energy density is then given by εhadronic =
εH + εF = εB + εσωρ + εF . Note that the pion contributes
only at exchange level as parity considerations lead to a
vanishing direct level contribution. It nonetheless plays an
important role in reducing the incompressibility of nuclear
matter [19].

The leptonic energy density is simply

ε� = 2

(2π )3

∑
�

∫
| p|�pF,�

dp
√

p2 + m2
�. (19)

The scalar mean field in Eq. (17) is calculated self-
consistently as

σ̄ = − 1

m2
σ

∂εH

∂σ̄
− 1

m2
σ

∂εF

∂σ̄
(20)

= − 2

m2
σ (2π )3

∑
B

∫
|p|�pF

dp
M∗

B√
p2 + M∗ 2

B

∂M∗
B

∂σ̄
− 1

m2
σ

∂εF

∂σ̄
,

(21)

where the second term in Eq. (21) is the Fock level correction
to the scalar field, which is included in the scenarios “Fock
δσ” and “Eff. Proton Mass + δσ .” The vector meson mean
fields simply scale with either the total or isovector baryonic
density

ω̄ =
∑
B

gωB

m2
ω

ρB, (22)

ρ̄ =
∑
B

gρB

m2
ρ

I3BρB, (23)

where I3B is the third component of isospin for baryon B.
For εF , shown in Eq. (18), the integrand has the form

m
BB ′ = 1

2

∑
s,s ′

|ūB ′(p′,s ′)�mBB ′uB(p,s)|2�m(k), (24)

where �m(k) is the Yukawa propagator for meson m with
momentum k = p − p′, and uB are the baryon spinors. The
integrands are presented in the Appendix.

The expression for total energy density is therefore de-
pendent on just the three main adjustable coupling constants,
which control the coupling of the mesons to the two lightest
quarks, g

q
σ , g

q
ω, and g

q
ρ for q = u,d (gs

α = 0 for all mesons
α). In addition, one has the meson masses, the value of the
cutoff parameter � appearing in the dipole form factors needed
to evaluate the Fock terms and finally the bag radius of the
free nucleon. The σ , ω, and ρ couplings to the quarks are
constrained to reproduce the standard empirical properties of
symmetric (N = Z) nuclear matter: the saturation density ρ0 =
0.16 fm−3, the binding energy per nucleon at saturation of
E(ρ = ρ0) = −15.865 MeV, as well as the asymmetry energy
coefficient aasym ≡ S0 ≡ S(ρ0) = 32.5 MeV [19] (see also
Sec. III C).

The ω, ρ, and π meson masses are set to their experimental
values. The ambiguity in defining the mass of the σ after
quantizing the classical equations of motion was explained in
detail in Ref. [12]. Here it is set to the value that gave the best
agreement with experiment for the binding energies of finite
nuclei in a previous QMC model calculation [18], which was
700 MeV. This is a common value taken for the σ meson mass
which is generally considered in RMF models to be in the
range 400–800 MeV.

The form factor cutoff mass, �, controls the strength of the
Fock terms Eqs. (11)–(13). We considered a range of values,
0.9 GeV � � � 2.0 GeV, with the preferred value, as we
shall see, being 0.9 GeV. For simplicity we have used the same
cutoff for all mesons. Because the pion mass is much lower
than that of the other mesons, we have confirmed that using a
lower cutoff for the pion does not significantly influence the
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results. This is not surprising as Fock terms are expected to be
more significant at higher density, where we have found that
the pion does not contribute greatly.

All the other coupling constants in the expression for
the total energy density are calculated within the QMC
model or determined from symmetry considerations without
further need for adjustable parameters. The one exception is
gσB(σ̄ ), which shows a weak dependence on the free nucleon
radius Rfree

N . We checked that changes of order 20% in Rfree
N ,

consistent with nucleon properties, have no significant effect
on the properties of nuclear matter and chose Rfree

N = 1.0 fm.
The baryon-meson coupling constants gσN (0), gωB , and

gρB (or equivalently the three QMC constants) are determined
by fitting the saturation properties of symmetric nuclear
matter. Only gσB is density dependent and that dependence
is calculated self-consistently according to

∂

∂σ̄
[gσB(σ̄ )σ̄ ] = gσB(0) CB(σ̄ ) = − ∂M∗

B

∂σ̄

≡ − ∂M∗
B

(
σ̄ ,gσN ,Rfree

N

)
∂σ̄

, (25)

where M∗
B is calculated in the QMC model using the MIT bag

with OGE for the baryon structure. The couplings gωB and gρB

are expressed in terms of the quark level couplings as

gωB = nB
u,dg

q
ω, gρB = gρN = gq

ρ, (26)

where nB
u,d is the number of light quarks in baryon B.

At densities ∼2–3ρ0 one expects, simply because the
Fermi level of the neutrons rises rapidly, that for matter in
β-equilibrium hyperons must be considered. There are very
few experimental data on the N -Y and Y -Y interactions, which
makes the traditional approach through phenomenological
pairwise interactions very difficult. There is certainly no
hope of determining the relevant three-body forces which are
expected to be critical at high density. One of the attractive
features of the QMC model is that it predicts all of these
forces in terms of the underlying QMCs, the scalar meson
mass, and the particular quark model chosen (the MIT bag
here). Furthermore, the density dependence of the scalar
couplings to each baryon is also determined by the bag model
mass parametrization. The inclusion of this density-dependent,
in-medium interaction is equivalent in a density-independent
framework to including the appropriate three-body force
between all baryons.

Remarkably, in the absence of the Pauli Fock terms, the
model predicted realistic � binding energies and, at the same
time, realistic � repulsion in matter [15]. As we show later
in Sec. III F, the additional repulsion associated with the Fock
term is not adequately compensated and the agreement is lost.
In this work we assess the magnitude of the needed change
by artificially modifying the σ couplings for the hyperons to
match the empirical observations. This procedure will serve as
a guidance in the future development of the model, as outlined
in Sec. IV

It is well known that the coupling of the ρ meson to
a particular baryon has a relatively large Pauli, or tensor,
coupling [i.e., fρB in Eq. (12)]. The value used varies from one
model of the nuclear force to another. In the QMC model the

prediction of the tensor coupling at zero momentum transfer is
unambiguous; it is exactly the anomalous, isovector magnetic
moment of the baryon in the MIT bag model. Similarly, the
tensor coupling of the ω, which in the case of the nucleon
is much smaller than for the ρ, is determined by the isoscalar
magnetic moment. Because the MIT bag model reproduces the
experimental values of the magnetic moments quite well, the
tensor coupling required within the QMC model is equivalent
to using vector meson dominance [28] and in practice we
use values for the magnetic moments from the Particle Data
Group [29]. Finally and purely as an exercise aimed at
exploring the model dependence, we consider two different
choices for the ratios of tensor to vector coupling constants
fαB/gαB , with α ∈ {ρ,ω}. Whereas, as we explained, in the
standard QMC calculation we take fρN/gρN = 3.70, we also
explore the consequences of arbitrarily setting fρN/gρN =
5.68 in the “Increased fρN/gρN” scenario. In this scenario we
arbitrarily take the ratios of tensor to vector couplings of all
baryons from the Nijmegen potentials (Table VII of Ref. [30]).

