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Background: A model-independent formulation of weakly interacting massive particle (WIMP)-nucleon
scattering was recently developed in Galilean-invariant effective field theory.
Purpose: Here we complete the embedding of this effective interaction in the nucleus, constructing the most
general elastic nuclear cross section as a factorized product of WIMP and nuclear response functions. This form
explicitly defines what can and cannot be learned about the low-energy constants of the effective theory—and
consequently about candidate ultraviolet theories of dark matter—from elastic scattering experiments.
Results: We identify those interactions that cannot be reliably treated in a spin-independent/spin-dependent
(SI/SD) formulation: For derivative- or velocity-dependent couplings, the SI/SD formulation generally
mischaracterizes the relevant nuclear operator and its multipolarity (e.g., scalar or vector) and greatly
underestimates experimental sensitivities. This can lead to apparent conflicts between experiments when, in
fact, none may exist. The new nuclear responses appearing in the factorized cross section are related to familiar
electroweak nuclear operators such as angular momentum �l(i) and the spin-orbit coupling �σ (i) · �l(i).
Conclusions: To unambiguously interpret experiments and to extract all of the available information on the
particle physics of dark matter, experimentalists will need to (1) do a sufficient number of experiments with
nuclear targets having the requisite sensitivities to the various operators and (2) analyze the results in a formalism
that does not arbitrarily limit the candidate operators. In an appendix we describe a code that is available to help
interested readers implement such an analysis.
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I. INTRODUCTION

Despite the many successes of the Lambda Cold Dark
Matter (�CDM) cosmological model in predicting the macro-
scopic behavior of dark matter, attempts at an experimentally
significant direct detection of the dark-matter particle have
been unsuccessful and its fundamental nature remains un-
certain [1,2]. A promising candidate is a weakly interacting
massive particle (WIMP) that interacts with standard-model
particles through a cross section that is suppressed com-
pared to standard electromagnetic interactions. The challenges
associated with observing such a particle notwithstanding,
experimental techniques are advancing at a rapid pace, and
expectations are high that a definitive measurement of dark-
matter interactions is imminent.

In “direct-detection” experiments, an important class of
dark-matter searches, the signals are recoil events following
WIMP elastic scattering off target nuclei [3–5]. Many models
predict rates for such events consistent with the sensitivities
some experiments are now reaching. Most models of WIMPs
invoke new physics, such as supersymmetry or extra dimen-
sions, associated with electroweak symmetry breaking, where
new phenomena can appear at scales that, from a particle-
physics perspective, are quite low, e.g., �100 GeV. However,
the momentum transfer in direct detections is still far lower,
typically a few hundred MeV or less. Consequently, effective
field theory (EFT) provides a general and very efficient way to
characterize experiment results: Regardless of the complexity
or variety of candidate ultraviolet theories of dark matter, their
low-energy consequences can be encoded in a small set of
parameters, such as the mass of the WIMP and the effective

coupling constants describing the strength of the contact cou-
pling of the WIMP to the nucleon or nucleus. The information
that can be extracted from low-energy experiments can be ex-
pressed as constraints on the low-energy constants of the EFT.

The WIMP-nucleon scattering is typically treated by
modeling the nucleus as a point particle, characterized by a
charge and spin, with the charge and spin couplings sometimes
allowed to be isospin dependent. This yields the standard
spin-independent/spin-dependent (SI/SD) description of the
scattering [3,6,7]. Because the momentum transfer in the
scattering is large compared to the inverse nuclear size, form
factors are generally included. As we discuss here, however,
this step is not sufficient: Once momentum transfers reach
the point where �q · �x(i), where �x(i) is the nucleon coordinate
within the nucleus, is no longer small, not only form factors,
but new operators arise. These new operators turn out to be
parametrically enhanced for a large class of EFT interactions.

The Galilean-invariant EFT we describe below provides a
particularly attractive framework for properly treating dark-
matter particle scattering. The procedure yields two effective
theories, the first at the level of the WIMP-nucleon scattering
amplitude, and the second at the nuclear level, because the
embedding of the WIMP-nucleon effective interaction in the
nucleus generates the most general form of the elastic nuclear
response. Six response functions—not the two conventionally
assumed—are produced.

(i) The new responses typically dominate the elastic cross
section for candidate interactions involving veloc-
ity couplings. The standard SI/SD treatment yields
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amplitudes for such couplings on the order of the
WIMP velocity, ∼10−3. In fact, the amplitude is deter-
mined by the velocities of bound nucleons, typically
∼10−1.

(ii) In such cases the standard analysis also incorrectly
predicts the dependence of the cross section on WIMP
and nuclear target masses and even mischaracterizes
the multipolarity of the scattering. That is, an interac-
tion that in the point-nucleus limit appears to be vector,
with amplitude proportional to matrix elements of �σ (i),
may instead produce a much larger scalar response
associated with the composite operator �σ (i) · �l(i).
Thus, a J = 0 nuclear target may be highly sensitive
to a given interaction, not blind to it.

The nuclear physics treatment presented here follows standard
treatments of semileptonic electroweak interactions. The
operators that arise in a more complete treatment of WIMP-
nucleus scattering also appear in descriptions, for example, of
neutrino-nucleus scattering.

The enlarged set of nuclear responses that emerges from
a model-independent analysis has important experimental
consequences. The EFT analysis shows that elastic scattering
can place several new constraints on dark-matter properties,
in addition to the two apparent from the conventional SI/SD
treatment, provided enough experiments are done. One can
successfully turn the nuclear physics “knobs”—the nuclear
responses—to determine these constraints by utilizing target
nuclei with the requisite ground-state properties. The EFT
analysis also shows other ways candidate interactions can be
distinguished, e.g., through the nuclear recoil spectrum (which
may depend on the v0, v2, and v4 moments of the WIMP
velocity distribution) or through the dependence on the mass
of the nucleus used in the target.

The basis for our formulation is the description of the
WIMP-nucleon interaction in Ref. [8] which, building on
the work of Ref. [9], used nonrelativistic EFT to find the
most general low-energy form of that interaction. While
nuclear calculations were performed in Ref. [8], they were
based on a form of the cross section that entangled the
unknown particle physics (the WIMP-nucleon couplings) with
the nuclear physics. In contrast, here we present a compact
and rather elegant form for the WIMP-nucleus elastic cross
section as a product of WIMP and nuclear responses. The
particle physics is isolated in the former. This expression
defines precisely what can and cannot be learned about the
EFT’s low-energy constants, and consequently the ultraviolet
theories that generate those constants, from WIMP-nucleus
elastic scattering. It also defines what experimentalists will
need to do, in terms of the number of experiments performed
and the properties of the nuclear targets they employ, to extract
all possible information on the WIMP-matter interaction from
elastic scattering.

This paper is organized as follows. In Sec. II we describe
the EFT construction of the general WIMP-nucleon Galilean-
invariant interaction, including the parametric enhancement
of velocity-dependent operators. Relativistic matching to
EFT operators is illustrated, using the most general four-
fermion interaction. In Sec. III we describe the embedding

of this interaction in nuclei. The EFT scattering probability
is governed by six nuclear response functions, assuming the
nuclear ground state has good parity and CP. We point out
the differences between our results, the corresponding EFT
cross section in which the finite size of the nucleus is ignored,
and the simple SI/SD limit, where only two of the EFT
operators are retained. In Sec. IV we present differential
and total cross sections and discuss for each of the EFT
operators the consequences of taking the allowed limit (thereby
reducing the nuclear operators to the SI and SD ones). The
concluding Sec. V discusses the implications of our work
for experimental searches. We discuss problems that could
arise if future search strategies are predicated on treatments of
the cross section that exclude plausible operators. Given our
ignorance of the WIMP-nucleon interaction, we emphasize
the need for a variety experiments using nuclei with the
requisite sensitivities. In Appendix A we provide more details
on the treatment of velocity-dependent interactions and on
the multipole analysis that leads to the general cross section.
In Appendix B we describe a Mathematica script that we
developed to help experimentalists implement the formalism
presented here. In addition to its use as an experimental
analysis tool, particle and nuclear theorists can use the script
to explore the consequences of a specific ultraviolet theory or
the implications of new nuclear structure calculations.

II. EFFECTIVE FIELD THEORY CONSTRUCTION OF
THE INTERACTION

The idea behind EFT in dark-matter scattering is to follow
the usual EFT “recipe,” but in a nonrelativistic context, by
writing down the relevant operators that obey all of the
nonrelativistic symmetries. In the case of elastic scattering
of a heavy WIMP off a nucleon, the Lagrangian density will
have the contact form

Lint(�x) = c�∗
χ (�x)Oχ�χ (�x)�∗

N (�x)ON�N (�x), (1)

where the �(�x) are nonrelativistic fields and where the WIMP
and nucleon operators Oχ and ON may have vector indices.
The properties ofOχ andON are then constrained by imposing
relevant symmetries. We envision the case where there are
a number of candidate interactions Oi formed from the Oχ

and ON . Working to second order in the momenta, one can
construct the relevant operators appropriate for use with Pauli
spinors, when constructing the Galilean-invariant amplitude,

N∑
i=1

(
c

(n)
i O(n)

i + c
(p)
i O(p)

i

)
, (2)

where the coupling coefficients ci may be different for proton
and neutrons. The number N of such operators depends on
the generality of the particle-physics description. We find that
ten operators arise if we limit our consideration to exchanges
involving up to spin-1 exchanges and to operators that are the
leading-order nonrelativistic analogs of relativistic operators.
Four additional operators arise if more general mediators are
allowed.

This interaction can then be embedded in the nucleus. The
procedure we follow here—though we discuss generalizations
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in Appendix B–assumes that the nuclear interaction is the
sum of the WIMP interactions with the individual nucleons in
the nucleus. The nuclear operators then involve a convolution
of the Oi , whose momenta must now be treated as local
operators appropriate for bound nucleons, with the plane wave
associated with the WIMP scattering, which is an angular
and radial operator that can be decomposed with standard
spherical harmonic methods. Because momentum transfers
are typically comparable to the inverse nuclear size, it is
crucial to carry through such a multipole decomposition to
identify the nuclear responses associated with the various
cis. The scattering probability is given by the square of the
(Galilean) invariant amplitude M, a product of WIMP and
nuclear matrix elements, averaged over initial WIMP and
nuclear magnetic quantum numbers Mχ and MN , and summed
over final magnetic quantum numbers.

The result can be organized in a way that factorizes the
particle and nuclear physics

1

2jχ + 1

1

2jN + 1

∑
spins

|M|2

≡
∑

k

∑
τ=0,1

∑
τ ′=0,1

Rk

(
�v⊥2
T ,

�q 2

m2
N

,
{
cτ
i c

τ ′
j

})
Wττ ′

k (�q 2b2),

(3)

where the sum extends over products of WIMP response
functions Rk and nuclear response functions Wk . The Rk isolate
the particle physics: They depend on specific combinations of
bilinears in the low-energy constants of the EFT—the 2N
coefficients of Eq. (2)—here labeled by isospin τ (isoscalar,
isovector) rather than the n,p of Eq. (2) (see below). The
WIMP response functions also depend on the relative WIMP-
target velocity �v⊥

T and three-momentum transfer �q = �p ′ −
�p = �k − �k′, where �p ( �p ′) is the incoming (outgoing) WIMP
three-momentum and �k (�k′) the incoming (outgoing) nucleon
three-momentum. The nuclear response functions Wk can be
varied by experimentalists if they explore a variety of nuclear
targets. The Wk are functions of y ≡ (qb/2)2, where b is the
nuclear size (explicitly the harmonic oscillator parameter if
the nuclear wave functions are expanded in that single-particle
basis).

EFT provides an attractive framework for analyzing and
comparing direct-detection experiments. It simplifies the anal-
ysis of WIMP-matter interactions by exploiting an important
small parameter: Typical velocities of the particles comprising
the dark-matter halo are v/c ∼ 10−3 and thus nonrelativistic.
Consequently, while there may be a semi-infinite number of
candidate ultraviolet theories of WIMP-matter interactions,
many of these theories are operationally indistinguishable at
low energies. By organizing the EFT in terms of nonrelativistic
interactions and degrees of freedom, one can significantly
simplify the classification of possible operators [8,9], while
not sacrificing generality. In constructing the needed set of
independent operators, the equations of motion are employed
to remove redundant operators. The operators themselves are
expressed in terms of quantities that are more directly related
to scattering observables at the relevant energy scale, which

makes the relationship between operators and the underlying
physics more transparent. Furthermore, it becomes trivial to
write operators for arbitrary dark-matter spin, a task that can
be rather involved in the relativistic case.

EFT also prevents oversimplification: Because it produces
a complete set of effective interactions at low energy, one
is guaranteed that the description is general. Provided this
interaction is then embedded in the nucleus faithfully, it will
then produce the most general nuclear response consistent
with the assumed symmetries. Consequently, some very basic
questions that do not appear to be answered in the literature
can be immediately addressed. How many constraints on
dark-matter particle interactions can be obtained from elastic
scattering? Conversely, what redundancies exist among the
EFT’s low-energy constants that cannot be resolved, regardless
of the number of elastic-scattering experiments that are done?

A. Constructing the nonrelativistic operators

Because dark-matter–ordinary-matter interactions are more
commonly described in relativistic notation, we begin by
considering the nonrelativistic reduction of two familiar
relativistic interactions. The SI contact interaction between
a spin- 1

2 WIMP and nucleon,

LSI
int(�x) = c1�̄χ (�x)�χ (�x)�̄N (�x)�N (�x), (4)

can be reduced by replacing the spinors within the fields by
their low-momentum forms,

U (p) =
√

E + m

2m

(
ξ

�σ · �p
E+mχ

ξ

)
∼

(
ξ

�σ · �p
2m

ξ

)
, (5)

where we have used Bjorken and Drell γ matrix conventions
and spinor normalization (1 instead of the 2m used in Ref. [8]).
(Consequently, the c’s defined here, which carry dimensions
of 1/mass2, differ from those of Ref. [8].) To leading order in
p/mχ and p/mN , we obtain the nonrelativistic operator

c11χ1N ≡ c1O1. (6)

The nonrelativistic analog of the invariant amplitude is
obtained by taking the matrix element of this operator between
Pauli spinors ξχ and ξN . In the nonrelativistic reduction of the
SD interaction,

LSD
int = c4χ̄γ μγ 5χN̄γμγ 5N, (7)

the leading term comes from the spatial components, with
χ̄γ iγ 5χ ∼ ξ †

χσ iξχ . As σ i = 2Si , we obtain the nonrelativistic
operator

− 4c4 �Sχ · �SN ≡ −4c4O4. (8)

Equations (6) and (8) correspond to the SI and SD operators
frequently used in experimental analyses.

One could continue in this manner, constructing all possible
relativistic interactions and considering their nonrelativistic
reductions. However, this is unnecessary, as the nonrelativistic
EFT can be constructed directly from the available operators
and momenta, as a systematic expansion. These include 1χ and
1N , the three-vectors �Sχ and �SN , and the momenta of the WIMP
and nucleon. Of the four momenta involved in the scattering
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(two incoming and two outgoing), only two combinations are
physically relevant owing to inertial frame-independence and
momentum conservation. It is convenient to work with the
frame-invariant quantities, the momentum transfer �q and the
WIMP-nucleon relative velocity,

�v ≡ �vχ,in − �vN,in. (9)

It is also useful to construct the related quantity

�v⊥ = �v + �q
2μN

= 1

2
(�vχ,in + �vχ,out − �vN,in − �vN,out)

= 1

2

(
�p

mχ

+ �p ′

mχ

−
�k

mN

−
�k ′

mN

)
, (10)

which satisfies �v⊥ · �q = 0 as a consequence of energy conser-
vation. Here μN is the WIMP-nucleon reduced mass. It was
shown in Ref. [8] that operators are guaranteed to be Hermitian
if they are built out of the following four three-vectors:

i
�q

mN

, �v⊥, �Sχ, �SN. (11)

Here (in another departure from Ref. [8]) we have introduced
mN as a convenient scale to render �q/mN and the constructed
Oi dimensionless: The choice of this scale is not arbitrary, as
it leads to an EFT power counting in nuclei that is particularly
simple, as we discuss in Secs. II B and IV B. The relevant
interactions that we can construct from these three-vectors
and that can be associated with interactions involving only
spin-0 or spin-1 mediators are

O1 = 1χ1N,

O2 = (v⊥)2,

O3 = i �SN ·
( �q

mN

× �v⊥
)

,

O4 = �Sχ · �SN,

O5 = i �Sχ ·
( �q

mN

× �v⊥
)

,

O6 =
(

�Sχ · �q
mN

)(
�SN · �q

mN

)
, (12)

O7 = �SN · �v⊥,

O8 = �Sχ · �v⊥,

O9 = i �Sχ ·
(

�SN × �q
mN

)
,

O10 = i �SN · �q
mN

,

O11 = i �Sχ · �q
mN

.

These 11 operators were discussed in Ref. [8]. We retain 10 of
these here, discarding O2, as this operator cannot be obtained
from the leading-order nonrelativistic reduction of a manifestly
relativistic operator (see, e.g., Table I of Sec. II C).

We classify these operators as leading order (LO), next-
to-leading order (NLO), and next-to-next-to-leading order
(N2LO), depending on the total number of momenta and
velocities they contain. We see in Sec. IV B that these
designations correspond to total cross sections that scale as
v0

T , v2
T , or v4

T , where vT is the WIMP velocity in the laboratory
frame.

In addition, one can construct the following operators that
do not arise for traditional spin-0 or spin-1 mediators

O12 = �Sχ · (�SN × �v⊥),

O13 = i(�Sχ · �v⊥)

(
�SN · �q

mN

)
,

O14 = i

(
�Sχ · �q

mN

)
(�SN · �v⊥), (13)

O15 = −
(

�Sχ · �q
mN

)[
(�SN × �v⊥) · �q

mN

]
,

O16 = −
[

(�Sχ × �v⊥) · �q
mN

](
�SN · �q

mN

)
.

It is easy to see that O16 is linearly dependent on O12 and O15,

O16 = O15 + �q 2

m2
N

O12, (14)

and so should be eliminated. OperatorO15 is cubic in velocities
and momenta, generating a total cross section of order v6

(N3LO). It is retained because it arises as the leading-order
nonrelativistic limit of certain covariant interactions (see
Sec. II C).

Each operator can have distinct couplings to protons and
neutrons. Thus, the EFT interaction we employ in this paper
takes the form

∑
α=n,p

15∑
i=1

cα
i Oα

i , cα
2 ≡ 0. (15)

One can factorize the space-spin and proton/neutron compo-
nents of Eq. (15) by introducing isospin, which is also useful
as an approximate symmetry of the nuclear wave functions.
Thus, an equivalent form for our interaction is

15∑
i=1

(
c0
i 1 + c1

i τ3
)Oi =

∑
τ=0,1

15∑
i=1

cτ
i Oi t

τ , cτ
2 ≡ 0, (16)

where c0
i = 1

2 (cp
i + cn

i ) and c1
i = 1

2 (cp
i − cn

i ). The isospin
states are

|p〉 =
(

1
0

)
|n〉 =

(
0
1

)
, (17)

while the isospin operators are

t0 ≡ 1 =
(

1 0
0 1

)
t1 ≡ τ3 =

(
1 0
0 −1

)
. (18)

The EFT has a total of 28 parameters, associated with 14
space-spin operators each of which can have distinct couplings
to protons and neutrons. If we exclude operators that are
not associated with spin-0 or spin-1 mediators, 10 space-spin
operators and 20 couplings remain.
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TABLE I. Relativistic amplitudes, their nonrelativistic analogs appropriate for evaluation between Paul spinors, the corresponding results
as linear combinations of the Oi , and the transformation properties of the interactions [even (E) or odd (O)] under parity and time reversal.
Bjorken and Drell spinor and γ matrix conventions are used. The scale mM, which appears as an arbitrary normalization below to ensure that
kinematic factors are dimensionless, would usually be known from the context of the theory.

j Lj
int Nonrelativistic reduction

∑
i ciOi P/T

1 χ̄χN̄N 1χ 1N O1 E/E

2 iχ̄χN̄γ 5N i �q
mN

· �SN O10 O/O

3 iχ̄γ 5χN̄N −i �q
mχ

· �Sχ −mN

mχ
O11 O/O

4 χ̄γ 5χN̄γ 5N − �q
mχ

· �Sχ
�q

mN
· �SN −mN

mχ
O6 E/E

5 χ̄γ μχN̄γμN 1χ 1N O1 E/E

6 χ̄γ μχN̄iσμα
qα

mM
N �q 2

2mN mM
1χ 1N + 2

( �q
mχ

× �Sχ + i�v⊥) · ( �q
mM

× �SN

) �q 2

2mN mM
O1−2

mN
mM

O3

+2
m2

N
mMmχ

(
q2

m2
N

O4−O6

) E/E

7 χ̄γ μχN̄γμγ 5N −2�SN · �v⊥ + 2
mχ

i �Sχ · (�SN × �q) −2O7 + 2 mN

mχ
O9 O/E

8 iχ̄γ μχN̄iσμα
qα

mM
γ 5N 2i �q

mM
· �SN 2 mN

mM
O10 O/O

9 χ̄ iσμν qν

mM
χN̄γμN − �q 2

2mχ mM
1χ 1N − 2

( �q
mN

× �SN + i�v⊥) · ( �q
mM

× �Sχ

) − �q 2

2mχ mM
O1+ 2mN

mM
O5

−2
mN
mM

( �q 2

m2
N

O4−O6

) E/E

10 χ̄ iσμν qν

mM
χN̄iσμα

qα

mM
N 4

( �q
mM

× �Sχ

) · ( �q
mM

× �SN

)
4
( �q 2

m2
M
O4 − m2

N

m2
M
O6

)
E/E

11 χ̄ iσμν qν

mM
χN̄γ μγ 5N 4i

( �q
mM

× �Sχ

) · �SN 4 mN

mM
O9 O/E

12 iχ̄ iσμν qν

mM
χN̄iσμα

qα

mM
γ 5N −[

i �q 2

mχ mM
− 4�v⊥ · ( �q

mM
× �Sχ

)] �q
mM

· �SN −mN

mχ

�q 2

m2
M
O10 − 4 �q 2

m2
M
O12 − 4

m2
N

m2
M
O15 O/O

13 χ̄γ μγ 5χN̄γμN 2�v⊥ · �Sχ + 2i �Sχ · (�SN × �q
mN

)
2O8 + 2O9 O/E

14 χ̄γ μγ 5χN̄iσμα
qα

mM
N 4i �Sχ · ( �q

mM
× �SN

) −4 mN

mM
O9 O/E

15 χ̄γ μγ 5χN̄γ μγ 5N −4�Sχ · �SN −4O4 E/E

16 iχ̄γ μγ 5χN̄iσμα
qα

mM
γ 5N 4i�v⊥ · �Sχ

�q
mM

· �SN 4 mN

mM
O13 E/O

17 iχ̄ iσμν qν

mM
γ 5χN̄γμN 2i �q

mM
· �Sχ 2 mN

mM
O11 O/O

18 iχ̄ iσμν qν

mM
γ 5χN̄iσμα

qα

mM
N �q

mM
· �Sχ

[
i �q 2

mN mM
− 4�v⊥ · ( �q

mM
× �SN

)] �q 2

m2
M
O11 + 4

m2
N

m2
M
O15 O/O

19 iχ̄ iσμν qν

mM
γ 5χN̄γμγ 5N −4i �q

mM
· �Sχ �v⊥ · �SN −4 mN

mM
O14 E/O

20 iχ̄ iσμν qν

mM
γ 5χN̄iσμα

qα

mM
γ 5N 4 �q

mM
· �Sχ

�q
mM

· �SN 4
m2

N

m2
M
O6 E/E

As WIMP searches are motivated in part by the “WIMP
miracle”—WIMPs will naturally freeze-out in the early uni-
verse, when their annihilation rate falls behind the expansion
rate, to produce a relic density today consistent with the dark-
matter density—it is convenient to express the coefficients ci

in weak-scale units. O4 is related by an isospin rotation to the
charge-changing weak axial or Gamow-Teller operator of the
standard model,

c4O4t
1 ≡ c4O4τ3 → GF√

2
O4τ±, (19)

where GF ∼ 1.166 × 10−5 GeV−2 is the Fermi constant and
τ± is the isospin raising or lowering operator. GF defines a
standard-model weak interaction mass scale,

mv ≡ 〈v〉 = (2GF )−1/2 = 246.2 GeV, (20)

where 〈v〉 is the Higgs vacuum expectation value. Conse-
quently, it is natural to characterize experimental constraints
on a given ci in terms of this normalization, that is, in terms
of the dimensionless quantity c̃i , where ci = c̃i/m2

v . This

normalization is employed in the Mathematica script discussed
in Appendix B.

B. EFT power counting and �q/mN : Parametric enhancement

The EFT formulation leads to an attractive power counting
that is helpful in understanding the dependence of laboratory
total cross sections on the physically relevant parameters: the
WIMP velocity �v⊥

T , the ratio of the WIMP-nuclear target
reduced mass μT to mN , and the ratio of μT to the inverse
nuclear size. The scaling behavior we discuss in Sec. IV B takes
on a simple form if mN is used to construct the dimensionless
quantity �q/mN , a parameter related to the relative velocities
of nucleons bound in the nucleus, as explained below. The fact
that internucleon velocities are much greater than the WIMP
velocity leads to a parametric enhancement of the certain
“composite operator” contributions to cross sections.

The introduction of the scale mN would be arbitrary if we
limit ourselves to WIMP-nucleon scattering. Any other choice
would simply lead to the same scaling of the total cross section
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on μT /mN , but with the mN in the denominator replaced with
that new scale. There is a single relative velocity �v⊥

T in the
WIMP-nucleon system, associated with the Jacobi coordinate,
the distance between the WIMP and the nucleon.

However, in a system consisting of a WIMP and a
nucleus containing A nucleons, there are A independent
Jacobi coordinates, and A associated independent velocities.
Any WIMP-nucleon velocity-dependent interaction summed
over the nucleons in a nucleus must, of course, involve all
of these velocities. One of these can be chosen to be the
WIMP-target relative velocity, measured with respect to the
center of mass of the nucleus, or �v⊥

T , the analog of the
single WIMP-nucleon velocity. However, in addition to this
velocity, there are A − 1 others associated with the A − 1
independent Jacobi internucleon coordinates. These velocities
are Galilean-invariant intrinsic nuclear operators.

An internal velocity carries negative parity, and thus its
nuclear matrix element vanishes owing to the nearly exact
parity of the nuclear ground state. However, because the
nucleus is composite, the nuclear operators built from Oi

are accompanied by an additional spatial operator e−i �q·�x(i).
A threshold operator carrying the requisite positive parity can
thus be formed by combining i �q · �x(i) with �v(i) = �p(i)/mN .
However, �p(i) and �x(i) are conjugate operators: The larger the
nuclear size, the smaller is the nucleon momentum scale. Thus,
when �p(i) and �x(i) are combined to form interactions, one
obtains operators such as �l(i), the orbital angular momentum,
that have no associated scale: The single-particle eigenvalues
of lz(i) are integers. (Operators built from such internal
nuclear coordinates are called composite operators.) Thus,
scattering associated with internal velocities is governed by
the parameters multiplying �p(i) and �x(i), which form the
dimensionless ratio �q/mN . This dimensionless parameter
emerges directly from the physics; it is not put in by hand.

Thus, we see that �q/mN is associated with the typical
velocity of bound nucleons, ∼1/10. The composite operators
constructed from nucleon velocities are enhanced relative to
those associated with �v⊥

T by the ratio of �q/mN to �v⊥
T , or ∼100.

The standard point-nucleus treatment of WIMP scattering
retains only the effects of �v⊥

T . We find in Sec. IV B that
the enhancement associated with �q/mN leads to an increased
sensitivity to derivative couplings of ∼10(μT /mN )2 in the total
cross section, relative to point-nucleus treatments.

C. Relativistic matching

The operators Oi can be viewed as the low-energy equiva-
lents of the relativistic operators governing ultraviolet WIMP-
matter interactions. By matching to a specific relativistic
theory, one can relate the two sets of operators: This procedure
would allow a theorist to convert experimental constraints on
the ci into corresponding constraints on the coefficients di of
a set of interactions appearing in a given ultraviolet model. In
Sec. II A we discussed two simple examples, the SI and SD
interactions LSI

int and LSD
int . Here we repeat the process for the

set of relativistic amplitudes listed in Table I. Unlike the two
simple cases discussed in Sec. II, the relativistic amplitudes
do not always map onto single operators Oi . Instead, the

result is frequently of the form
∑

i αiOi , where several of
the coefficients αi are nonzero.

The interactions of Table I describe the interactions of spin-
1
2 WIMPs with nucleons. (More general interactions could
be considered, of course.) Four-momentum definitions follow
our three-momentum conventions: the incoming (outgoing)
four-momentum of the dark-matter particle χ is pμ (p′μ);
the incoming (outgoing) four-momentum of the nucleon N is
kμ (k′μ); and the momentum transfer qμ = p′μ − pμ = kμ −
k′μ. We also define P μ = pμ + p′μ and Kμ = kμ + k′μ. The
relative velocity operator of Eq. (10) can be written in term of
these variables as

�v⊥ ≡ 1

2
(�vχ,in + �vχ,out − �vN,in − �vN,out)

= 1

2

( �P
mχ

−
�K

mN

)
. (21)

The relativistic WIMP-nucleon interactions are constructed
as bilinear WIMP-nucleon products of the available scalar
(χ̄χ , χ̄γ 5χ ) and four-vector (χ̄P μχ , χ̄P μγ 5χ , χ̄ iσμνqνχ ,
and χ̄γ μγ 5χ ) amplitudes. Thus, there are 22 + 42 = 20
combinations [8]. The nonrelativistic operators obtained after
nonrelativistic reduction are listed in Table I, along with the
corresponding expansions in terms of our EFT operators,
the Oi . The table also gives transformation properties of
the interactions under parity and time reversal. Note that all
interactions reduce in leading order to combinations of our 15
Oi , and all of the Oi appear in the table. Thus, they are the
minimal set of nonrelativistic interactions needed to represent
the listed set of 20 Lj

int.

III. THE NUCLEAR RESPONSE IN EFT

Cross sections or rates for WIMP-nucleon/nucleus scat-
tering can be expressed as simple kinematic integrals over
a fundamental particle-nuclear function, the square of the
invariant amplitude averaged over initial WIMP and nuclear
spins and summed over final spins. The key result of this
section is the calculation of this quantity for the EFT
interaction.