The only other parameters in the QMC model are those
entering the bag model. We refer the reader to Ref. [15], where
those parameters were obtained. None of them have been
adjusted to any property of nuclear matter, although all calcula-
tions involving the QMC model at present rely on the MIT bag
model with OGE and could be, in principle, improved upon
by using a more sophisticated model of quark confinement.
Nonetheless, with this simple quark-based model, remarkable
agreement with a broad range of experimental data has been
obtained [16].

Having established the QMC model parameters, in the
following section we calculate properties of symmetric (SNM)
and pure neutron (PNM) nuclear matter as well as matter
in β equilibrium (BEM). The latter consists of nucleons and
leptons, while matter in generalized β equilibrium (GBEM)
contains the full baryon octet and leptons. Using the derived
EoS, we calculate the properties of cold neutron stars and make
a comparison with up-to-date experimental and observational
data. We also examine the robustness of those results on the
limited number of parameters entering the model.

B. Infinite symmetric and pure neutron nuclear matter

A minimal set of saturation properties of symmetric nuclear
matter, the saturation density, the binding energy per particle,
and the symmetry energy at saturation, were used to fix the
QMC constants as described in Sec. III A. None of those
properties is actually an empirical quantity, because they
are not measured directly but extracted from experiments or
observations in a model-dependent way. However, there is
a general consensus that all meaningful theories of nuclear
matter should reproduce these quantities correctly. Moreover,
other properties of both symmetric and pure neutron matter,
derived from derivatives of the energy per particle with
respect to particle number density, together with their density
dependence, can be compared to empirical data to further
test the theories. These include the pressure, incompressibility
(compression modulus), and slope of the symmetry energy.

Let us define the hadronic energy per particle, E =
εhadronic/ρ, where ρ is the total baryonic density and define
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the following quantities as a function of ρ. The first derivative
of E provides an expression for baryonic pressure,

P = ρ2 ∂E

∂ρ
. (27)

The second derivative of E is the compression modulus or
incompressibility,

K = 9ρ2

(
∂2E

∂ρ2

)
. (28)

The third derivative defines the so-called skewness coefficient
(some authors define K ′ = −Q):

Q = 27ρ3

(
∂3E

∂ρ3

)
. (29)

These quantities can be evaluated at any density and any
proton/neutron asymmetry ratio β = (ρn − ρp)/ρ at which
the model for the baryonic energy per particle is valid. The
particular values at saturation density, ρ0, are indicated with a
subscript zero (e.g., K0, Q0, etc.). In SNM, ρn = ρp = 1/2ρ,
the values of the incompressibility and skewness at saturation
density can be compared to experiment. Obviously, the
pressure at saturation density is equal to zero. It is convenient
to express the density dependence of the energy per particle in
SNM as a Taylor expansion of E about the saturation density
in terms of a variable x = (ρ − ρ0)/3ρ0,

ESNM(ρ) = E0 + 1
2K0x

2 + 1
6Q0x

3 + O(x4). (30)

The value of the incompressibility of infinite nuclear matter
at saturation density has been the subject of considerable
debate for several decades. It can be extracted either from mea-
surement of energies of giant monopole resonances (GMRs)
in spherical nuclei or calculated theoretically in nonrelativistic
and relativistic models, typically involving mean- field plus
random-phase approximation (see, e.g., Refs. [31–33]). The
consensus has gravitated to a value of K0 = 240 ± 20 MeV,
as calculated in nonrelativistic approaches, although somewhat
higher values are predicted in relativistic models. Recent
reanalysis of experimental data on GMR energies in nuclei
with 56 < A < 208, in an empirical approach [33] showed
that K0 critically depends on properties of the nuclear surface
and the most likely values of K0 are between 250 and 315 MeV.

There is no rigorous constraint available for the skewness
coefficient except for the results of Farine et al. [34]. They
obtained a model-dependent value K ′ = 700 ± 500 MeV from
an analysis of the nuclear breathing mode, using a selection of
Skyrme forces.

We now give details of how the optical potentials of
hyperons embedded in SNM are calculated. We refrain from
discussing these results until Sec. III D as these potentials
are intimately connected to the particle content of matter in
generalized β equilibrium and are therefore more naturally
discussed there. In many works optical potentials for the
hyperons in SNM are evaluated and used to constrain hyperon
coupling constants. In the QMC model these couplings are
derived within the model. We make the following approxi-
mation to evaluate the optical potentials in SNM at saturation
density. For each hyperon a small number density is chosen, so

that we can evaluate their chemical potential numerically via
Eq. (45). A small density means that this chemical potential
is approximately the energy of a zero momentum hyperon
embedded in symmetric nucleon only matter. We can then
calculate the optical potentials by Ui(ρ0) = μi − Mi . These
values are tabulated in Table II for the �, �−, and −
hyperons.

In PNM, ρn = ρ and ρp = 0. Although PNM does not exist
in nature, it is seen as a first approximation to matter in the outer
core of neutron stars at densities higher than ρ0. The density
dependence of the energy per particle of PNM is poorly known,
except for the fact that PNM does not bind; i.e., the energy per
particle is positive at all densities.

At very low densities, below ∼0.1 ρ0, experiments with
cold Fermi atoms have yielded information about strongly
interacting fluids, similar to low-density matter in neutron star
crusts. Dutra et al. [10] studied these constraints in detail. In
this work we concentrate on the higher-density region, above
∼0.1 ρ0, as the QMC model may have limited applicability at
very low densities. In the absence of experimental data in this
density region we can only use theory for a comparison.

Very recently, Tews et al. [35] presented the first complete
next-to-next-to-next-to-leading-order (N3LO) calculation of
the PNM energy, and Hebeler and Furnstahl [36] investigated
the energy per particle in PNM at subsaturation densities
using two- and three-nucleon chiral effective field theory
(CEFT) interactions that were consistently evolved within
the framework of the similarity renormalization group. We
compare their results with the QMC predictions in Fig. 1.
Clearly, the QMC prediction for the density dependence of
the energy per particle in PNM is very similar to that of Tews
et al. [35] at subsaturation density, with a somewhat steeper
increase at densities above saturation.

An interesting connection has been made between the
pressure in the PNM neutron skin in heavy nuclei and
the radius and crust thickness of a cold neutron star [37].
Thus, a microscopic theoretical calculation of the PNM
pressure became of interest, in particular at subsaturation
densities. Tsang et al. (see Fig. 4 and related references in
Ref. [38]) collected several recent calculations of the PNM
pressure as a function of particle number density. We show in
Fig. 2 a selection of the models: BHF with Av18 two-body
potential [39], quantum Monte Carlo (QuMoCa) with Av8′
two-body potential [40], and CEFT [9]. The main uncertainty
in these calculations is the strength of three-body forces, which
clearly make a significant contribution to the total pressure in
these models (compare the left and right panels of Fig. 2, with
the QMC result shown in the right panel). The QMC model,
which naturally includes three-body forces without additional
parameters (see Sec. IV), indicates a somewhat faster growth
of pressure with increasing density than the other three-body
interactions.