Because much of the literature employs analyses based on
the SI/SD formulation, we begin by considering two limits in
which such a result is obtained. One way to obtain a SI/SD
result while still using a very general interaction, such as the
EFT form developed here, is to treat the nucleus as a point
particle. Effectively, one replaces e−i �q·�x(i)Oi with Oi , despite
the fact that �q · �x(i) is typically ∼1. Alternatively, one can
simply restrict the operators initially to O1 and O4, the two
LO operators in our EFT list. Then one can proceed to do a full
nuclear calculation, including form factors. However, it is not
known whether the WIMP interaction has the simple O1/O4

form. We present these two limits so that a comparison with
the general cross section result of Sec. III D can be made.

A. The EFT nucleon calculation

One could, in principle, detect WIMPs through their elastic
scattering off free protons and (hypothetically) neutrons. Such
a target can be treated as a point because the inverse nucleon
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size is large compared to typical momentum transfers in WIMP scattering. In this case the EFT Galilean-invariant amplitude
corresponding to Eq. (16) for a proton target becomes

M = 〈 �p ′Sχmχ ; �k′SN = 1
2mNTN = 1

2mT = 1
2

∣∣H∣∣ �pSχmχ ; �kSN = 1
2mNTN = 1

2mT = 1
2

〉
, (22)

where we have introduced the proton’s isospin quantum numbers for consistency with the isospin form of our Hamiltonian,
Eq. (16). An elementary calculation then yields the square of the invariant amplitude, averaged over initial spins and summed
over final spins, for WIMP scattering off a proton,

1

2jχ + 1

1

2

∑
spins

|M|2proton =
[
c
p 2
1 + jχ (jχ + 1)

3

( �q 2

m2
N

�v⊥2
T c

p 2
5 + �v⊥2

T c
p 2
8 + �q2

m2
N

c
p 2
11

)]
|MF ;p|2

+ 1

12

{( �q 2

m2
N

�v⊥2
T c

p 2
3 + �v⊥2

T c
p 2
7 + �q 2

m2
N

c
p 2
10

)
+ jχ (jχ + 1)

3

[
3c

p 2
4 + 2

�q 2

m2
N

(
c
p
4 c

p
6 + c

p 2
9

) + �q 4

m4
N

c
p 2
6 +

+ 2�v⊥2
T c

p 2
12 + �q 2

m2
N

�v⊥ 2
T

(
c
p 2
13 + c

p 2
14 − 2c

p
12c

p
15

) + �q 4

m4
N

�v⊥2
T c

p 2
15

]}
|MGT ;p|2. (23)

The SI (or Fermi) and SD (or Gamow-Teller) operators
evaluated between nonrelativistic Pauli spinors are

|MF ;p|2 ≡ 1
2 |〈1/2||1||1/2〉|2 = 1,

(24)
|MGT ;p|2 ≡ 1

2 |〈1/2||σ ||1/2〉|2 = 3,

where || denotes a matrix element reduced in spin and the
subscript p is an explicit reminder that this is a proton matrix
element.

B. The EFT point-nucleus limit

The corresponding result for a point nucleus of spin jN ,

1

2jχ + 1

1

2jN + 1

∑
spins

|M|2ptnucleus, (25)

is obtained by making two substitutions in Eq. (23). First, the
proton Fermi and Gamow-Teller matrix elements are replaced
with their nuclear analogs,

|MF ;p|2 → ∣∣MN
F ;p(0)

∣∣2 ≡ Z2

=
[

1

2jN + 1
|〈jN ||

A∑
i=1

1 + τ3(i)

2
||jN 〉|2

]
,

(26)
|MGT ;p|2 → ∣∣MN

GT ;p(0)
∣∣2

≡
[

1

2jN + 1
|〈jN ||

A∑
i=1

1 + τ3(i)

2
σ (i)||jN 〉|2

]
,

where we have assumed that the WIMP coupling is only
to protons—enforced by the introduction of the isospin
operators—to produce a result analogous to Eq. (23). Second,
the velocity �v⊥

T that in the nucleon case represented the
WIMP-nucleon relative velocity now becomes the analogous
parameter measured with respect to the nuclear center of mass.
There are no intrinsic nuclear velocities because the nucleus
is a point.

On integrating over phase space, one obtains a cross section
that depends on the two particle-physics quantities within the
square brackets of Eq. (23), with the associated kinematic
factors evaluated by averaging over the WIMP velocity

distribution. Thus, this limit yields a SI/SD cross section—the
nuclear operators are just the charge and the spin—though
the WIMP response functions multiplying the squares of the
two operators are considerably more complicated than in the
standard SI/SD analysis, containing the coefficients of all of
the EFT operators. In the point-nucleus limit, one can thus
place two constraints on the EFT coefficients by doing an SI
experiment (J = 0 nuclear target) to isolate the Fermi response
and an SD experiment (J > 0) to probe the Gamow-Teller
response. If one extends the analysis to include isospin, two
additional experiments would be needed: on a J = 0 target
with a distinct N/Z ratio and on an J > 0 odd-neutron target.

C. The SI/SD nuclear cross section

The SI/SD result most often seen in the literature properly
accounts for the momentum transfer in the scattering, but
simplifies the WIMP-nucleon operator by assuming it is
formed from a linear combination ofO1 andO4. Other possible
operators are neglected.

The WIMP-nucleus interaction is then written as the sum
over these WIMP interactions with the bound nucleons, taking
into account the finite spatial extent of the nuclear charge and
spin-current densities,

1χρN (�x) = 1χ

A∑
i=1

[
c0

1 + c1
1τ3(i)

]
e−i �q·�xi

→ c
p
1 1χ

A∑
i=1

1 + τ3(i)

2
e−i �q·�xi ,

(27)

�Sχ · �jN (�x) = �Sχ ·
A∑

i=1

[
c0

4 + c1
4τ3(i)

] �σ (i)

2
e−i �q·�xi

→ c
p
4
�Sχ ·

A∑
i=1

1 + τ3(i)

2

�σ (i)

2
e−i �q·�xi ,

where on the right we have again simplified the result by
restricting the couplings to protons, to allow comparisons with
Eqs. (23) and (26).
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The spin averaged/summed transition probability can be easily evaluated by the spherical harmonic methods outlined in
Appendix A, yielding

1

2jχ + 1

1

2jN + 1

∑
spins

|M|2

= c
p 2
1

[
4π

2jN + 1

∞∑
J=0,2,...

|〈jN ||
A∑

i=1

MJ (qxi)
1 + τ3(i)

2
||jN 〉|2

]

+ c
p 2
4

jχ (jχ + 1)

12

{
4π

2jN + 1

∞∑
J=1,3,...

[
|〈jN ||

A∑
i=1

′′
J (qxi)

1 + τ3(i)

2
||jN 〉|2 + |〈jN ||

A∑
i=1

′
J (qxi)

1 + τ3(i)

2
||jN 〉|2

]}

≡ c
p 2
1

∣∣MN
F ;p(0)

∣∣2Fp 2
F (q2) + c

p 2
4

jχ (jχ + 1)

12

∣∣MN
GT ;p(0)

∣∣2Fp 2
GT (q2). (28)

Here MJ (qxi) is the charge multipole operator and ′′
J (qxi) and ′

J (qxi) are the longitudinal and transverse spin multipole
operators of rank J , which are standard in treatments of electroweak nuclear interactions and are defined below. The assumption
of nuclear wave functions of good parity and CP restricts the sums to even and odd J , respectively.

The form factors F
p
F (q2) and F

p
GT (q2) are defined so that F

p
F (0) = F

p
GT (0) = 1 and can be computed from a nuclear model

F
p 2
F (q2) =

∑∞
J=0,2,... |〈jN ||∑A

i=1 MJ (qxi)
1+τ3(i)

2 ||jN 〉|2
1

4π
|〈jN ||∑A

i=1
1+τ3(i)

2 ||jN 〉∣∣2 ,

(29)

F
p 2
GT (q2) =

∑∞
J=1,3,...

[|〈jN ||∑A
i=1 ′′

J (qxi)
1+τ3(i)

2 ||jN 〉|2 + |〈jN ||∑A
i=1 ′

J (qxi)
1+τ3(i)

2 ||jN 〉|2]
1

4π
|〈jN ||∑A

i=1
1+τ3(i)

2 σ (i)||jN 〉|2 .

The spin form factor has the above form because of the identity

�Sχ · �SN ≡ (�Sχ · q̂)(�SN · q̂) + (�Sχ × q̂) · (�SN × q̂), (30)

where q̂ is the unit vector along the momentum transfer to the nucleus. Thus, the use of O4 implies equal couplings to the
longitudinal and transverse spin operators ′′

J and ′
J , which cannot interfere if one sums over spins. In a more general treatment

of the WIMP-nucleon interaction, these operators would be independent. For example, in the EFT expansion O4 = �Sχ · �SN and
O6 = (�Sχ · �q)(�SN · �q) have distinct coefficients.

Often in the literature F
p
F (q2) and F

p
GT (q2) are not calculated microscopically, but are represented by simple phenomenological

forms.
The operators MJ , ′′

J , and ′
J are, respectively, the vector charge, axial longitudinal, and axial transverse electric multipole

operators familiar from electroweak nuclear physics. The latter two operators are also frequently designated as L5
J and T el 5

J in
the literature to emphasize their multipole and axial character.

While we have simplified the above expressions by assuming all couplings are to protons, to allow a comparison with our
free-proton result, the expressions for arbitrary isospin are also simple:

1

2jχ + 1

1

2j + 1

∑
spins

|M|2 = 4π

2jN + 1

( ∞∑
J=0,2,...

|〈jN ||
A∑

i=1

MJ (qxi)
[
c0

1 + c1
1τ3(i)

] ||jN 〉|2

+ jχ (jχ + 1)

12

∞∑
J=1,3,...

{
|〈jN ||

A∑
i=1

′′
J (qxi)

[
c0

4 + c1
4τ3(i)

]||jN 〉|2

+ |〈jN ||
A∑

i=1

′′
J (qxi)

[
c0

4 + c1
4τ3(i)

]||jN 〉|2
})

. (31)

D. General EFT form of the WIMP-nucleus response

The general form of the WIMP-nucleus interaction consis-
tent with the assumption of nuclear ground states with good
P and CP can be derived by building an EFT at the nuclear
level, or by embedding the EFT WIMP-nucleon interaction
into the nucleus, without making assumptions of the sort just
discussed. We follow the second strategy here, as it allows us

to connect the nuclear responses back to the single-nucleon
interaction and consequently to the ultraviolet theories which
map onto that single-nucleon interaction, on nonrelativistic
reduction.

We relegate most of the details to Appendix A, giving just
the essentials here. First, the basic model assumption is that
the nuclear interaction is the sum of the interactions of the
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WIMP with the individual nucleons in the nucleus. Thus, the
mapping from the nucleon-level effective operators to nuclear
operators is made by the following generalization of Eq. (16),

∑
τ=0,1

15∑
i=1

cτ
i Oi t

τ →
∑
τ=0,1

15∑
i=1

cτ
i

A∑
j=1

Oi(j )t τ (j ). (32)

Now the nuclear operators appearing in this expression are
built from i �q/mN , a c number, �SN , which acts on intrinsic
nuclear coordinates, and the relative velocity operator �v⊥,
which now represents a set of A internal WIMP-nucleus

system velocities, A − 1 of which involve the relative coor-
dinates of bound nucleons (the Jacobi velocities), and one of
which is the velocity of the dark matter (DM) particle relative
to the nuclear center of mass,

�v⊥ → {
1
2 [�vχ,in + �vχ,out − �vN,in(i) − �vN,out(i)],i = 1, . . . ,A

}
≡ �v⊥

T − {�̇vN,in(i) + �̇vN,out(i),i = 1, . . . ,A − 1}. (33)

The DM particle/nuclear center of mass relative velocity is a
c number,

�v⊥
T = 1

2 [�vχ,in + �vχ,out − �vT,in(i) − �vT,out(i)], (34)

while the internal nuclear Jacobi velocities �̇vN are operators acting on intrinsic nuclear coordinates. [That is, for a single-nucleon
(A=1) target, �v⊥

T ≡ �v⊥, while for all nuclear targets, there are A − 1 additional velocity degrees of freedom associated with the
Jacobi internucleon velocities.] This separation is discussed in more detail in Appendix A.

In analogy with Eq. (27), one then obtains the WIMP-nucleus interaction

∑
τ=0,1

{
lτ0

A∑
i=1

e−i �q·�xi + lAτ
0

A∑
i=1

1

2M

[
−1

i

←−∇ i · �σ (i)e−i �q·�xi + e−i �q·�xi �σ (i) · 1

i

−→∇ i

]

+ �lτ5 ·
A∑

i=1

�σ (i)e−i �q·�xi + �lτM ·
A∑

i=1

1

2M

(
−1

i

←−∇ ie
−i �q·�xi + e−i �q·�xi

1

i

−→∇ i

)

+ �lτE ·
A∑

i=1

1

2M
[
←−∇ i × �σ (i)e−i �q·�xi + e−i �q·�xi �σ (i) × −→∇ i]

}
int

t τ (i), (35)

where the subscript “int” instructs one to take the intrinsic part of the nuclear operators (that is, the part dependent on the internal
Jacobi velocities). Comparing to Eq. (27), one sees that three new velocity-dependent densities appear: the nuclear axial charge
operator, familiar as the β decay operator that mediates 0+ ↔ 0− decays; the convection current, familiar from electromagnetism;
and a spin-velocity current that is less commonly discussed, but does arise as a higher-order correction in weak interactions. The
associated WIMP tensors contain the EFT input:

lτ0 = cτ
1 + i

( �q
mN

× �v⊥
T

)
· �Sχcτ

5 + �v⊥
T · �Sχcτ

8 + i
�q

mN

· �Sχcτ
11,

lAτ
0 = −1

2

[
cτ

7 + i
�q

mN

· �Sχcτ
14

]
,

�l5 = 1

2

[
i

�q
mN

× �v⊥
T cτ

3 + �Sχcτ
4 + �q

mN

�q
mN

· �Sχcτ
6 + �v⊥

T cτ
7 + i

�q
mN

× �Sχcτ
9 + i

�q
mN

cτ
10

(36)

+ �v⊥
T × �Sχcτ

12 + i
�q

mN

�v⊥
T · �Sχcτ

13 + i�v⊥
T

�q
mN

· �Sχcτ
14 + �q

mN

× �v⊥
T

�q
mN

· �Sχcτ
15

]
,

�lM = i
�q

mN

× �Sχcτ
5 − �Sχcτ

8 ,

�lE = 1

2

[ �q
mN

cτ
3 + i �Sχcτ

12 − �q
mN

× �Sχcτ
13 − i

�q
mN

�q
mN

· �Sχcτ
15

]
.

In Appendix A the products of plane waves and scalar/vector operators appearing in Eq. (35) are expanded in spherical and
vector spherical harmonics, and the resulting amplitude is squared, averaged over initial spins and summed over final spins. One
obtains

1

2jχ + 1

1

2jN + 1

∑
spins

|M|2nucleus/EFT = 4π

2jN + 1

∑
τ=0,1

∑
τ ′=0,1

{ ∞∑
J=0,2,...

[
Rττ ′

M

(
�v⊥2
T ,

�q2

m2
N

)
〈jN ||MJ ;τ (q)||jN 〉〈jN ||MJ ;τ ′(q)||jN 〉

+ �q2

m2
N

Rττ ′
�′′

(
�v⊥2
T ,

�q2

m2
N

)
〈jN ||�′′

J ;τ (q)||jN 〉〈jN ||�′′
J ;τ ′(q)||jN 〉
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+ �q2

m2
N

Rττ ′
�′′M

(
�v⊥2
T ,

�q2

m2
N

)
〈jN ||�′′

J ;τ (q)||jN 〉〈jN ||MJ ;τ ′(q)||jN 〉
]

+
∞∑

J=2,4,...

[ �q2

m2
N

Rττ ′
�̃′

(
�v⊥2
T ,

�q2

m2
N

)
〈jN ||�̃′

J ;τ (q)||jN 〉〈jN ||�̃′
J ;τ ′(q)||jN 〉

]

+
∞∑

J=1,3,...

[
Rττ ′

′′

(
�v⊥2
T ,

�q2

m2
N

)
〈jN ||′′

J ;τ (q)||jN 〉〈jN ||′′
J ;τ ′(q)||jN 〉

+Rττ ′
′

(
�v⊥2
T ,

�q2

m2
N

)
〈jN ||′

J ;τ (q)||jN 〉〈jN ||′
J ;τ ′(q)||jN 〉

+ �q2

m2
N

Rττ ′
�

(
�v⊥2
T ,

�q2

m2
N

)
〈jN ||�J ;τ (q)||jN 〉〈jN ||�J ;τ ′(q)||jN 〉

+ �q2

m2
N

Rττ ′
�′

(
�v⊥2
T ,

�q2

m2
N

)
〈jN ||�J ;τ (q)||jN 〉〈jN ||′

J ;τ ′(q)||jN 〉
]}

. (37)

Note that five of the eight terms above are accompanied by a factor of �q 2/m2
N . This is the parameter identified in Sec. II B that

governs the enhancement of the composite operators with respect to the point operators for those Oi where composite operators
contribute. Thus, one can read off those response functions that are generated by composite operators from this factor. The DM
particle response functions are determined by the cτ

i ’s,

Rττ ′
M

(
�v⊥2
T ,

�q 2

m2
N

)
= cτ

1c
τ ′
1 + jχ (jχ + 1)

3

[ �q 2

m2
N

�v⊥2
T cτ

5c
τ ′
5 + �v⊥2

T cτ
8c

τ ′
8 + �q 2

m2
N

cτ
11c

τ ′
11

]
,

Rττ ′
�′′

(
�v⊥2
T ,

�q 2

m2
N

)
= �q 2

4m2
N

cτ
3c

τ ′
3 + jχ (jχ + 1)

12

(
cτ

12 − �q 2

m2
N

cτ
15

)(
cτ ′

12 − �q 2

m2
N

cτ ′
15

)
,

Rττ ′
�′′M

(
�v⊥2
T ,

�q 2

m2
N

)
= cτ

3c
τ ′
1 + jχ (jχ + 1)

3

(
cτ

12 − �q 2

m2
N

cτ
15

)
cτ ′

11,

Rττ ′
�̃′

(
�v⊥2
T ,

�q 2

m2
N

)
= jχ (jχ + 1)

12

[
cτ

12c
τ ′
12 + �q 2

m2
N

cτ
13c

τ ′
13

]
,

Rττ ′
′′

(
�v⊥2
T ,

�q 2

m2
N

)
= �q 2

4m2
N

cτ
10c

τ ′
10 + jχ (jχ + 1)

12

[
cτ

4c
τ ′
4

�q 2

m2
N

(
cτ

4c
τ ′
6 + cτ

6c
τ ′
4

) + �q 4

m4
N

cτ
6c

τ ′
6 + �v⊥2

T cτ
12c

τ ′
12 + �q 2

m2
N

�v⊥2
T cτ

13c
τ ′
13

]
, (38)

Rττ ′
′

(
�v⊥2
T ,

�q 2

m2
N

)
= 1

8

[ �q 2

m2
N

�v⊥2
T cτ

3c
τ ′
3 + �v⊥2

T cτ
7c

τ ′
7

]
+ jχ (jχ + 1)

12

[
cτ

4c
τ ′
4 + �q 2

m2
N

cτ
9c

τ ′
9 + �v⊥2

T

2

(
cτ

12 − �q 2

m2
N

cτ
15

)(
cτ ′

12 − �q 2

m2
N

cτ ′
15

)

+ �q 2

2m2
N

�v⊥2
T cτ

14c
τ ′
14

]
,

Rττ ′
�

(
�v⊥2
T ,

�q 2

m2
N

)
= jχ (jχ + 1)

3

[ �q 2

m2
N

cτ
5c

τ ′
5 + cτ

8c
τ ′
8

]
,

Rττ ′
�′

(
�v⊥2
T ,

�q 2

m2
N

)
= jχ (jχ + 1)

3

[
cτ

5c
τ ′
4 − cτ

8c
τ ′
9

]
.

The six nuclear operators appearing in Eq. (37), familiar from standard-model electroweak interaction theory, are
constructed from the Bessel spherical harmonics and vector spherical harmonics, MJM (q �x) ≡ jJ (qx)YJM (�x) and
�MM

JL ≡ jL(qx) �YJLM (�x),

MJM;τ (q) ≡
A∑

i=1

MJM (q �xi)t
τ (i),

�JM;τ (q) ≡
A∑

i=1

�MM
JJ (q �xi) · 1

q
�∇i t

τ (i),
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′
JM;τ (q) ≡ −i

A∑
i=1

{
1

q
�∇i × �MM

JJ (q �xi)

}
· �σ (i)t τ (i)

=
A∑

i=1

{
−
√

J

2J + 1
�MM

JJ+1(q �xi) +
√

J + 1

2J + 1
�MM

JJ−1(q �xi)

}
· �σ (i)t τ (i),

′′
JM;τ (q) ≡

A∑
i=1

{
1

q
�∇iMJM (q �xi)

}
· �σ (i)t τ (i)

=
A∑

i=1

{√
J + 1

2J + 1
�MM

JJ+1(q �xi) +
√

J

2J + 1
�MM

JJ−1(q �xi)

}
· �σ (i)t τ (i),

�̃′
JM;τ (q) ≡

A∑
i=1

{[
1

q
�∇i × �MM

JJ (q �xi)

]
·
[
�σ (i) × 1

q
�∇i

]
+ 1

2
�MM

JJ (q �xi) · �σ (i)

}
t τ (i),

�′′
JM;τ (q) ≡ i

A∑
i=1

[
1

q
�∇iMJM (q �xi)

]
·
[
�σ (i) × 1

q
�∇i

]
t τ (i). (39)

Equations (37), (38), and (39) comprise the general expression for the WIMP-nucleon spin-averaged transition probability.
M, �, ′, ′′, �̃′, and �′′ transform as vector charge, vector transverse magnetic, axial transverse electric, axial longitudinal,
vector transverse electric, and vector longitudinal operators, respectively. These are the allowed responses under the assumption
that the nuclear ground state is an approximate eigenstate of P and CP, and thus we have derived the most general form of the
cross section.

Slater determinants are often constructed in a harmonic oscillator basis because they allow projection of spurious center-of-mass
motion. In that case, Eq. (37) gives the cross section as a sum of products of WIMP Rττ ′

k (�v⊥2
T , �q 2

m2
N

) and nuclear Wττ ′
k (y) response

functions, where y = (qb/2)2 with b the harmonic oscillator size parameter. That is, the evolution of the nuclear responses with
q is determined by the single dimensionless parameter y. Equation (37) can then be written compactly as

1

2jχ + 1

1

2jN + 1

∑
spins

|M|2nucleus−HO/EFT

= 4π

2jN + 1

∑
τ=0,1

∑
τ ′=0,1

{[
Rττ ′

M

(
�v⊥2
T ,

�q2

m2
N

)
Wττ ′

M (y) + Rττ ′
′′

(
�v⊥2
T ,

�q2

m2
N

)
Wττ ′

′′ (y) + Rττ ′
′

(
�v⊥2
T ,

�q2

m2
N

)
Wττ ′

′ (y)

]

+ �q2

m2
N

[
Rττ ′

�′′

(
�v⊥2
T ,

�q2

m2
N

)
Wττ ′

�′′ (y) + Rττ ′
�′′M

(
�v⊥2
T ,

�q2

m2
N

)
Wττ ′

�′′M (y) + Rττ ′
�̃′

(
�v⊥2
T ,

�q2

m2
N

)
Wττ ′

�̃′ (y)

+ Rττ ′
�

(
�v⊥2
T ,

�q2

m2
N

)
Wττ ′

� (y) + Rττ ′
�′

(
�v⊥2
T ,

�q2

m2
N

)
Wττ ′

�′ (y)

]}
, (40)

where

Wττ ′
O (y) ≡

∞∑
J=0,2,...

〈jN ||OJ ;τ (q)||jN 〉〈jN ||OJ ;τ ′(q)||jN 〉 for O = M,�′′,

Wττ ′
O (y) ≡

∞∑
J=1,3,...

〈jN ||OJ ;τ (q)||jN 〉〈jN ||OJ ;τ ′(q)||jN 〉 for O = ′′,′,�,

Wττ ′
�̃′ (y) =

∞∑
J=2,4,...

〈jN ||�̃′
J ;τ (q)||jN 〉〈jN ||�̃′

J ;τ ′(q)||jN 〉, (41)

Wττ ′
�′′M (y) =

∞∑
J=0,2,...

〈jN ||�′′
J ;τ (q)||jN 〉〈jN ||MJ ;τ ′(q)||jN 〉,

Wττ ′
�′ (y) =

∞∑
J=1,3,...

〈jN ||�J ;τ (q)||jN 〉〈jN ||′
J ;τ ′(q)||jN 〉.
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Equations (40), (38), and (41) are the key formulas evaluated by the Mathematica script described in Appendix B. Parity and
CP restrict the sums over multipolarities J to only even or only odd terms, depending on the transformation properties of the
operators, as described in Appendix A.

The physics of these six nuclear response functions is more easily seen by examining the long-wavelength forms of the
corresponding operators. The operators that are nonvanishing as q → 0 are

√
4πM00;τ (0) =

A∑
i=1

t τ (i),

√
4π�1M;τ (0) = − 1√

6

A∑
i=1

l1M (i)t τ (i),

√
4π′

1M;τ (0) =
√

2

3

A∑
i=1

σ1M (i)t τ (i),

(42)
√

4π′′
1M;τ (0) = 1√

3

A∑
i=1

σ1M (i)t τ (i),

√
4π�̃′

2M;τ (0) = − 1√
5

A∑
i=1

{
x(i) ⊗

[
�σ (i) × 1

i
�∇(i)

]
1

}
2

t τ (i),

√
4π�′′

JM;τ (0) =
⎧⎨
⎩

1
3
∑A

i=1 �σ (i)·�l(i)t τ (i)
J = 0,

− 1√
5

∑A
i=1

{
x(i) ⊗ [�σ (i) × 1

i
�∇(i)

]
1

}
2t

τ (i) J = 2,

where the operator �′′ has scalar and tensor components that
survive. Two combinations of operators are, of course, related
to the SI/SD forms,

∣∣MN
F ;τ (0)

∣∣2 ≡ 4π

2jN + 1
|〈jN ||M0;τ (0)||jN 〉|2,

(43)∣∣MN
GT ;τ (0)

∣∣2 ≡ 4π

2jN + 1
[|〈jN ||′′

1;τ (0)||jN 〉|2

+ |〈jN ||′
1;τ (q)||jN 〉|2].

In the next section we describe in more detail some of
the differences between this form and the point-nucleus and
allow forms, where the only the simple Fermi and Gamow-
Teller operators arise. However, one can make some initial
observations here.

(i) The most general form of the WIMP-nucleus elastic
scattering probability has six, not two, response
functions. They are associated with the squares of
the matrix elements of the six operators given in
Eqs. (39). There are also two interference terms
(�′′ ↔ M and � ↔ ′). Total cross sections thus
depend on eight bilinear combinations of WIMP
couplings Rττ ′

, not just the two combinations found
in the point-nucleus limit.

(ii) The spin response familiar from the standard allowed
treatment of WIMP-nucleus interactions splits into
separate longitudinal and transverse components, as
various candidate effective interactions do not couple
to all spin projections symmetrically. The associated
operators, ′′ and ′, are proportional in the long-
wavelength limit, but are distinct at finite �q 2 because
their associated form factors differ.

(iii) Three new response functions are generated from
couplings to the intrinsic velocities of nucleons and
consequently reflect the composite nature of the
nucleus. Reflecting their finite-nuclear-size origin, the
three responses appear in Eq. (37) with an explicit
factor of �q 2/m2

N .
(iv) Two scalar responses appear in Eq. (37), generated

by the standard Fermi operator 1(i) and the new
spin-orbit operator �σ · �l(i). Thus, both are “spin-
independent” responses, responses associated with
operators that transform as scalars under rotations.

(v) There are three vector responses, two associated
with the (in general, independent) longitudinal and
transverse projections of spin and the third with the
orbital angular momentum operator �l(i). These three
operators transform under rotations as �jN , and all thus
require a nuclear ground-state spin of jN � 1/2. It
was shown in Ref. [8] that among the various nuclear
targets now in use for dark-matter studies, the relative
strength of spin and orbital transition probabilities can
differ by two orders magnitude or more.

(vi) One response function, generated by �̃′, is tensor, and
thus only contributes if jN � 1. This response func-
tion is somewhat exotic, coming from interactions
O12, O13, and O15 that we have noted do not arise for
traditional spin-0 or spin-1 exchanges.

(vii) The EFT result of Eq. (37) and the SI/SD result
of Eq. (28) coincide if one takes �q 2 → 0 and also
�v⊥2
T → 0, a limit that zeros out all contributions from

low-energy constants other than c1 and c4. However,
away from this limit they differ. This illustrates the
inconsistency of the standard SI/SD formulation with
form factors: One selectively includes powers of
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�q · �x(i) to modify the Fermi 1(i) and �σ (i) operators
through form factors, while not using those same
factors to create new operators.

E. Nuclear response function evaluation:
The one-body density matrix

We have expressed the dark-matter particle scattering cross
sections in terms of the singly reduced (in angular momentum)
nuclear matrix elements of one-body operators of definite
angular momentum. These nuclear matrix elements can be
conveniently expressed in terms of the one-body density ma-
trix: The density matrix extracts from complicated many-body
nuclear wave functions containing all possible correlations,
just that information necessary to evaluate one-body operators.
Once the density matrix is obtained from a nuclear many-body

calculation, all many-body matrix elements then reduce to
simple sums over single-particle matrix elements.

In the treatment so far we have labeled the nuclear ground
state by its angular momentum jN , an exact quantum number.
Here we add to that label the isospin quantum numbers T ,MT :
Isospin T is an approximate but not exact quantum label, as
isospin is broken by the electromagnetic interactions among
nucleons. However, we employ that label here because most
shell-model calculations are isospin conserving, and thus most
density matrices derived from such calculations employ T as a
quantum label. We stress, however, that everything discussed
below can be trivially repeated without the assumption of T as
a nuclear-state label: The density matrix would then be defined
without this assumption.

With the inclusion of the isospin labels, the singly reduced
many-body matrix elements can be written

〈jN ; T MT ||
A∑

i=1

ÔJ ;τ (q �xi)||jN ; T MT 〉 = (−1)T −MT

(
T τ T

−MT 0 MT

)〈
jN ; T

...
...