Limits for the pressure-density relationship in SNM and
PNM in the density region 2–5ρ0 have been inferred from a
comparison of experimental data on matter flow in energetic
heavy ion collisions and predictions of a dynamical transport
theory by Danielewicz et al. (see Ref. [41] and references
therein). The matter created in the collision, lasting ∼10−23 s at
an incident kinetic energy per nucleon varying from about 0.15
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TABLE II. Couplings, nuclear matter properties, selected hyperon optical potentials, and neutron star properties determined for our
standard case (for which � = 0.9 GeV, and Rfree

N = 1.0 fm) and the effect of subsequent variations in which differences from the standard
parameter set are indicated in column 1. The tabulated quantities at saturation are the slope and curvature of the symmetry energy, L0 and
Ksym, the incompressibility K0, skewness coefficient Q0, calculated at saturation density, and volume component of isospin incompressibility
Kτ,v , respectively. Tabulated neutron star quantities are the stellar radius, maximum stellar mass, and corresponding central density (units
ρ0 = 0.16 fm−3).

Model/ gσN gωN gρ K0 L0 Ksym Q0 Kτ,v U� U�− U− Mmax R ρmax
c

scenario (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (M�) (km) (ρ0)

Standard 8.97 9.38 4.96 273 84 −23 −305 −431 3 25 5 1.80 11.80 5.88
� = 1.0 9.07 9.73 5.05 278 85 −15 −282 −439 10 32 8 1.84 11.86 5.82
� = 1.1 9.16 10.06 5.16 283 86 −8 −261 −446 16 39 11 1.88 11.94 5.70
� = 1.2 9.24 10.37 5.28 286 87 −2 −241 −451 23 46 15 1.92 12.03 5.60
� = 1.3 9.31 10.67 5.40 289 88 4 −224 −456 29 53 18 1.95 12.10 5.52
� = 1.1, gσY × 1.3 9.16 10.06 5.16 283 86 −8 −261 −446 −15 14 −4 1.84 11.91 5.78
� = 1.3, gσY × 1.3 9.31 10.67 5.40 289 88 4 −224 −456 −3 28 3 1.92 12.01 5.66
� = 2.0, gσY × 1.9 9.69 12.27 6.16 302 92 31 −137 −478 −29 20 −7 2.07 12.24 5.38
Increased fρN/gρN 8.70 9.27 3.86 267 81 −34 −321 −424 6 27 6 1.77 11.61 6.14
Fock δσ 9.01 9.44 4.97 273 84 −21 −296 −432 4 26 5 1.81 11.82 5.86
Eff. Proton Mass 10.40 11.0 4.55 297 101 64 −190 −476 11 41 10 1.94 12.20 5.48
Eff. Proton Mass, � = 1.1 11.08 12.31 4.85 311 111 126 −87 −509 34 67 22 2.07 12.57 5.08
Eff. Proton Mass + δσ 10.89 11.55 4.53 285 109 132 −232 −432 17 49 13 1.99 12.22 5.46
Dirac Only 10.10 9.22 7.84 294 85 0 −299 −424 −23 4 −8 1.79 12.33 5.22
Hartree Only 10.25 7.95 8.40 283 88 −17 −455 −405 −49 −23 −21 1.54 11.73 6.04
Nucleon Only 8.97 9.38 4.96 273 84 −23 −305 −431 3 25 5 2.10 11.08 6.46
R = 0.8 9.30 9.85 4.98 277 85 −15 −269 −443 6 25 5 1.83 11.88 5.80
App. S0 = 32.5 9.05 9.38 4.86 275 82 −27 −303 −429 2 24 4 1.80 11.82 5.82
App. S0 = 30.0 9.31 9.35 4.50 280 74 −24 −298 −391 −4 19 1 1.81 11.82 5.76
S0 = 30.0 9.24 9.36 4.61 278 76 −20 −299 −394 −2 21 2 1.81 11.81 5.80

to 10 GeV per nucleon, was modeled as consisting of stable
and excited nucleons (� and N∗) as well as pions. The basic
constraints on this matter are charge symmetry and strangeness
conservation (although in this case the strangeness is zero).
This is in contrast to matter in cold neutron stars, constrained
by charge neutrality and generalized β equilibrium, where
strangeness will not be conserved.

The transport theory was extrapolated to cold symmetric
and pure neutron matter, with the latter augmented by
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FIG. 1. (Color online) Pure neutron-matter energy per particle as
a function of density as obtained in the present work, in comparison
with complete CEFT at N3LO order. For more details of the latter,
see Ref. [35].

empirical symmetry pressure [41]. We show in Fig. 3 the
pressure versus density for SNM and PNM, as predicted in
different scenarios the QMC model in this work. The standard
QMC model is consistent with the suggested constraints but at
the upper end of the range determined in Ref. [41].

C. Asymmetric nuclear matter

Our knowledge of asymmetric nuclear matter is rather
limited, mainly because of a still inadequate understanding of
the symmetry energy which describes the response of forces
acting in a nuclear system with an excess of protons and
neutrons. This is an important property of highly asymmetric
systems, such as heavy nuclei and the nuclear matter found in
neutron stars, and is defined as

S(ρ) = 1

2

∂2E

∂β2

∣∣∣∣
ρ,β=0

, (31)

where S(ρ) is equal to the asymmetry coefficient in the Bethe-
Weisacker mass formula in the limit A → ∞ [42].

The definition of S(ρ) in Eq. (31) is related but not identical
to the commonly used approximation as the difference between
the binding energy per baryon in PNM and SNM,

S(ρ) = E(ρ,β = 1) − E(ρ,β = 0), (32)

where the binding energy per baryon is

E = 1

ρ

(
εhadronic −

∑
B

MBρB

)
. (33)
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FIG. 2. (Color online) Density dependence of pressure in PNM as predicted in BHF, DBHF, QuMoCa, and CEFT with and without
three-body forces: (a) without three-body forces; (b) with three-body forces. The QMC model prediction is shown in (b). For more details, see
the text and Ref. [38].

This difference approximation is valid under two assumptions:
(i) E(ρ,β = 0) is a minimum energy of the matter at a given
density ρ and thus in the expansion of E(ρ,β) about this
value with respect to β the leading nonzero term is the second
derivative term and (ii) all the other derivatives in the expansion
are negligible [43]. In this work we consider Eq. (32) only to
examine the validity of this approximation and to observe the
impact of the Fock terms, specifically the tensor contribution,
upon the symmetry energy.