A∑
i=1

ÔJ ;τ (q �xi)
...
...jN ; T

〉
,

〈
jN ; T

...
...

A∑
i=1

ÔJ ;τ (q �xi)
...
...jN ; T

〉
=

∑
|α|,|β|

�J ;τ
|α|,|β|〈|α|......OJ ;τ (q �x)

...
...|β|〉. (44)

Here �J ;τ
|α|,|β| is the one-body density matrix for the diago-

nal ground-state-to-ground-state transition, |α| represents the
nonmagnetic quantum numbers in the chosen single-particle
basis [e.g., for a single-particle harmonic oscillator state |α〉 =
|nα(lαsα = 1/2)jαmjα

; tα = 1/2mtα 〉 ≡ ||α|; mjα
mtα 〉, with nα

the nodal quantum number],
...
... denotes a doubly reduced matrix

element (in spin and isospin), and the sums over |α| and |β|
extend over complete sets of single-particle quantum numbers.
The density matrix can be written in second quantization as

�J ;τ
|α|,|β| ≡ 1

[J ][τ ]
〈jN ; T

...
...[c†|α| ⊗ c̃|β|]J ;τ

...
...jN ; T 〉, (45)

where c†α is the single-particle creation operator, c̃β =
(−1)jβ−mjβ

+1/2−mtβ c|β|;−mjβ
,−mtβ

, and [J ] ≡ √
2J + 1. The

phases yield a destruction operator c̃β that transforms as a
spherical tensor in single-particle angular momentum and
isospin.

Equation (44) is an exact expression for
〈jN ; T MT ||ÔJ ; τ ||jN ; T MT 〉. When one invokes a nuclear
model to calculate a dark-matter response function, effectively
one is employing some physics-motivated prescription for
intelligently truncating the infinite sums over |α|,|β| in
Eq. (44) to some finite subset, hopefully capturing most of the
relevant low-momentum physics.

The isospin matrix element in Eq. (44) is easily performed,
yielding

〈|α|......ÔJ ; τ (q �x)
...
...|β|〉

=
√

2[τ ]〈nα(lα1/2)jα||OJ ||nβ(lβ1/2)jβ〉, (46)

where OJ is the space-spin part of the operator. If the single-
particle basis is that of a harmonic oscillator, the reduced
matrix element for OJ = {MJ , ′

J , ′′
J , �J , �̃′

J , �′′
J } can

be evaluated algebraically,

〈nα(lα1/2)jα||OJ (q �x)||nβ(lβ1/2)jβ〉

= 1√
4π

y(J−K)/2e−yp(y), (47)

where K = 2 for the normal parity [π = (−1)J ] operators MJ ,
�̃′

J , and �̃′′
J and K = 1 for the abnormal parity [π = (−1)J+1]

operators �, ′, and ′′. y = (qb/2)2, where b is the oscillator
parameter, and p(y) is a finite polynomial in y. Thus, the
nuclear response functions W of Eq. (41) are simple functions
of y.

The Mathematica script of Appendix B evaluates nuclear
matrix elements from input one-body density matrices.

IV. CROSS SECTIONS AND COMPARISONS
WITH THE SD/SI FORM

As the new scalar and vector operators related to �σ · ��(i) and
��(i) have selection rules and coherence properties that are quite
different from those of the point-nucleus operators 1(i) and
�σ (i), the retention of only the point-nucleus operators can lead
to numerical errors in cross-section estimates. In this section
we quantify this claim by identifying those operators where
the contributions of the composite operators are enhanced,
isolating the enhancement factor mentioned in Sec. II B. We
also use the rate formulas presented below to show that
neglect of the composite operators leads, in these cases, to
cross sections that lack the proper functional dependence on
parameters such as the WIMP and target masses.
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A. Cross sections and rates

The cross section for WIMP scattering off a nucleus in
the laboratory frame is obtained by folding the transition
probability with the corresponding Lorentz-invariant phase
space,

dσ = 1

v

mχ

Ei
χ

[
1

2jχ + 1

1

2jN + 1

∑
spins

|M|2
]

× mχ

E
f
χ

d3p′

(2π )3

mT

E
f
T

d3k′

(2π )3
(2π )4δ4(p + k − p′ − k′),

(48)

where p,p′ and k,k′ are the initial and final dark-matter
particle and nuclear momenta. M, in most other applications
the Lorentz-invariant amplitude, is in our construction the
Galilean-invariant amplitude, owing to the nonrelativistic
nature of the scattering. As this expression is in the laboratory
frame, v is the initial WIMP velocity; the target is at
rest.

M is a function of v and one other variable. If we define
a scattering angle by the direction of nuclear recoil relative to
the initial WIMP velocity, v̂ · k̂′ = −v̂ · q̂ = cos θ , then that
second variable can be taken to be �q 2, or equivalently the en-
ergy of the recoiling nucleus ER = �q 2/2mT , or equivalently,
using the laboratory-frame energy conservation condition

�p 2

2mχ

− ( �p − �k′)2

2mχ

−
�k′ 2

2mT

= 0 ⇒
�k′ 2

2μT

= �v · �k′

(49)

⇒ �q ′ 2

4μ2
T v2

= cos2 θ = 1

2
(1 + cos 2θ ),

the angular variable cos 2θ . Note that as �v · �k′ � 0, 0 � θ �
π/2, and thus 0 � 2θ � π . We can integrate Eq. (48) to obtain
the differential cross sections

dσ (v,ER)

dER

= 2mT

dσ (v,�q 2)

d �q 2

= 2mT

4πv2

[
1

2jχ + 1

1

2jN + 1

∑
spins

|MNuc|2
]

, (50)

dσ (v,θ )

d cos 2θ
= 2μ2

T v2 dσ (v,�q 2)

d �q 2

= μ2
T

2π

[
1

2jχ + 1

1

2jN + 1

∑
spins

|MNuc|2
]

. (51)

The differential scattering rate per detector and per target
nucleus averaging over the galactic WIMP velocity distribu-

tion can then be calculated,
dRD

dER

= NT

dRT

dER

= NT

∫
dσ (v,ER)

dER

vdnχ

= NT nχ

∫
v>vmin

dσ (v,ER)

dER

vfE(�v)d3v

≡ NT nχ

〈
v
dσ (v,ER)

dER

〉
v>vmin

, (52)

where NT is the number of target nuclei in the detector, nχ is
the local number density of dark-matter particles, and fE(�v) the
normalized velocity distribution of the dark-matter particles.
Thus, nχ = ρχ/mχ , where ρχ is the dark-matter density. The
integral over velocities begins with the minimum velocity
required to produce a recoil energy ER ,

vmin = vmin(ER) = q

2μT

= 1

μT

√
mT ER

2
. (53)

Similarly,
dRD

d cos 2θ
= NT nχ

∫
dσ (v,ER)

d cos 2θ
vfE(�v)d3v

≡ NT nχ

〈
v
dσ (v,ER)

d cos 2θ

〉
. (54)

Here there is no restriction on the recoil energy and thus no
requirement for a minimum velocity.

In the same way, one can calculate the total cross section,

σ (v) =
∫ 4v2μ2

T

0

dσ (v,�q 2)

d �q 2
d �q 2. (55)

The total scattering rate per detector RD and per target nucleus
RT become

RD = NT RT = NT nχ

∫
σ (v)vfE(�v)d3v ≡ NT nχ 〈vσ (v)〉.

(56)

B. Parametric dependence of total cross sections

An inspection of Eq. (37) shows that if all operators are
evaluated in the long-wavelength limit (that is, ignoring form
factors), the equation reduces to the point-nucleus result given
in Eq. (26), if in addition operators other than M , ′′, and
′ are eliminated. Thus, by working in the long-wavelength
limit, keeping all operators in leading order, one has a simple
test of the relevance of the new operators, those other than the
Fermi and Gamow-Teller ones. A suitable observable for this
comparison is σ (v), as the integration over �q 2 in Eq. (37) is
easily done using the laboratory-frame relation �v⊥2

T = �v 2 +
�q 2/4μ2

T . One finds for each of the EFT interactions [and, for
simplicity, considering couplings only to protons, so that the
results match Eq. (26)]

σc
p
1
(v) = c

p2
1

μ2
T

π

[
4π

2Ji + 1
〈M0;p(0)〉2

]
,

σc
p
3
(v) = c

p2
3 v4 μ2

T

π

{
4π

2Ji + 1

(
μT

mN

)2 1

12

[
〈′

1;p(0)〉2 + 16

(
μT

mN

)2

(〈�′′
0;p(0)〉2 + 〈�′′

2;p(0)〉2)

]}
,
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σc
p
4
(v) = c

p2
4

μ2
T

π

[
4π

2Ji + 1
Sχ (Sχ + 1)

1

12
(〈′

1;p〉2 + 〈′′
1;p〉2)

]
,

σc
p
5
(v) = c

p2
5 v4 μ2

T

π

{
4π

2Ji + 1

(
μT

mN

)2

Sχ (Sχ + 1)
2

9

[
〈M0;p〉2 + 8

(
μT

mN

)2

〈�1;p〉2

]}
,

σc
p
6
(v) = c

p2
6 v4 μ2

T

π

[
4π

2Ji + 1

(
μT

mN

)4

Sχ (Sχ + 1)
4

9
〈′′

1;p〉2

]
,

σc
p
7
(v) = c

p2
7 v2 μ2

T

π

[
4π

2Ji + 1

1

16
〈′

1;p〉2

]
,

σc
p
8
(v) = c

p2
8 v2 μ2

T

π

{
4π

2Ji + 1
Sχ (Sχ + 1)

1

6

[
〈M0;p〉2 + 4

(
μT

mN

)2

〈�1;p〉2

]}
,

σc
p
9
(v) = c

p2
9 v2 μ2

T

π

[
4π

2Ji + 1

(
μT

mN

)2

Sχ (Sχ + 1)
1

6
〈′

1;p〉2

]
,

σc
p
10

(v) = c
p2
10 v2 μ2

T

π

[
4π

2Ji + 1

(
μT

mN

)2 1

2
〈′′

1;p〉2

]
,

σc
p
11

(v) = c
p2
11 v2 μ2

T

π

[
4π

2Ji + 1

(
μT

mN

)2

Sχ (Sχ + 1)
2

3
〈M0;p〉2

]
,

σc
p
12

(v) = c
p2
12 v2 μ2

T

π

{
4π

2Ji + 1
Sχ (Sχ + 1)

1

24

[
〈′′

1;p〉2 + 1

2
〈′

1;p〉2 + 4

(
μT

mN

)2

(〈�̃′
2;p〉2 + 〈�′′

0;p〉2 + 〈�′′
2;p〉2)

]}
,

σc
p
13

(v) = c
p2
13 v4 μ2

T

π

{
4π

2Ji + 1

(
μT

mN

)2

Sχ (Sχ + 1)
1

18

[
〈′′

1;p〉2 + 8

(
μT

mN

)2

〈�̃′
2;p〉2

]}
,

σc
p
14

(v) = c
p2
14 v4 μ2

T

π

[
4π

2Ji + 1

(
μT

mN

)2

Sχ (Sχ + 1)
1

36
〈′

1;p〉2

]
,

σc
p
15

(v) = c
p2
15 v6 μ2

T

π

{
4π

2Ji + 1

(
μT

mN

)4

Sχ (Sχ + 1)
1

18

[
〈′

1;p〉2 + 24

(
μT

mN

)2

(〈�′′
0;p〉2 + �′′

2;p〉2)

]}
, (57)

where we have used 〈ÔJ ;p〉 as shorthand for the matrix element
〈jN ||ÔJ ;p||jN 〉.

The pattern one sees in the above results reflects an
underlying EFT power counting. Suppose we designate our
WIMP-nucleon operators as Oi(αi,βi), where αi ∈ {0,1} and
βi denote the number of powers of �v⊥ and �q/mN , respectively,
appearing in the operator,

Oi(αi,βi) ↔ [�v⊥]αi

[ �q
mN

]βi

. (58)

The total cross section has the form

σi(v) ∼ c2
i μ

2
T (v2)αi+βi

(
μ2

T

m2
N

)βi

×
[
ai

T

〈
ÔT

i

〉2 + ai
Nδαi1

〈
ÔN

i

〉2 ( μ2
T

m2
N

)αi
]
, (59)

where ÔT
i and ÔN

I represent one of the dimensionless
points (M0,

′
1,

′′
1 ) or composite (�1,�̃2,�

′′
0,2) operators,

respectively, and ai
T and ai

N represent simple numerical factors,
e.g.,

a15
T = Sχ (Sχ + 1)

18
, a15

N = 2Sχ (Sχ + 1)

3
, (60)

where typically ai
N/ai

T ∼ 10.
We see that total cross sections and thus total rates depend

on the dimensionless parameters v and μT /mN , but that the
parametric dependence on μT /mN depends on the operator
type, point, or composite. The cross section for the composite
operators have the simple behavior

σi(v)|N ∼
[
v2 μ2

T

m2
N

]αi+βi

, (61)

where the value of αi + βi = 0,1,2,3 is equivalent to our EFT
designation LO, NLO, NNLO, N3LO. This reflects the fact that
there are αi + βi powers of �q/mN in the composite operator,
with one factor (αi = 1) coming from i �q · �x(i) in combination
with �vN (i). The cross section contributions of the point-nucleus
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operator scale as

σi(v)|T ∼ (v2)αi

[
v2 μ2

T

m2
N

]βi

. (62)

There are βi powers of �q/mN , while the accompanying
velocity is not an operator, but the c number v⊥

T .
Both terms are generally present (see the exception below)

if there is a velocity coupling. Consequently, the neglect of
composite operators for interactions with derivative couplings
not only leads to a cross section that is much too small [by a
factor ∼(ai

N/ai
T )(μ2

T /m2
N )], but produces a cross section with

the wrong parametric dependence on mT and mχ , potentially
distorting comparisons among experiments that are using
different nuclear targets, as well as sensitivity plots as a
function of mχ .

If this calculation is extended to the full operators rather
than just their long-wavelength forms, the two terms compris-
ing Eq. (59) are modified by factors F 2

T (γ ) and F 2
N (γ ), where

γ = (bμT v)2. Thus, three dimensionless parameters, v, γ , and
μT /mN , describe the total cross section’s dependence on the
WIMP velocity, the nuclear size, and the WIMP-to-nucleus
mass ratio, respectively.

C. Consequences for operators: EFT vs SI/SD comparisons

The above results should be helpful to those wanting to
understand the limitations of standard treatments that retain
only the SI/SD responses. The consequences are operator
specific.

(1) Operators O1 and O4 are the simple-minded SI and
SD operators. Their coupling is to total spin and total
charge (in the general case, some combination of N
and Z, depending on chosen operator isospin). These
operators are point operators, and thus the standard
treatment is valid in all respects.

(2) The coupling of operator O11 to the nucleus is 1i ,
the vector charge operator. As the nuclear physics
is identical to that of O1, a standard SI analysis
would correctly model the nuclear physics of this
operator. However, the dependence of rates on the
WIMP velocity distribution differ for O1 and O11,
and this difference would normally not be addressed
in comparisons among experiments if only interaction
O1 is retained [see point (7) below].