The density dependence of the symmetry energy can be
expanded about its value at saturation S0 in terms of the
slope L0, curvature Ksym, and skewness Qsym (all evaluated at
saturation density) as

S = S0 + L0x + 1
2Ksymx2 + 1

6Qsymx3 + O(x4), (34)

where

L(ρ) = 3ρ

(
∂S
∂ρ

)
, L0 ≡ L(ρo),

Ksym = 9ρ2
o

(
∂2S
∂ρ2

)
ρ=ρ0

,

Qsym = 27ρ3
o

(
∂3S
∂ρ3

)
ρ=ρ0

. (35)

We note that the curvature of the symmetry energy, S, at
saturation density in symmetric matter, is called here Ksym,
the symmetry incompressibility. It should not be confused
with Kτ , which is the isospin incompressibility, defined in
asymmetric nuclear matter (ANM) by Eq. (38).

The search for constraints on the symmetry energy and
its slope, L0, has received considerable attention during the
past decade. Recently, Tsang et al. [38] evaluated constraints
from a wide range of experiments. However, as again the
symmetry energy is not measured directly but extracted from
experimental data in a model-dependent way, only limits on
the symmetry energy can be established. One of the outcomes
of the evaluation was a confirmation of a previously observed
correlation between the value of S0 and its derivative L0 at
saturation density. Taking this correlation into account, the
constraint centered on (S0,L0) ∼(32.5, 70) MeV, with the
uncertainty in S0 allowing values 30 < S0 < 35 MeV and
related values of L0 in the range of 35 < L0 < 115 MeV (see
Fig. 2 in Ref. [38] for more details).

While theoretical predictions of S0 are also more or less
confined to the range 30 to 35 MeV, the calculated values of
L0, corresponding to the range ofS0, vary widely. For example,
the QuMoCa and CEFT models predict very similar low values
of L0, between ∼30 and 50 MeV [38]. The best performing
Skyrme forces, selected in Ref. [10], produce values of L0
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FIG. 3. (Color online) (a) Pressure in SNM as a function of
density as predicted in the QMC model. The shaded area is taken from
Ref. [41]. (b) Pressure in PNM as a function of density as predicted
in the QMC model. The upper and lower shaded areas correspond to
two different estimates of the contribution of the symmetry pressure
to the total pressure. For more detail, see Ref. [41].

clustered around 50 MeV. However, relativistic mean-field
models show a much larger spread. The models which satisfied
most of the constraints on the properties of nuclear matter,
studied by Dutra et al. [44], predicted L0 in the range
∼50–70 MeV. However, frequently used relativistic mean-field
model parametrizations, e.g., NL3, NL-SH, NLC, TM1, and
TM2, predict L0 values of order ∼110–120 MeV [45]. Chen
et al. [46] found a linear the correlation between Ksym and L0

for a specific selection of equations of state. For a range of
positive values of L0 between about 30 and 120 MeV Ksym is
between ∼−200 and 100 MeV.

In the QMC model the isospin-dependent part of the
interaction is mostly controlled by the exchange of the ρ
meson. For this reason, here and in other works (e.g., Ref. [42])
the symmetry energy at saturation S0 = 32.5 MeV is used to
fix the ρ meson coupling constant. The QMC result for L0

is 84 MeV (see Table II), which is within the broader limits
found by Tsang et al. [38], although outside their preferred
range.
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FIG. 4. (Color online) (a) Symmetry energy S as a function of
baryon number density, as calculated in this work. (b) Slope L of the
symmetry energy, as a function of baryon number density L(ρ) =
3ρ( ∂S

∂ρ
).

We show the density dependence of the symmetry energy
S and its slope, L, in Fig. 4 and the correlation between S0

and L0 in Fig. 5. It can be seen that the linear relationship
between S0 and L0, observed in QuMoCa calculations [40]
and CEFT models [38], is also predicted in this work, although
at higher values of L0 and a somewhat different incline. When
the approximate expression is used to evaluate the symmetry
energy the linear relationship between S0 and L0 is shifted to
values which are at most only a few MeV lower.

Another manifestation of isospin asymmetry in nuclear
matter can be studied in GMR experiments [33]. The incom-
pressibility of a finite nucleus is obtained, using sum-rule
arguments, from the measured energy EGMR in spherical
nuclei [31] as

K(A,β) = M < R2 > E2
GMR. (36)

Here, M is the nucleon mass and R is the rms matter radius of
the nucleus with mass number A. K(A,β) can be expressed in
a form of an expansion in terms of A−1/3 and β [31],

K(A,β) = Kvol + KsurfA
−1/3 + KcurvA

−2/3

+Kτβ
2 + Kcoul

Z2

A4/3
+ · · · , (37)
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where the symmetry-related coefficient consists of the volume
and surface components [31,47,48],

Kτ = Kτ,v + Kτ,sA
−1/3, (38)

with Kτ,v (Kτ,s) the volume (surface) symmetry incompress-
ibility.

The coefficient Kτ,v can be evaluated using

Kτ,v =
(

Ksym − 6L0 − Q0

K0
L0

)
. (39)

Stone et al. [33] analyzed all currently available GMR data in
nuclei with 56 < A < 208 and found a limit −700 � Kτ,v �
−372 MeV. The QMC result is Kτ,v = −431 MeV, which lies
well within the experimental limits.

D. Generalized β equilibrium matter and neutron stars

In this section we study cold ANM which is expected to
exist in the outer core of cold neutron stars.

Dense matter just above the saturation density, when all
nuclei are dissolved, forms a system of interacting nucleons
and leptons. If this form of matter exists long enough on the
time scale of weak interactions, τ ≈ 10−10 s, BEM develops
between β decay n → p + e− + ν̃ and its inverse. When the
density increases to about 2–3ρ0 and because baryons obey
the Pauli principle, it becomes energetically favorable for
nucleons at the top of the corresponding Fermi sea to convert to
other baryons. A GBEM develops with respect to all reactions
involving either weak or strong interactions, which lead to
the lowest-energy state. Only two quantities are conserved in
GBEM: the total charge (zero in stars) and total baryon number.
Strangeness is conserved only on the time scale of strong
interaction, τ ≈ 10−24 s, and lepton number is conserved only
on the time scale of tens of seconds, because of the diffusion
of neutrinos out of the star [42].

To describe GBEM, it is convenient to use the chemical
potentials of the participating particles. It can be shown that
there are as many independent chemical potentials as the
number of conserved quantities. Thus, we need to choose just
two, for example, the chemical potentials of the neutron and
electron. Chemical potentials of all the other species in GBEM
are then expressed via a relation

μi = Biμn − Qiμe, (40)

where the baryon number, B, is 0 or 1 and the charge number,
Qi , is 0 or ±1. Alternatively (and equivalently), the chemical
potentials can be related to Lagrange multipliers [as the
degrees of freedom for charge conservation (ν) and baryon
number conservation (λ)] to solve a system of equations,

0 = μi + Biλ + νQi, (41)

0 = μ� − ν, (42)

0 =
∑

i

Biρi − ρ, (43)

0 =
∑

i

BiρiQi +
∑

�

ρ�Q�, (44)

to obtain the number densities for each particle (i ∈
{n,p,�,�−,�0,�+,−,0} and � ∈ {e−,μ−}), ρi , as well
as the Lagrange multipliers. At the Hartree-Fock level, the
following formulas to numerically evaluate the chemical
potentials must be used to ensure we encapsulate the Fock
contribution to the energy densities correctly:

μi = ∂εtotal

∂ρi

, μ� = ∂ε�

∂ρ�

=
√

k2 + m2
�. (45)

In Figs. 6 and 7 we show the EoS (with various parameter
variations) and the distribution of species in GBEM matter for
the preferred scenario in this work. We note that the pressure
now involves the total energy density (including leptonic
contribution) εtotal = εhadronic + ε�:

Ptotal = ρ2 ∂

∂ρ

(
εtotal

ρ

)
=

∑
i

μiρi − εtotal. (46)

The kinks in pressure in Fig. 6 appear at hyperon thresholds. A
comparison between calculations for Hartree alone, Hartree-
Fock with only the Dirac piece of the coupling to vector
mesons, or the full model highlights the importance of the
Fock terms at high density. As compared to the EoS of matter
in which the hyperons are not included above their natural
thresholds and nucleons are assumed to be the only baryons
up to densities ∼5–6ρ0, the pressure in GBEM increases with
density more slowly. It is challenging to produce reasonable
scenarios where the empirical constraints are met and the
pressure still increases fast enough to support high-mass, cold
neutron stars, as are discussed in the next section.

In Fig. 7 the particle content of GBEM matter and
corresponding Fock energy contributions is displayed for three
scenarios, “Standard,” “Eff. Proton Mass,” and “� = 2.0,
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gσY × 1.9.” In the Standard scenario, the first hyperon to
appear is �−, at 0.46 fm−3, followed by − at 0.47 fm−3. The
�− is quickly replaced with the −, which is then followed by
the appearance of � at 0.74 fm−3 and then 0 at 0.97 fm−3.
Because the latter is above the maximum density reached in
any of our realistic model variations, it is largely irrelevant.
We show in Fig. 8 that the � chemical potential approaches
and meets the neutron chemical potential, meaning that it is
energetically favorable for it to appear. However, for the �−

we see that at low density it is more favorable than the −,
while beyond ∼0.4 fm−3 this is no longer so.

Once the full Fock terms are included, the results for the
standard scenario are no longer consistent with the known
values of the phenomenological hyperon optical potentials.
This is because of a change in the ratio of the scalar to vector
coupling, effectively leaving the � hyperon unbound. The
additional attraction generated by the Fock terms, especially
the ρ tensor contribution, has altered the coupling constants
such that the ω coupling is larger. This effect of an increase
in the vector coupling is illustrated by the larger maximum
neutron star masses, which also correspond to poor results for
the hyperon optical potentials.

In the work of Miyatsu et al. the scalar couplings from
the QMC model were not used. Instead, they rescaled the
scalar coupling of each hyperon to obtain an acceptable optical
potential. We consider the possibility of rescaling the scalar
coupling reasonable, as the bag model used is a very simple
model of the baryons in which only the light quarks participate
in the interaction. An amplification of only the hyperon scalar
couplings of 30% is considered in “� = (1.1,1.3), gσY × 1.3.”
This improves the predictions of the optical potentials, binds
the � hyperon, and maintains a repulsive potential for the �−
hyperon. In doing this the optical potentials are closer to the
values extracted from experimental studies of hypernuclei, but
the EoS of β-equilibrated matter is much softer; � and �− both
appear. In the scenario “� = 2.0, gσY × 1.9,” we meet both
the constraints of phenomenological hyperon optical potentials
and high-mass neutron star observations. In this scenario we
increase the form factor cutoff and hence the strength of
the Fock terms forcing the vector coupling to become larger
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Fig. 6.
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FIG. 8. (Color online) (a) Neutral baryon chemical potentials as
a function of baryon number density for the standard scenario. (b)
Negative-charge baryon chemical potentials as a function of baryon
number density for the standard scenario.

and then rescale the hyperon scalar coupling. In this very
phenomenological scenario we obtain reasonable values for
the optical potentials and still obtain high-mass neutron stars.

In the scenario Eff. Proton Mass the ratio of tensor to vector
coupling is rescaled using the effective proton mass in Eq. (14),
as opposed to the free proton mass. This is a naive way to
introduce a scalar dependence into the Pauli term coupling.
This substitution effectively increases the strength of the Pauli
term owing to the reduction of the proton mass. The change
in strength of the tensor coupling has a significant impact on
the composition. Its impact on the results for neutron stars is
discussed in the Secs. III F and III E. This particle content is
different from our standard scenario and most other models,
which generally find that either the � or the �− appears
first. The increased strength of the tensor contribution, and
hence attraction, has increased the vector coupling and as a
consequence the � is not bound at saturation density in SNM.
This combined with the attraction from the Fock terms for
the ’s makes them more energetically favorable than � or
the �−.

At the Hartree level the “hyperfine” interaction from
OGE makes the � more energetically favorable than the
�−, providing a source of attraction for the former and

repulsion for the latter. This has been shown at the Hartree
level in the QMC model to suppress the appearance of �−
hyperons in GBEM matter [49]. This can also be considered a
qualitative explanation for the absence of medium to heavy �
hypernuclei [15].

We consider the extreme scenario � = 2.0, gσY × 1.9,
where we maintain a large vector coupling by increasing
the form factor cutoff, effectively increasing the strength
of the Fock terms, and we rescale the scalar coupling to
obtain reasonable values for the phenomenological hyperon
optical potentials, so that the � is bound at saturation density
in symmetric nuclear matter. Even though the � feels a
significant attraction at saturation density, it appears that it
cannot compete with the attraction generated by the Fock terms
at high density—specifically the tensor part—for the . The
contributions of the Fock energies is more significant and the
composition is similar to Eff. Proton Mass.

E. Cold neutron stars

To calculate neutron star properties, such as the total
gravitational mass, M(R), and the baryon number, A(R),
within the stellar radius R, we solve the TOV equations [50] for
hydrostatic equilibrium of spherically symmetric (nonrotating)
matter. Using the EoS calculated here, this is self-supported
against gravitational collapse:

M(R) =
∫ R

0
4πr2εtotal dr, (47)

dPtotal

dr
= −(εtotal + Ptotal)

[M(r) + 4πr3Ptotal]

r2[1 − 2M(r)/r]
, (48)

dA

dr
= 4πr2ρ√

1 − 2M(r)/r
. (49)

In Eqs. (47)–(49) we use units in which G = 1. The difference
between the total gravitational mass and baryonic mass within
a radius R is defined by M(R) − A(R)MN .

The EoS of GBEM is not valid in the outer regions (crust) of
the star, where nuclei and nuclear processes become dominant.
Following the customary procedure, we introduce a smooth
transition between our EoS in GBEM and the standard low-
density EoS of Baym, Pethick, and Sutherland (BPS) [51] at
low density.