(3) The operatorsO6 andO10 couple to the nucleus through
longitudinal spin, �q · �σ (i), while O9 couples through
transverse spin, �q × �σ (i). For these operators, the
standard analysis based on a spin-dependent coupling
would yield the right threshold (�q → 0) coupling to
the nucleus, but misrepresent the form factors (as ′
and ′′ are described by distinct form factors). The
predicted dependence of rates on the galactic WIMP
velocity distribution also differs from the standard O4

interaction [see point (7) below].
(4) The operators O3, O5, O8, O12, O13, and O15 in-

volve velocity-dependent couplings to the nucleus.
The standard SI/SD analysis grossly misrepresents
the physics of these operators, leading to errors that

can exceed several orders of magnitude. They couple
dominantly through the new composite operators �,
�̃′, and �′′: The contributions of these operators to
the cross section are parametrically enhanced relative
to those of the standard operators by the factor (4 −
24) × (μT /mN )2 ∼ 10A2. The resulting large errors
can be partially mitigated in the case of O5 and O8

because the new operators compete with M0, which
can be coherent if isospin couplings are dialed to make
the operator primarily isoscalar. However, even in this
favorable case, the error can be an order of magnitude.

(5) In all of the cases above, the standard treatment would
distort the multipolarity of the coupling. Operators
O3, O12, O13, and O15 would appear in the standard
treatment as spin-dependent interactions, coupling
through ′

1 and ′′
1 , and thus could be probed only

if the target has jN � 1/2. In fact, O3, O12, and O15

have dominant scalar couplings through �′′
0, which we

have noted is proportional to �σ (i) · �l(i), an operator that
is not only scalar, but is quasicoherent, as discussed
in Ref. [8]. The dominant contribution from O13 is
through the tensor operator �̃′

2, which requires jN � 1,
a possibility totally outside the standard description.

(6) Two operators remain that at first appear puzzling:
O7 and O14 have velocity-dependent couplings to the
nucleus, but unlike the operators discussed in point
(5), they have standard spin-dependent couplings, and
no contribution from the new composite operators.
This result is a consequence of the good P and CP
of nuclear wave functions. These operators couple to
the nucleus through the axial charge, �SN · �v⊥. When
one combines �SN · �v⊥ with e−i �q·�xi to produce multipole
operators in the standard way, the matrix elements of
the even multipoles vanish by parity, while those of the
odd multipoles vanish by CP (or, equivalently, time-
reversal invariance). Consequently, all contributions
of intrinsic velocities to O7 and O14 vanish. Thus,
the only contribution to the axial charge operator that
survives is the single degree of freedom corresponding
to the nuclear center-of-mass velocity. As this velocity
is a c number, the associated nuclear coupling is a
conventional spin operator, ′

1.
(7) By adopting an interaction having the form O1 or O4,

one builds in the assumption that detector rates depend
on the v0 moment of the galactic velocity distribution.
This assumption is generally in error for operators other
than O1 and O4, even if the operator is one of those
described in points (2) and (3) above, with nuclear
physics quite similar to O1 and O4. The rates for LO,
NLO, NNLO, . . . , operators depend on the v0, v2,
v4, . . . , moments, respectively, of the WIMP velocity
distribution. Consequently, the distribution of events
as a function of recoil energy ER could be used to
discriminate among classes of candidate interactions.

V. SUMMARY AND DISCUSSION

This paper was written with three goals in mind. The first
was to formulate the nuclear physics of dark-matter scattering
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in a way that is both fully general, so that no unjustified
assumptions are made about the nature of the WIMP-nucleon
interaction, and transparent physically, so that one sees by
inspection what particle-physics quantities can be tested in
elastic scattering experiments. This was accomplished by
employing a general WIMP-nucleon interaction developed in
EFT and applying standard techniques of multipole analysis
in semileptonic weak interactions to express the cross section
in a factorized form as products of WIMP and nuclear
response functions. In the usual context of electron or neutrino
scattering, this kind of approach allows one to immediately
see how to exploit the lepton—the electron or neutrino—to
probe the less-well-understood nucleus. For example, in elastic
electron scattering one can study distribution of charge in the
nucleus (SI) or the distribution of the magnetization current
(SD), by controlling lepton kinematics, leading to the standard
Rosenbluth separation of the charge and magnetic elastic form
factors. The reverse is the case in dark-matter studies: Here
the WIMP properties are the unknowns and the nuclear target
becomes the probe. By exploring nuclear targets with different
ground-state properties, one can constrain the character of
the low-energy WIMP-nucleon interaction. In this paper we
sought to define what, in principle, could be learned about
dark matter by varying the nuclear probe in this way.

The application of such standard techniques to WIMP-
nucleus scattering leads to a factorized cross section that
involves three new operators not found in standard SI/SD
analysis. There are also differences in the operators treated
in common, e.g., distinct form factors for the the transverse
and longitudinal spin components. Large differences between
an analysis that properly treats the nuclear size, which cannot
be neglected because |�q · �r(i)| ∼ 1, and the standard SI/SD
analysis are found for approximately half of the EFT operators,
the subset with velocity dependence. The SI/SD analysis
requires such interactions to be accompanied by at least
one factor of �v⊥2

T ∼ 10−6. However, any velocity-dependent
interaction necessarily couples to the WIMP velocity and to
the internuclear velocities �v(i) with equal strengths. These
intrinsic velocities combine with �q · �r(i) to form even-parity
operators such as

q

mN

��(i),
q

mN

�σ (i) · ��(i).

Consequently, any calculation that properly treats internal
nuclear degrees of freedom leads to new operators and to
associated rates that are suppressed only by q2/m2

N ∼ 10−2.
The standard SI/SD model of dark-matter particle interactions
fails dramatically for interactions with derivative couplings:
In these cases the unjustified assumption of a point nucleus—
effectively insisting that �q · �r(i) ∼ 0 when in fact it is ∼1—
leads to erroneous results.

Our formulation has implications for WIMP search strate-
gies, specifically for the number and variety of direct-detection
experiments that may be required to understand dark matter,
once nonzero rates are found. Historically, we know that
characterizing unknown interactions is challenging: The form
of the low-energy weak interaction—which of five candidate
interactions contribute—was debated into the mid-1950s

though evidence of its V and A nature came as early as 1936
[10].

While the standard SI/SD description is a sensible way to
characterize detector sensitivities now, greater care may be
needed once dark-matter events are seen in several detectors.
Even among operators closely related to O1 or O4—e.g., those
carrying additional kinematic factors (e.g., O6, O9, O10, O11)
or distinct form factors because the spin coupling is purely lon-
gitudinal or purely transverse (e.g., O6, O9, O10)—differences
will appear between targets, reflecting, for example, the impact
of the nuclear mass on the typical momentum transfer. Other
candidate operators have no relationship to the SI/SD ones:
This is generally the case for velocity-dependent interactions.
As was shown in Ref. [8], it is not unusual to find changes in
the relative sensitivities of detectors of an order of magnitude
or more, as operators are varied. For example, the relative
sensitivity of a Xe detector to ones using NaI or Ge changes
by factors of ∼14 and ∼7, respectively, if the the operator
O4 = �Sχ · �SN is changed to O8 = �Sχ · �v⊥ (taking the coupling
to be to neutrons). The corresponding nuclear operators are
�σ (i) and ��(i), and both NaI and Ge are relatively more
sensitive to the latter than the former. Thus, it is possible to
get contradictory answers from comparisons among detectors,
if an analysis is done assuming O4, while the underlying
interaction is actually O8.

However, there is another motivation for doing more elastic
scattering experiments than just avoiding confusion: There is
more to be learned from such experiments than is apparent in
SI/SD analyses. To distinguish a SI interaction from a SD one,
one simply needs results from two targets, one with J = 0 and
the second with J > 0. If isospin is included, perhaps four
are need, two scalar targets with distinct isospin and two spin-
sensitive targets, one with an unpaired proton and the second
with an unpaired neutron. However, in fact, Eq. (37) states
that experimentalists can derive eight distinct constraints from
elastic scattering from the rates they measure, provided they
systematically vary the “nuclear physics knobs” by exploring
targets with the requisite sensitives to the operators described
here. This includes constraints on the velocity-dependent
interactions. The previous discussion of Ge and Xe sensitivities
provides a nice example of the importance of avoiding the
kinds of assumptions that are implicit in the SI/SD approach.
If comparable experiments in Ge and Xe were to yield events
in the SD channel for Ge but none in Xe, confusion would
ensue: Xe has the larger SD cross section (barring fine tuning
of the isospin dependence). However, in an analysis that uses
the general form of the cross section, the conclusion would
be both clear and important: WIMPs must couple dominantly
through �v⊥—that is, through the operator ��(i)—rather than
�SN (i). This conclusion could then be tested in other targets
with enhanced sensitivity to ��(i), e.g., NaI. In a similar way,
the scalar operators 1N (i) and σ (i) · ��(i) can be distinguished,
if nuclear targets with the requisite properties are used.

As the experimental community is about to begin a process
of “downselecting” to fewer experiments and targets, it is
important to keep such possibilities in mind. It is not easy
to predict at this time how many experiments will eventually
be needed, to fully characterize dark-matter elastic scattering.
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A further goal of this paper was to simplify the inter-
face between the particle physics and nuclear physics of
dark matter. As the theory ranges from the construction
of ultraviolet theories of dark matter to the many-body
physics governing ground-state properties of heavy nuclei, the
integration required to interpret experiment can be challenging.
Our approach has been to divide this problem into three
components, with the center block, the WIMP-nucleon EFT
that leads to the operators Oi , accessible to both communities.
The nonrelativistic EFT framework is sufficiently general that
almost every candidate ultraviolet theory will match on the
Oi : This becomes the particle theorist’s job, one that can be
done without any knowledge of the nuclear physics. Similarly,
the nuclear physics has been framed in terms of the one-body
density matrix, thereby factoring the nuclear physics from
the particle physics of dark matter. Generating the density
matrices for the targets experimentalists have chosen becomes
the nuclear theorist’s job, one that can be done without any
consideration of specific operators, other than their rank in
angular momentum and isospin.

The division of the problem into ultraviolet theory, non-
relativistic EFT, and one-body density matrices may help the
particle and nuclear communities work together more produc-
tively on dark-matter studies. This division was exploited in
the construction of the response function Mathematica script
described in Appendix B. Given the density matrix (density
matrices for several of common nuclear targets are built into the
script), many-body matrix elements of the nuclear operators
in Eq. (37) are reduced to simple sums over single-particle
matrix elements, which the script then evaluates analytically.
A nuclear theorist can explore the consequences of a new
many-body calculation simply by inserting a new density
matrix into the code. Similarly, the script contains the table of
matching coefficients given in Table I: A particle theorist can
explore the consequences of a new field theory of dark matter
by specifying the relativistic form of the dark-matter particle
interaction with nucleons. One of the attractive features of
the nonrelativistic EFT formulation is as a bridge connecting
the particle-physics modeling and nuclear-structure aspects of
dark matter.
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APPENDIX A: SOME DETAILS OF THE RESPONSE
FUNCTION DERIVATION

The algebraic techniques that lead to Eq. (37) are commonly
used in treatments of semileptonic weak interactions. We
briefly outline the steps, after first taking note of certain

simplifications that are made in the many-body theory to obtain
the relatively tractable form of Eq. (37).

1. Treatment of the velocity operator

We take as our WIMP-nucleus interaction the sum over
the one-body interactions of the WIMP with the individual
nucleons in the nucleus. While this is the usual starting
point for treatments of electroweak nuclear reactions, it is an
assumption. The nucleon is a composite object held together
by the exchange of various mesons, which clearly can have
their own interactions with the WIMP. There has been some
work on the possible size of two-body corrections to WIMP-
nucleus interactions [11,12]. Our feeling at this point is that
the uncertainty of the WIMP interaction with nucleons, as
embodied in our 14 coefficients ci , is currently so great that the
one-body approximation is appropriate. This sentiment would
change were dark-matter interactions discovered, making a
detailed understanding WIMP-matter interactions important.

Given the assumption of a one-body interaction, we noted
that the Galilean invariance then leads to the replacement

�v⊥ → {�vχ − �vN (i),i = 1, . . . ,A}
≡ �v⊥

T − {�̇vN (i),i = 1, . . . ,A − 1}, (A1)

where �vχ and �vN are the symmetrized velocities (�vχ,in +
�vχ,out)/2 and (�vN,in + �vN,out)/2, respectively, and where
{�̇vN (i)} represents the set of A − 1 independent symmetrized
internucleon Jacobi velocities. The DM particle velocity
relative to the nuclear center of mass is a c number,

�v⊥
T = �vχ − �vT

�vT ≡ 1

2A

A∑
i=1

[�vN,in(i) + �vN,out(i)],

while the internal nuclear Jacobi velocities �̇vN (i) are operators
acting on intrinsic nuclear coordinates. It may be helpful
to illustrate this division more explicitly, using one of our
interactions, the axial charge operatorO7. We take the simplest
example of two nucleons in a nucleus. Then

�v⊥ · �SN →
2∑

i=1

1

2
[�vχ,in + �vχ,out − �vN,in(i) − �vN,out(i)] · �SN (i)

= 1

2

[
�vχ,in + �vχ,out − �vN,in(1) + �vN,in(2)

2

− �vN,out(1) + �vN,out(2)

2

]
·

2∑
i=1

�SN (i)

− 1

2

[ �vN,in(1) − �vN,in(2)

2
+ �vN,out(1) − �vN,out(2)

2

]

· [�SN (1) − �SN (2)]

≡ �v⊥
T ·

2∑
i=1

�SN (i) − �̇vN · [�SN (1) − �SN (2)] (A2)

065501-18



WEAKLY INTERACTING MASSIVE PARTICLE-NUCLEUS . . . PHYSICAL REVIEW C 89, 065501 (2014)

yields one term proportional to �v⊥
T ,

�v⊥
T ≡ 1

2
(�vχ,in + �vχ,out − �vT,in − �vT,out), where

�vT,in ≡ 1

2

2∑
i=1

�vN,in(i) and (A3)

�vT,out ≡ 1

2

2∑
i=1

�vN,out(i),

and a second term that depends only on the relative internu-
cleon velocity,

�̇vN ≡ 1

2

[ �vN,in(1) − �vN,in(2)

2
+ �vN,out(1) − �vN,out(2)

2

]
,

(A4)

and is thus separately Galilean invariant. This decomposition
can be repeated for A nucleons

A∑
i=1

1

2
[�vχ,in + �vχ,out − �vN,in(i) − �vN,out(i)] · �SN (i)

= �v⊥
T ·

A∑
i=1

�SN (i) −
{

A∑
i=1

1

2
[�vN,in(i) + �vN,out(i)] · �SN (i)

}
int

,

where �vT is now the target velocity obtained by averaging over
A nucleon velocities. The intrinsic operator on the right can
be written in a form that makes the dependence on relative
nucleon velocities manifest,

1

2A

A∑
i>j=1

[�SN (i) − �SN (j )] · {[�vN,in(i) + �vN,out(i)]

− [�vN,in(j ) + �vN,out(j )]}, (A5)

or, alternatively and trivially, it can be written as the difference
of two terms,

A∑
i=1

1

2
[�vN,in(i) + �vN,out(i)] · �SN (i)

− 1

2
[�vT,in + �vT,out] ·

A∑
i=1

�SN (i). (A6)

We make two technical observations.

(i) The assumption that the WIMP-nuclear interaction
is the sum over the individual WIMP-nucleon inter-
actions leads to two interactions that are separately
Galilean invariant, one constructed from �v⊥

T and one
constructed from the internal relative nucleon veloci-
ties. However, these two interactions then have a com-
mon coefficient, c7. In contrast, if one were to construct
an effective theory at the nuclear level, operators that
are separately invariant would be assigned independent
strengths. It would be interesting to explore whether the
work of [11,12] on more complicated WIMP-nucleus
couplings can be viewed as adding corrections to
the one-body formulation that, in fact, make the two
operators independent.