The relationship between stellar mass and radius, obtained
as the solution of the TOV equations, Eqs. (47) and (49), is
summarized in Table II and depicted in Fig. 9. We find that
the predicted maximum masses for several of the scenarios,
lie very close to the constraints set by Demorest et al. [52] of
a (1.97 ± 0.04)M� pulsar, as well as the new constraint set by
PSR J0348 + 0432 with a mass of 2.03 ± 0.03M� [53]. The
corresponding radii are somewhat larger than that extracted
from recent observations of Type I x-ray bursters (see, e.g.,
Refs. [54,55]). Extraction of radii from observation is rather
complicated and there are still many questions to be addressed.
For example, Steiner et al. [54] analyzed observations of
six low-mass x-ray binaries (emitting x rays regularly) and
their statistical analysis yielded R in the range 10–12 km
for masses around 1.6M�. However, the uncertainty in the
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FIG. 9. (Color online) Gravitational mass versus radius relation-
ship for various scenarios described in the text. The black dots
represent maximum-mass stars and the colored bars represent
observed pulsar constraints.

relation between the extracted photospheric radius and the
actual radius of the star remains large. The results of Guillot
et al., namely, R = 9.1+1.3

−1.5 km (90% confidence), are based on
observations of five quiescent low-mass x-ray binaries (which
emit x rays only occasionally) under the assumption that the
radius is constant for a wide range of masses.

While the observations Refs. [52,53] provide constraints on
high-mass neutron stars, the observation of the double pulsar
J0737-3039 and its interpretation [56] offers a constraint on
the neutron star EoS in a region of central densities ∼2–3ρ0.
The constraint concerns the ratio between the gravitational and
baryonic mass of the star. The gravitational mass of pulsar B
is measured very precisely to be Mg = 1.249 ± 0.001M� and
the baryonic mass depends on the mode of its creation, which
can be modeled. If pulsar B was formed from a white dwarf
with an O-Ne-Mg core in an electron capture supernova, with
no or negligible loss of baryonic mass during the collapse,
the newly born pulsar should have the same baryonic mass
as the progenitor star. Podsiadlowski et al. [56] estimated
the baryonic mass of the pulsar B to be between 1.366
and 1.375M�. Another simulation of the same process, by
Kitaura et al. [57], gave a value for the baryonic mass of
1.360 ± 0.002M�. We show in Fig. 10 the QMC result, which
supports the model of Kitaura et al., accepting some small loss
of baryonic mass during the birth of pulsar B.

 1.235

 1.24

 1.245

 1.25

 1.255

 1.26

 1.345  1.35  1.355  1.36  1.365  1.37  1.375  1.38

G
ra

vi
ta

tio
na

l M
as

s 
[S

ol
ar

 M
as

s]

Baryonic Mass [Solar Mass]

Standard  
Eff. Proton Mass 

Λ = 1.1 
Λ = 2.0, gσYx1.9 

Dirac Only  
Hartree  

FIG. 10. (Color online) Gravitational mass versus baryonic
mass. The boxes are constraints from simulations (yellow) by Kitaura
et al. [57] and (orange) by Podsiadlowski et al. [56], which are
explained in the text.

F. Sensitivity to parameter variation

Our calculations for the Hartre-Fock QMC model follow
lines similar to those in Refs. [18–20] in that in each case an
approximation is made for the Fock terms. More specifically, in
our calculation of the Fock terms we omit energy transfer in the
meson propagator (meson retardation effects). We also omit
the modification of momenta because of the vector component
of the self-energy, which has been shown to be small in
Refs. [20] and [21]. We include the tensor interaction in the
Fock terms, with a common form factor, which has a dipole
form. The lowest mass, �, for that cutoff, which should be
larger than the masses of the mesons included, is 0.9 GeV.
This is taken as our standard or baseline scenario value for two
reasons.

(i) The incompressibility K0 rises as � is increased. In the
range � = 0.9–2.0 GeV, for the scenarios considered
K0 remains within the range 250 � K0 � 315 MeV,
which was the constraint derived in Ref. [33].

(ii) Increasing the form factor cutoff � effectively in-
creases the strength of the Fock terms, for which the ω
and ρ mesons contribute a significant attraction once
contact subtraction has been performed. To obtain the
saturation properties of SNM, one must compensate for
this additional attraction, resulting in a larger vector
coupling. If the vector couplings of the hyperons
are simply related to to the vector couplings of the
nucleons by Eq. (25), the results for the hyperon
optical potentials at saturation density in SNM are not
consistent with the values extracted from hypernuclear
experiments largely because of the change in the ratio
of the scalar to vector couplings.

We demonstrate the effect of changing the value of �
between 0.9 and 1.3 GeV in the subsequent scenarios (lines
2–5) in Table II, which differ from the standard one only by
the value of �. We observe a minor increase in K0 and L0,
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which both remain within the empirical expected range and an
increase in the maximum mass the the neutron star by ∼8%.

However, once the full Fock terms are included, the
results for the standard scenario, even with variable �, are
not consistent with values of the phenomenological hyperon
optical potentials extracted from experiments. This is because
of a change in the ratio of the scalar to vector coupling,
leaving effectively the � hyperon unbound. The additional
attraction generated by the Fock terms, especially the ρ tensor
contribution, has altered the coupling constants such that the
ω coupling is larger.

In the extreme scenario � = 2.0, gσY × 1.9 discussed in
Sec. III D, we meet both the constraints of phenomenological
hyperon optical potentials and high-mass neutron star obser-
vations.

In the scenarios Eff. Proton Mass, Eff. Proton Mass, � =
1.1, and Eff. Proton Mass + δσ (lines 11–13 of Table II)
the ratio of tensor to vector coupling is rescaled using the
effective proton mass in Eq. (14) as opposed to the free
proton mass. This is a simplified way to introduce a scalar
dependence into the Pauli term coupling. This substitution
effectively increases the strength of the Pauli term owing to
the reduction of the proton mass. The change in strength of the
tensor coupling has a significant impact on the composition. It
causes a significant increase in K0 as � takes on larger values.
Indeed, as we see in Table II, K0 rises above 311 MeV for �
greater than 1.1 GeV. Similar observations apply for the slope
of the symmetry energy at saturation density, L0. Because
of the increased vector coupling, the maximum mass of the
neutron star is significantly increased, but the hyperon optical
potentials remain at variance with expected values.

The contribution to the mean scalar field arising from the
Fock terms is incorporated in the cases denoted Fock δσ̄
and Eff. Proton Mass + δσ . When applied to neutron star
properties it negligibly increases the maximum mass in our
baseline scenario and increases it by a few percent when a
scalar dependence is introduced into the Pauli term to just
below 2M�.

The tensor couplings used in this work, arising from
the underlying MIT bag model, are consistent with vector
meson dominance (VDM) and hence our tensor couplings are
calculated from the experimental magnetic moments. Purely
as a test of the effect of a variation in those couplings we
arbitrarily took the ratios of tensor to vector couplings of all
baryons from the Nijmegen potentials (Table VII of Ref. [30]),
where there is a larger value of fρN/gρN = 5.7. These were
also used by Miyatsu et al. [21,26]. This variation, denoted
Increased fρN/gρN , produced an EoS for GBEM, which was
indistinguishable from our standard result.