(ii) While the nuclear matrix elements in the formulas we
derive in the text are intrinsic ones, in fact, almost
all calculations of the structure of complex nuclei
are performed in overcomplete bases in which the
coordinates of all A nucleons appear. If the underlying
single-particle basis is the harmonic oscillator and if
set of included Slater determinants is appropriately
chosen, certain separability properties of the harmonic
oscillator allow one to remove the extra degrees of
freedom by numerical means, forcing the center of
mass into the 1s state. Yet still the basis is expressed in
terms of nucleon coordinates. Largely for this reason,
the intrinsic operator is evaluated using Eq. (A6) with
the f urther assumption that the second, more com-
plicated, term in Eq. (A6) can be ignored. This clearly
greatly simplifies the calculation, allowing one to
evaluate the nuclear matrix element from the one-body
density matrix. This kind of approximation—or more
correctly, simplification—is used almost universally in
nuclear physics, as there is no practical alternative.
In schematic models it can be shown that the errors
induced are typically o(1/A) and associated with a
center-of-mass form factor.

2. Multipole decomposition

In the text leading up to Eq. (35), we formed a WIMP-
nucleus interaction by assuming the one-body form, as
discussed above, interpreting nucleon momenta as operators
acting on the wave functions of the bound nucleon. We stressed
that the resulting interaction has precisely the same form as that
conventionally used in SI/SD (or O1/O4) analyses, except that
a complete set of EFT operators have been included. Equation
(35), repeated here,

∑
τ=0,1

{
lτ0

A∑
i=1

e−i �q·�xi + lAτ
0

A∑
i=1

1

2M

[
−1

i

←−∇ i · �σ (i)e−i �q·�xi + e−i �q·�xi �σ (i) · 1

i

−→∇ i

]

+ �lτ5 ·
A∑

i=1

�σ (i)e−i �q·�xi + �lτM ·
A∑

i=1

1

2M

(
−1

i

←−∇ ie
−i �q·�xi + e−i �q·�xi

1

i

−→∇ i

)

+ �lτE ·
A∑

i=1

1

2M
[
←−∇ i × �σ (i)e−i �q·�xi + e−i �q·�xi �σ (i) × −→∇ i]

}
int

t τ (i),
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where the WIMP tensors appearing above are defined in Eq. (36) and contain all of the EFT input in the form of the ci’s, is the
starting point for our multipole analysis. The invariant amplitude is the matrix element of this interaction,

Mnucleus/EFT =
∑
τ=0,1

〈jχ ,Mχ ; jNMN |
{

lτ0

A∑
i=1

e−i �q·�xi + lAτ
0

A∑
i=1

1

2M

[
−1

i

←−∇ i · �σ (i)e−i �q·�xi + e−i �q·�xi �σ (i) · 1

i

−→∇ i

]

+ �lτ5 ·
A∑

i=1

�σ (i)e−i �q·�xi + �lτM ·
A∑

i=1

1

2M

(
−1

i

←−∇ ie
−i �q·�xi + e−i �q·�xi

1

i

−→∇ i

)

+ �lτE ·
A∑

i=1

1

2M
[
←−∇ i × �σ (i)e−i �q·�xi + e−i �q·�xi �σ (i) × −→∇ i]

}
int

t τ (i)|jχ ,Mχ ; jNMN 〉, (A7)

where the subscript “int” instructs one to take the intrinsic part of the operator (that is, the part depending on the internal Jacobi
coordinates).

The Hamiltonian can be expressed in terms of nuclear operators carrying good angular momentum and parity and transforming
simply under time reversal by carrying out a standard multipole decomposition. For the scalar nuclear terms in Eq. (A7) this
involves the expansion of the plane wave in terms of the Bessel spherical harmonics,

MJM (q �xi) ≡ jJ (qxi)YJM (�xi
), (A8)

while for the vector nuclear quantities of the form �Aei �q·�xi = ∑
λ(−1)λA−λêλe

−i �q·�xi one uses Bessel vector spherical harmonics,

�MJLM (q �xi) ≡ jL(qxi) �YJLM (�xi
), �YJLM (�xi

) ≡
∑
mλ

YLM (�xi
)�eλ〈Lm1λ|(L1)JM〉, (A9)

where �eλ denotes a spherical unit vector and Aλ = êλ · �A, to project out longitudinal, transverse electric, and transverse magnetic
components. After some algebra, Mnucleus/EFT can be written

∑
τ=0,1

〈jχ ,Mχf ; jNMNf |
( ∞∑

J=0

√
4π (2J + 1)(−i)J

[
lτ0 MJ0;τ (q) − ilAτ

0
q

mN

�̃J0;τ (q)

]

+
∞∑

J=1

√
2π (2J + 1)(−i)J

∑
λ=±1

(−1)λ
{
lτ5λ[λJ−λ;τ (q) + i′

J−λ;τ (q)]

− i
q

mN

lτMλ[λ�J−λ;τ (q) + i�′
J−λ;τ (q)] − i

q

mN

lτEλ[λ�̃J−λ;τ (q) + i�̃′
J−λ;τ (q)]

}

+
∞∑

J=0

√
4π (2J + 1)(−i)J

[
ilτ50

′′
J0;τ (q) + q

mN

lτM0�̃
′′
J0;τ (q) + q

mN

lτE0�
′′
J0;τ (q)

])
|jχ ,Mχi ; jNMNi〉, (A10)

where we have defined the operators as

OJM;τ (q) ≡
A∑

i=1

OJM (q �xi)t
τ (i). (A11)

The 11 operators appearing above correspond to the charge
multipoles of the vector charge (accompanying l0) and axial-
vector charge (lA0 ) operators, and the longitudinal, transverse
electric, and transverse magnetic projections of the axial-
vector spin current (accompanying �l5), vector convection
current (accompanying �lM ), and vector spin-velocity current

(accompanying �lE) operators. As transverse multipoles must
carry at least one unit of angular momentum, the multipole
sums in those cases begin with J = 1.

In elastic transitions the contributing multipoles are
severely restricted by the known approximate good parity
and CP of nuclear ground states, as detailed in Table II.
Five of the operators (those not defined in the body of this
paper) are eliminated entirely; in other cases, only the even
or odd multipoles can satisfy the combined parity and CP
requirements. Thus, we obtain the simpler expression

Melastic
nucleus/EFT =

∑
τ=0,1

〈jχ ,Mχf ; jNMNf |
{ ∞∑

J=0,2,...

√
4π (2J + 1)(−i)J

[
lτ0 MJ0;τ (q) + q

mN

lτE0�
′′
J0;τ (q)

]

+
∞∑

J=1,3,...

√
2π (2J + 1)(−i)J

∑
λ=±1

(−1)λ
[
ilτ5λ

′
J−λ;τ (q) − i

q

mN

lτMλλ�J−λ;τ (q)

]
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TABLE II. The parity-time reversal transformation properties for the 11 operators arising in DM particle scattering off nuclei. The nearly
exact parity and CP of nuclear ground states restricts the contributing multipoles in elastic scattering to those that transform under parity and CP
as even-even (E-E): These are the even multipoles of the vector charge operator MJM and of the longitudinal and transverse electric projections
of the spin-velocity current �′′

JM and �̃′
JM and the odd multipoles of the longitudinal and transverse electric projections of the spin current

′′
JM and ′

JM and of the transverse magnetic projection of the convection current �JM .

Projection Charge/current Operator P,CPproperties P,CPproperties
Even J Odd J

Charge Vector charge MJM E-E O-O
Charge Axial-vector charge �̃JM O-E E-O
Longitudinal Spin current ′′

JM O-O E-E
Transverse magnetic Spin current JM E-O O-E
Transverse electric Spin current ′

JM O-O E-E
Longitudinal Convection current �̃′′

JM E-O O-E
Transverse magnetic Convection current �JM O-O E-E
Transverse electric Convection current �′

JM E-O O-E
Longitudinal Spin-velocity current �′′

JM E-E O-O
Transverse magnetic Spin-velocity current �̃JM O-E E-O
Transverse electric Spin-velocity current �̃′

JM E-E O-O

+
∞∑

J=2,4,...

√
2π (2J + 1)(−i)J

∑
λ=±1

(−1)λ
[

q

mN

lτEλ�̃
′
J−λ;τ (q)

]

+
∞∑

J=1,3,...

√
4π (2J + 1)(−i)J

[
ilτ50

′′
J0;τ (q)

]} |jχ ,Mχi ; jNMNi〉. (A12)

This expression involves only the six multipole operators of Eq. (39).
The Wigner-Eckart theorem can be used to reduce the nuclear matrix elements. Then after forming |M|2, averaging over

initial nuclear spins, summing over final nuclear spins, and using the orthogonality condition imposed by the two three-j symbols
obtained in the reduction, one obtains

1

2jN + 1

∑
MNi,MNf

∣∣〈jχMχf ; jNMNf |Melastic
nucleus/EFT|jχMχi ; jNMNi〉

∣∣2

= 4π

2Ji + 1

∑
τ=0,1

∑
τ ′=0,1

( ∞∑
J=0,2,...

{〈
lτ0
〉〈
lτ

′
0

〉∗〈jN ||MJ ;τ (q)||jN 〉〈jN ||MJ ;τ ′(q)||jN 〉

+ �q
mN

· 〈�lτE 〉 �q
mN

· 〈�lτ ′
E

〉∗〈jN ||�′′
J ;τ (q)||jN 〉〈jN ||�′′

J ;τ ′(q)||jN 〉

+ 2�q
mN

· Re
[〈�lτE 〉〈lτ ′

0

〉∗]〈jN ||�′′
J ;τ (q)||jN 〉〈jN ||MJ ;τ ′(q)||jN 〉

}

+
∞∑

J=2,4,...

1

2

(
q2

m2
N

〈�lτE 〉 · 〈�lτ ′
E

〉∗ − �q
mN

· 〈�lτE 〉 �q
mN

· 〈�lτ ′
E

〉∗) 〈jN ||�̃′
J ;τ (q)||jN 〉〈jN ||�̃′

J ;τ ′(q)||jN 〉

+
∞∑

J=1,3,...

{
q̂ · 〈�lτ5 〉q̂ · 〈�lτ ′

5

〉∗〈jN ||′′
J ;τ (q)||jN 〉〈jN ||′′

J ;τ ′(q)||jN 〉

+ 1

2

(〈�lτ5 〉 · 〈�lτ ′
5

〉∗ − q̂ · 〈�lτ5 〉q̂ · 〈�lτ ′
5

〉∗)〈jN ||′
J ;τ (q)||jN 〉〈jN ||′

J ;τ ′(q)||jN 〉

+ 1

2

(
q2

m2
N

〈�lτM 〉 · 〈�lτ ′
M

〉∗ − �q
mN

· 〈�lτM 〉 �q
mN

· 〈�lτ ′
M

〉∗) 〈jN ||�J ;τ (q)||jN 〉〈jN ||�J ;τ ′(q)||jN 〉

+ �q
mN

· Re
[
i
〈�lτM 〉 × 〈�lτ ′

5

〉∗]〈jN ||�J ;τ (q)||jN 〉〈jN ||′
J ;τ ′(q)||jN 〉

})
, (A13)
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where we have used the shorthand for the WIMP matrix elements

〈l〉 ≡ 〈jχMχf |l|jχMχi〉. (A14)

Note that while our original multipole decomposition was done with a z axis aligned along �q, this result is now frame independent
as it is expressed entirely in terms of scalar products.

Finally, we average over initial WIMP spins and sum over final spins, as in the nuclear case. The WIMP tensors involve
combinations of 1 and �Sχ . As we sum over all magnetic quantum numbers, the only surviving terms in the bilinear products of
the WIMP tensors must transform as spin scalars, and thus as 1 or as �S 2

χ . The constant term yields 1. All cross terms linear in �Sχ

must vanish. The spin terms must be proportional to jχ (jχ + 1). The associated coefficients are easily calculated for the various
products,

1

2jχ + 1

∑
mχi

mχf

〈jχmχi
|

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�Sχ |jχmχf
〉 · 〈jχmχf

| �Sχ

�A · �Sχ |jχmχf
〉 · 〈jχmχf

| �B · �Sχ

�A × �Sχ |jχmχf
〉 · 〈jχmχf

| �B × �Sχ

�A × �Sχ |jχmχf
〉 · 〈jχmχf

| �Sχ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

|jχmχi
〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

�A · �B/3

2 �A · �B/3
0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

jχ (jχ + 1). (A15)

The results are further simplified because the resulting scalars
�A · �B often involve longitudinal and transverse quantities or
�q · �v⊥

T , which vanish.
Executing the associated algebra yields the final result given

in Eqs. (37) and (38). The transition probability is expressed
as a product of WIMP and nuclear responses functions, where
the former isolates the particle physics in functions that are
bilinear in the EFT coefficients, the ci’s.

3. Generalizing the exchange

Our EFT approach has focused on interactions between the
WIMP and nucleus mediated by a heavy exchange, so that
the interaction is pointlike. However, nothing in the treatment
of the WIMP or nuclear vertices depends on this assumption.
We believe the adaptation of this code for cases in which the
exchange is mediated by a photon or other light particle would
be very simple. This would, of course, require one to add the
needed momentum-dependent propagator to the code. Once
that line is added, however, we see no reason that subsequent
integrations over phase space would present any difficulties:
Indeed, the operator formalism we employ here is the common
formalism for both electron scattering and semileptonic weak
interactions. The exchange in the former is a photon, while the
latter is treated as a four-fermion interaction analogous to the
WIMP case.

APPENDIX B: THE Mathematica SCRIPT:
DOCUMENTATION

The formalism presented in this paper, with its factorization
cross sections into products of WIMP and nuclear responses, is
the basis for the Mathematica script available as Supplemental
Material [13]. The script was constructed so that experimental
groups would be able to conduct model independent analyses
of their experiments using the EFT framework. We have
integrated the particle and nuclear physics in ways that should
make the code useful to nuclear structure and particle theorists
as well, as described in previous sections.

In this section, which also serves as a readme file for the
program, we discuss the usage of the program itself.

1. Initialization

Our Mathematica package, along with all of the associated
documentation, can be found at http://www.ocf.
berkeley.edu/nanand/software/dmformfactor/. To
initialize the package, either put dmformfactor.m in your
directory for Mathematica packages and run
<<‘dmformfactor

or initialize the package file itself from its source directory.
For example,
<<‘‘/Users/me/myfiles/dmformfactor.m’’

2. Summary of functions

To compute the WIMP response functions Rττ ′
i (�v⊥2

T , �q 2

m2
N

),

the user must first call functions setting the dark-matter mass
and spin as well as the coefficients of the effective Lagrangian.
To compute the nuclear response functions Wi[(qb/2)2],
the user must specify the Z and A of the isotope. The
density matrices and the oscillator parameter b needed in the
calculation of the Wi are set internally in the script, though
there are options to override the internal values. The nuclear
ground-state spin and isospin (the script assumes exact isospin,
consistent with an input density matrix that is doubly reduced;
see text) are also set internally, once Z and A are input.

(i) SetJChi and SetMChi: These set the dark-matter
spin and mass, respectively. Simply call
SetJChi[j]
and
SetMChi[m]
to set the dark-matter spin to j and the dark-matter
mass tom. The unitGeV is recognized by the script; for
example, calling SetMChi[10 GeV] sets the dark-
matter mass to 10 GeV.