In the scenarios Dirac only, Hartree only, and Nucleon
only, we show results of the QMC calculation with the
same parameters as the standard set but leaving out the
Pauli part of the Fock term, the full Fock term, and the
hyperons, respectively. These results are particularly useful
for understanding of the role of individual terms in the QMC
Lagrangian.

The last four scenarios in Table II document the effect
of changes in the value of the free nucleon radius and the
evaluation of the symmetry energy from the difference formula

Eq. (32) App. and from the second derivative the the energy
per particle S0 = 30.0. Neither effect changes significantly the
properties of GBEM matter and neutron stars.

G. Comparison with other models

The Hartree-Fock calculation in Ref. [24] differs consid-
erably from that presented here, as well as from that in
Refs. [21,26,58,59]. The first and major difference is that
the tensor interaction of the baryons is ignored, whereas in
Refs. [21,26,58,59] and in our work it is found to have a very
significant effect. A second difference among Ref. [24], our
work, and Refs. [21,26,58,59] is that in their preferred QMC
scenario (QMC-HF3) they artificially adjust a parameter, C,
which is related to the scalar polarizability, to obtain a lower
value for the incompressibility. This represents a dramatic
change in the model.

The masses of the baryons in the QMC model are
determined by the bag equations and the scalar coupling is
calculated directly from the density dependence of the baryon
mass in medium. Thus, changing C, or equivalently the scalar
polarizability, changes the mass and the density-dependent
coupling in a manner which is inconsistent with the traditional
form of the QMC model [16]. In this manner, the many-
body interaction is also being changed through the density-
dependent scalar coupling. Their QMC-HF3 variation gives an
incompressibility of K = 285 MeV and a very low prediction
for the maximum mass of neutron stars, M = 1.66M�. In
our Dirac-only variation we find a slightly larger value for
the incompressibility, K = 294 MeV with a maximum stellar
mass of M = 1.79M�. Other variations were considered in
Ref. [24], where they do not modify C: one where they
calculate fully relativistic Fock terms and another where they
make a nonrelativistic approximation to the Fock terms. These
variations both produce maximum masses of neutron stars of
M = 1.97M�.

References [21,26,58,59] carry out a relativistic calculation
in which they treat the Fock and Hartree terms on the same
level. More precisely they calculate self-energy contributions
arising from both terms and these self-energies modify the
baryon mass, momentum, and energy. They include the tensor
interaction, subtract contact terms, and consider two variations
of the bag model. In their first paper [21] they used much larger
values for the tensor couplings without form factors. In the later
paper [58] they include the effect of form factors, ignoring
effects of meson retardation (as we do) but with a lower cutoff
mass, i.e., � = 0.84 GeV. The latter had the effect of keeping
the incompressibility from being too large. Their conclusions
are very similar to our own, in that they find that the tensor
terms provide a source of attraction and that overall the Fock
terms enhance the maximum neutron star mass.

The maximum stellar masses in their first paper [21] are
larger than those in their second paper [58], almost certainly
because the inclusion of the form factor decreases the effect
of the Fock term at high density. They consider two variations
of the QMC model: one with, and one without the pion
contribution in the bag (CQMC), which tends to give a
slightly stiffer EoS, because of its effect on the baryon masses.
For QMC they obtain M = 1.86M�, R = 11.2 km, and for
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CQMC M = 1.93M�, R = 11.5 km for the maximum stellar
mass solutions. Despite the differences in how we handle the
Fock terms and their use of larger tensor couplings and more
phenomenological hyperon couplings, we are led to the same
conclusions about the importance of the tensor contribution.
We also find a very similar particle content in scenarios where
the Fock terms are quite strong, such as the Eff. Proton Mass
and � = 2.0, gσY × 1.9 scenarios, where the − is the first
hyperon to appear.

IV. DISCUSSION

To treat the EoS of matter at the densities typical of neutron
stars one must treat the motion of the baryons relativistically.
The QMC model not only does that but it self-consistently
treats the in-medium changes in baryon structure induced by
the large scalar mean fields generated in such matter. As we
have explained, those changes, which may be represented
by the corresponding scalar polarizabilities, lead naturally
to predictions for the three-body forces between not just the
nucleons but the nucleons and hyperons as well as hyperons,
without additional parameters. This widely used approach has
been extended here to include the effect of Fock terms arising
from the tensor (or Pauli) couplings of the baryons to vector
mesons, especially the ρ.

The results for a comprehensive set of nuclear matter prop-
erties, including K0, L0, Ksym, Q0, and Kτ,v have been studied
in detail. The model prediction for the incompressibility lies
within the range extracted from experimental data for most
model variations considered. While the incompressibility is
increased by this addition in some cases and tends to lie
at the mid to top end of the acceptable range, it serves
as a useful constraint on the additional mass parameter, �,
associated with the form factor that appears at the meson-
baryon vertices (the latter only being needed when the Fock
terms are computed). The modest variation of the nuclear
matter observables with this parameter (which must lie above
the masses of the exchanged mesons included in the theory) is
illustrated in Table II. Increasing � beyond 0.9 GeV raises the
incompressibility and in the case denoted Eff. Proton Mass,
� = 1.1 GeV it is close to the limit K0 < 315 MeV.

The symmetry energy and its slope are noticeably influ-
enced by the Fock terms; specifically, curvature is introduced
into these quantities through the tensor interaction, as can
be seen in Fig. 4. At saturation density we find in all cases
that the isospin incompressibility is within accepted constraint
limits and while the slope of the symmetry energy is on the
larger side, it does lie within the broad limits reported by
Tsang et al. [38].

It is interesting to note that there is a satisfying level of
consistency between theoretical predictions of N3LO chiral
effective field theory and the QMC model results studied here
for densities of PNM up to and around nuclear matter density.
Above saturation density a slightly higher energy per particle
as a function of density is found here. It is also found that the
natural incorporation of many-body forces in the QMC model
tends to produce a somewhat stiffer PNM EoS above saturation
density than other models including three-body forces.

Even at densities above three times nuclear matter density,
the nucleon Fock terms are found to contribute significantly to
the EoS and the corresponding attraction is what is responsible
for the increased pressure and larger maximum stellar masses
in several scenarios. This can be seen in Fig. 9, where there is a
clear transition from a Hartree QMC calculation to a Hartree-
Fock calculation with no tensor interaction (Dirac-only; no
Pauli term), to our Eff. Proton Mass calculation [Dirac and
Pauli (with scalar dependence) terms]. In these three variations,
and those with increasing form factor mass, �, the maximum
stellar mass increases because of the increased vector coupling
and pressure coming from the Fock terms. This increased
pressure arises mainly from the ρ meson contribution. As we
can readily see in Table II and Fig. 9, the value of � cannot
be varied far in the Eff. Proton Mass calculations. Indeed, in
that case, the incompressibility is already as high as it can be.
The maximum neutron star mass, for our Standard scenario is
approximately the same as the Dirac only scenario because of
the change in composition, where in the latter the appearance
of �− is avoided and only the � and − followed by the
0 appear. Even with the brief appearance of an additional
hyperon in our baseline scenario, the value of Mmax is still
slightly larger because of the tensor interaction. We see that
the maximum neutron star mass, for the case of nuclear matter
in β equilibrium where hyperons must appear, lies in the range
1.80 to 2.07M�.

The EoS and the maximum masses of the corresponding
neutron stars are insensitive to the choice of the larger ρ
tensor couplings used, for example, by Miyatsu et al. [21].
Similarly, modest variations in the radius of the free nucleon
have only very minor effects on these quantities. Finally,
we note that the correction (δσ̄ ) to the scalar mean field
arising from the Fock terms has a negligible effect on the
incompressibility in our baseline scenario. On inclusion of a
naive scalar dependence into the Pauli term it decreases the
incompressibility by 12 MeV, yet other observables remain
largely unaltered by this addition.

This, plus the dependence of the incompressibility and
maximum mass on �, leads us to conclude that the Hartree-
Fock model used here with only σ , ω, ρ, and π mesons can
only reproduce nuclear matter properties, phenomenological
hypernuclear optical potentials, and massive neutron star
observations if there is significant rescaling of the hyperon
coupling constants. Allowing for the rescaling of hyperon
couplings, we conclude that the maximum mass allowed in
the model lies in the range 1.8–2.1M�.

It is the treatment of the lightest mesons that is the
most important, and the inclusion of heavier mesons would
necessarily be more model dependent. For this reason, in
this work we have restricted ourselves to just σ , ω, ρ, and
π mesons. The model could be extended to include mesons
containing strange quarks, of which the next lightest mesons
are K(495) and K∗(895). These mesons will induce mixing in
the baryon octet, possibly changing the composition of matter
in generalized β equilibrium. These mesons will be studied in
a future work. Heavier mesons such as the hidden strangeness
vector meson φ(1020) have been considered in other works
(Refs. [60,61]), which have found that they can produce extra
vector repulsion delaying the onset of hyperons. It should
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be noted that with every new meson that is included more
parameters must be introduced into the model.

For the matter considered in the present paper we take
the view that hadrons remain the relevant degrees of freedom.
Transitions to quark matter have been studied by many authors;
see Refs. [62–64] for recent accounts. Such a transition may
indeed be possible in the interior of neutron stars. We will
investigate such a transition in a future work.

We stress that the QMC model does not predict a significant
abundance of � hyperons at any density where the model
can be considered realistic and they are completely absent
in model variations compatible with large neutron star mass
observations. This is in contrast to a number of other relativistic
models which do predict the � threshold to occur, even
prior to that of the � [65,66]. We note that Schaffner-
Bielich [65] considered a phenomenological modification of
the � potential with additional repulsion, which significantly
raised its threshold density. In the case of the QMC model
the physical explanation of the absence of � hyperons is very
natural, with the mean scalar field enhancing the repulsive
hyperfine force for the in-medium � (recall that the hyperfine
splitting, which arises from OGE, determines the free �-�
mass splitting in the MIT bag model).

Purely for comparison purposes, we also include a nucleon-
only scenario, in which hyperons are artificially excluded. In
this case the EoS is increasingly stiffer at densities above
0.4 fm−3, leading to a large maximum stellar mass of 2.10M�,
consistent with many other nucleon-only models.

It is worth remarking that upon inclusion of the tensor
coupling, the proton fraction increases more rapidly as a
function of total baryon density. This is likely to increase
the probability of the direct Urca cooling process in pro-
toneutron stars. As a further consequence, the maximum
electron chemical potential is increased in this case, which
may well influence the production of π− and K̄ condensates.
Changes to the � threshold (it occurs at higher density with
lower maximum species fraction) reduce the possibility of
H-dibaryon production as constrained by β-equilibrium of the
chemical potentials.

In summary, taking into account the full tensor structure
of the vector-meson-baryon couplings in a Hartree-Fock
treatment of the QMC model results in increased pressure
at high density—largely because of the ρN tensor coupling—
while maintaining reasonable values of the incompressibility
at saturation density. The conceptual separation between the
incompressibility at saturation density and the slope of the
symmetry energy or “stiffness” at higher densities is critical.
It is the latter that leads to neutron stars with maximum masses
ranging from 1.8M� to 2.1M�, even when allowance is made
for the appearance of hyperons. This suggests that hyperons
are very likely to play a vital role as constituents of neutron
stars with central densities above three times nuclear matter
density.
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APPENDIX

The integrands take the following form for B = B ′:

σ
B = 1

2

[gσBCB(σ̄ )Fσ (k2)]2

E∗(p′)E∗(p)

× {
M∗2

B + E∗(p′)E∗(p) − p′ · p
}
�σ (k). (A1)

Here for the vector meson integrands we denote η = ω,ρ,


ηV
B = −

[
gηBF

η
1 (k2)

]2

E∗(p′)E∗(p)

× {
2M∗2

B − E∗(p′)E∗(p) + p′ · p
}
�η(k), (A2)


ηV T
B = (gηB)2κηBF

η
1 (k2)Fη

2 (k2)

.

{−3M∗2
B + 3E∗(p′)E∗(p) − 3p′ · p

E∗(p′)E∗(p)

}
�η(k),

(A3)


ηT
B = −

[
gηBκηBF

η
2 (k2)

]2

E∗(p′)E∗(p)

·
{[

5M∗2
B − E∗(p′)E∗(p) + p′ · p

]
4M∗2

B

·[M∗2
B − E∗(p′)E∗(p) + p′ · p

]}
�η(k), (A4)

and for the pion

π
B = −

2M∗2
B

[
gA

2fπ
Fπ (k2)

]2

E∗(p)E∗(p′)

× {
M∗2

B − E∗(p)E∗(p′) + p′ · p
}
�π (k), (A5)

where E∗( �p) =
√

�p 2 + M∗2
B . In the above integrands we

expand the terms in the braces multiplied by the propagator to
isolate the momentum-independent pieces and multiply these
contact terms by the variable ξ , which we use to investigate
the consequences of contact subtraction. We emphasize here
the importance of subtraction of the momentum-independent
piece, which when transformed to configuration space cor-
responds to a δ function. In this manner our subtraction is
implemented by the variable ξ , such that δ(�r) �→ ξ × δ(�r).
The removal of the contact terms is a common procedure
owing to the fact that these contact terms represent very
short-range, effectively zero-range, correlations between the
baryons, which is not consistent in this model, which treats
the baryons as clusters of quarks and not as pointlike objects.
We give this explicitly for the vector-vector piece of the vector
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mesons:

2M∗2
B − E∗(p′)E∗(p) + �p′ · �p

�k2 + m2
η

= 2M∗2
B − p′ · p

�k2 + m2
η

� M∗2
B − �k2

2

�k2 + m2
η

= M∗2
B

�k2 + m2
η

− 1

2

�k2

�k2 + m2
η

= M∗2
B + m2

η/2

�k2 + m2
η

− 1

2
ξ. (A6)

The remaining subtractions follow in the same manner.
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