(ii) SetIsotope[Z,A,bFM, filename]
This sets the nuclear-physics input, including the
charge Z and atomic number A of the isotope, the file
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for the density matrices that the user wants to use, and
the oscillator parameter b[fm] (that is, b in femtome-
ters). If the users elects to use the default density ma-
trices (which are available for 19F, 23Na, 70Ge, 72Ge,
73Ge, 74Ge, 76Ge, 127I, 128Xe, 129Xe, 130Xe, 131Xe,
132Xe, 134Xe, and 136Xe), then simply take filename
to be “default” (note that one must still specify the
correct Z and A for the isotope of interest). Otherwise,
users must provide their own density matrix file,
to be read in by the program. Similarly, entering
“default” for b will employ the approximate formula
b[fm] =

√
41.467/(45A−1/3 − 25A−2/3). To use an-

other value of b[fm], enter a numerical value. The
nuclear mass is set to AmN .

(iii) SetCoeffsNonrel[i,value,isospin]
This sets the coefficients ci of the EFT operators
Oi . The script allows the user to set values for
{c1,c3,c4, . . . ,c15}; note that c2 is excluded, for
reasons discussed in the text. We have chosen a
normalization such that the coefficients ci all have
dimensions (Energy)−2;1 to compensate for this, the
dimensionless user input for value is multiplied by
m−2

V , with mV ≡ 246.2 GeV.
The coefficients carry an isospin index α that can be
specified in one of two ways, as a coupling to protons
and neutrons, {cp

i ,cn
i }, in which case the associated

operator is [
c
p
i

1 + τ3

2
+ cn

i

1 − τ3

2

]
Oi , (B1)

or as a coupling to isospin, {c0
i ,c

1
i }, where the

associated operator is[
c0
i + c1

i τ3
]Oi . (B2)

For the former, the input should be “n” for neutrons
and “p” for protons. For example,

SetCoeffsNonrel[4,12.3, ‘‘p’’]

whereas for the latter it should be 0 for isoscalar
and 1 for isovector. All coefficients are set to
0 by default when the package is initialized.
SetCoeffsNonrel will change only the coeffi-
cient specified and will leave all other coefficients
unchanged. So, for example, if one initializes
the package and calls SetCoeffsNonrel[4,12.3,
0], then c

p
4 and cn

4 will both be 6.15, with
all other coefficients vanishing. If one then calls
SetCoeffsNonrel[4,3.3,‘‘p’’], then c

p
4 will be

set to 3.3, but cn
4 will not change and will still be 6.15.

Thus, by making two calls, an arbitrary combination
of {cp

4 ,cn
4} or equivalently {c0

4,c
1
4} can be set.

(iv) SetCoeffsRel[i,value,isospin]
These functions are similar to SetCoeffsNonrel,
except that they set the coefficients dj of the
20 covariant interactions Lj

int defined in Table I.

1Note that this convention for the ci’s differs from that in Ref. [8].

The coefficients dj are dimensionless, by inserting
appropriate powers of the user-defined scale mM ,
set by the user function SetMM. This scale is set
by default to be mM = mV ≡ 246.2 GeV. We adopt
a convention where the spinors in Lj

int are defined
as normalized to unity: With this convention a
nonrelativistic reduction of the Lj

int in the second
column of Table I would give the results in the fourth
column. [As noted in the paper, we use a spinor
normalization of 2m in our derivations, but extract the
factor of 4mχmN to maintain the definition above.]
SetCoeffsNonrel and SetCoeffsRel cannot be
used together. By default, the package assumes
you will use SetCoeffsNonrel. The first time the
user calls SetCoeffsRel, the package will first
reset all coefficients back to zero before calling
SetCoeffsRel, after which point it will act nor-
mally. A subsequent call to SetCoeffsNonrel will
similarly first reset all coefficients back to zero and
then revert to nonrelativistic mode.
Because the relativistic operators implicitly assume
spin- 1

2 WIMPs, any call to SetCoeffsRel automat-
ically sets jχ = 1/2.

(v) SetMM[mM]
Set the fiducial scale mM for the relativistic coeffi-
cients di .

(vi) ZeroCoeffs[]
Calling ZeroCoeffs[] simply resets all operators
coefficients to zero.

(vii) ResponseNuclear[y,i,tau,tau2]
This function prints out any of the eight nuclear re-
sponse functions W

ττ2
i (y). This involves a folding of

the single-particle matrix elements with the density
matrices. The results are printed as analytic functions
in the dimensionless variable y = (qb/2)2. The i run
from 1 to 8, according to (1) WM , (2) W′′ , (3) W′ ,
(4) W�′′ , (5) W�̃′ , (6) W�, (7) WM�′′ , and (8) W′�.

(viii) TransitionProbability[v,q(,IfRel)]
This is the main user function. It first prints out the
Lagrangian that is being used.
Second, it folds the Wττ ′

i (y) and Rττ ′
i (�v⊥2

T , �q 2

m2
N

) to

form

Ptot = 1

2jχ + 1

1

2jN + 1

∑
spins

|M|2nucleus−HO/EFT.

(B3)

It then evaluates the transition probability for
the numerical values of b and mN . As b
is in fm, the substitution is y = [qb/(2�c)]2 ∼
[qb/2(0.197 GeV fm)]2. As mN is input in
GeV, this evaluates Eq. (40) as a function
TransitionProbability[vsq,q], where q is in
GeV. This function can be printed out or plotted
numerically.
The conventional relativistic normalization of the
amplitude differs from the nonrelativistic normal-
ization by a factor of 1/(4mχmT ). Because the
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conventional relativistic normalization is commonly
used and produces a dimensionless value for |M|2,
we also provide an optional argument IfRel, which
if set to True will output (B3) with the relativistic
normalization convention [that is, it will multiply
by (4mχmT )2 to produce a dimensionless transition
probability]. By default, it is set to False.

(ix) DiffCrossSection[ERkeV,v]
From the transition probability Ptot, one can imme-
diately obtain the differential cross section per recoil
energy:

dσ

dER

= mT

2πv2
Ptot. (B4)

The function DiffCrossSection[ERkeV,v] takes
as arguments the recoil energy in units of keV and
the velocity of the incoming DM particle in the
laboratory frame. It first prints out the Lagrangian
being used and then outputs the differential cross-
section dσ

dER
.

(x) ApproxTotalCrossSection[v]
From the differential cross section dσ

dER
, one can

also obtain the total cross section as a function of
v by integrating over recoil energies. In general,
this depends on energy thresholds and, written in
closed form, is a complicated analytic function
owing to the exponential damping factor e−2y in
the response functions, so for precise values it is
simplest to do the energy integration numerically.
However, for approximate results we can consider the
limit of small nuclear harmonic oscillator parameter
b, in which case the exponential factor e−2y can
be neglected. For fixed v, the integration over ER

from zero up to the kinematic threshold ER,max =
2μ2

T v2

mT
can be performed analytically. The function

ApproxTotalCrossSection[v] takes as argument
the velocity v of the incoming DM particle in
the laboratory frame and, after printing out the
Lagrangian being used, outputs this approximate
total cross section σ (v).

(xi) EventRate[NT ,ρχ ,q,ve,v0(,vesc)]
One can determine the total detector event rate (per
unit time per unit detector mass per unit recoil
energy) in terms of the transition probability Ptot. One
simply multiplies Ptot by the appropriate prefactor
and integrates over the halo velocity distribution, as
follows:

dRD

dER

= NT

ρχmT

2πmχ

〈
1

v
Ptot(v

2,q2)

〉
. (B5)

Here, 〈· · · 〉 indicates averaging over the halo velocity
distribution. NT is the number of target nuclei per
detector mass, ρχ is the local dark-matter density, mχ

is the dark-matter mass, and mN is the nucleon mass.
In general, the halo average integral should include a
lower bound on the magnitude of the velocity at vmin,

which is vmin = q
2μT

for elastic scattering:

〈h(q,�v)〉 ≡
∫ ∞

vmin(q)
v2dv

∫
d2�fv(�v + �ve)h(q,�v).

(B6)

The vector �ve is Earth’s velocity in the galactic
rest frame. While there has been much work re-
cently on understanding theoretical constraints on
the halo distribution from N -body simulations and
from general considerations of dynamics, little is
known by direct observation and there are still
large uncertainties. A very simple approximation
that suffices for general considerations is to take a
Maxwell-Boltzmann distribution,

fv(�v) = 1

π3/2v3
0

e−v2/v2
0 , (B7)

where v0 is roughly 220 km/s, about the rms velocity
of the visible matter distribution (though N -body
simulations suggest that the dark-matter distribution
may be shallower, and a larger v0 may be more
appropriate). The function EventRate[q,b,ve,v0]
evaluates the event rate dRD

dER
assuming this Maxwell-

Boltzmann distribution as default. A cutoff Maxwell-
Boltzmann distribution is also implemented as an
option, in which case

fv(�v) ∝ (e−v2/v2
0 − ev2

esc/v
2
0 )�

(
v2

esc − �v2
)
, (B8)

where vesc is the escape velocity, and the subtraction
above is included to make the distribution shut down
smoothly. In this case, vesc should be included as an
optional argument to EventRate; if it is not included,
it is set to a default value of 12v0 (which is essentially
vesc = ∞).

(xii) SetHALO[halo]
This sets the halo distribution used. The variable
halo can be set either to “MB”, in which case the
Maxwell-Boltzmann distribution is used, or “MBcut-
off”, in which case the cut-off Maxwell-Boltzmann
distribution is used. It is set to “MB” by default.

(xiii) SetHelm[UseHelm]
Calling SetHelm[True] sets the structure function
for the density operator MJ to be given by the Helm
form factor, rather than by the structure function
obtained from the density matrix. SetHelm[False]
implements the structure function based on the
density matrix, which is the default setting.

3. Examples

A full example for the transition probability would look
like the following:

<<‘‘/Users/me/mypackages/dmformfactor.m’’;
SetJChi[1/2]
SetMChi[50 GeV]
F19filename=‘‘default’’;
bFM=‘‘default’’;
SetIsotope[9, 19, bFM, F19filename]
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SetCoeffsNonrel[3, 3.1, ‘‘p’’]
TransitionProbability[v,qGeV]
TransitionProbability[v,qGeV,True]
To additionally calculate the event rate dRD

dER
in a Maxwell-

Boltzmann halo velocity distribution, one can call
mNucleon=0.938 GeV;
NT=1/(19 mNucleon);
Centimeter=(10^13 Femtometer);
rhoDM=0.3 GeV/Centimeter^3;
ve=232 KilometerPerSecond;
v0=220 KilometerPerSecond;
EventRate[NT,rhoDM,qGeV,ve,v0]
For a cutoff Maxwell-Boltzmann halo, an escape velocity

must also be specified:
mNucleon=0.938 GeV;
NT=1/(19 mNucleon);
Centimeter=(10^13 Femtometer);
rhoDM=0.3 GeV/Centimeter^3;
ve=232 KilometerPerSecond;
v0=220 KilometerPerSecond;
vesc=550 KilometerPerSecond;
SetHalo[‘‘MBcutoff’’];
EventRate[NT,rhoDM,qGeV,ve,v0,vesc]
Finally, to get a quick estimate of the experimental bound

from the 225 live day run of XENON100, one can use the
standard SI isoscalar interaction for a generic isotope of xenon,
taking 131Xe, for instance. Taking into account efficiencies,
the total effective exposure is approximately 2500 kg days.
A relativistic operator coefficient of 2fp/GeV2 with fp =
4 × 10−9 predicts only a couple of events and so should be
close to the upper limit of their allowed cross section:

mNucleon=0.938 GeV;
NT=1/(131 mNucleon);
Centimeter=(10^13 Femtometer);
rhoDM=0.3 GeV/Centimeter^3;
SetMChi[150 GeV]
ve=232 KilometerPerSecond;
v0=220 KilometerPerSecond;
vesc=550 KilometerPerSecond;
SetHALO[‘‘MBcutoff’’];

Xe131filename=‘‘default’’;
bFM=‘‘default’’;
SetIsotope[54, 131, bFM, Xe131filename]
SetCoeffsRel[1,2fp,0]
myrate[qGeV ]=(2500 KilogramDay)

EventRate[NT,rhoDM,qGeV,ve,v0,vesc];
fp=2.4*10^(-4);
NIntegrate[myrate[qGeV] GeV*(qGeV GeV/(131

mNucleon)),qGeV,0,10]
The final line of output should be 2.06 for the value of

the integral, which gives the predicted number of events. The
factor q

131mN
= q

mT
inside the integral is from the change of

variables from dER to dq, because ER = q2/2mT . In this
example, the WIMP is sufficiently heavy that the exact low-
energy threshold changes the prediction by less than a factor of
two, so to get a rough estimate we have just integrated down to
zero energy. Finally, we can look at which nucleon scattering
cross section corresponds to fp = 2.4 × 10−4,

σp = (4mNmT fp/m2
V )2

16π (mN + mT )2
= 1.7 × 10−45 cm2, (B9)

which agrees to within a factor of a few with the published
upper bound on σp from the XENON100 collaboration [14].
A more accurate calculation of the bound would include,
among other corrections, the exact energy thresholds in
the momentum transfer integral, an average over the year
as Earth’s velocity changes, a sum over different isotopes
according to their natural abundance, and a more precise
treatment of energy-dependent efficiencies.

4. Density matrix syntax

If one calls SetIsotope[Z,A, filename] with a custom
density matrix, the input density matrix file must contain the
reduced density matrix elements �J,T (|α|,|β|) to be used.
The in and out states |α| and |β| should be specified by
their principle quantum number N and their total angular
momentum j . See Ref. [15] for more details. The format of the
file for each projection onto operators of spin J and isospin J
should be as follows:

ONE-BODY DENSITY MATRIX · · · 2J0 =2J, · · · 2T

· · · N1
in 2j 1

in N1
out 2j 1

out �J,T
({

N1
in,j

1
in

}
;
{
N1

out,j
1
out

})
...

...
...

· · · Nn
in 2jn

in Nn
out 2jn

out �J,T
({

Nn
in,j

n
in

}
;
{
Nn

out,j
n
out

})

Dots “· · · ” indicate places where the code will simply
ignore what appears there; the routines reading in the input
are searching for regular expressions that match the above
syntax. Consequently, additional lines in the file that are
not of the above form will also be ignored. This is prob-
ably clearest to follow by seeing an explicit example. For
instance, the density matrix for 19F is shown below. The
density matrices for 19F, 23Na, 70Ge, 72Ge,73Ge,74Ge,76Ge,

127I, 128Xe,129Xe,130Xe,131Xe,132Xe,134Xe, and 136Xe are
already built into the program and no external file is
needed.

INITIAL STATE CHARGE CONJ SYM = 0 TIME
REVERSAL SYM = 0

FINAL STATE CHARGE CONJ SYM = 0 TIME
REVERSAL SYM = 0

-23.88003 -23.88003
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ONE-BODY DENSITY MATRIX FOR 2JF = 1 2TF =
1 2JI = 1 2TI = 1 2JO = 0 TO =, 0

NBRA 2*JBRA NKET 2*JKET VALUE
0 1 0 1 4.00000000
1 1 1 1 4.00000000
1 3 1 3 5.65685425
2 1 2 1 1.22525930
2 3 2 3 0.20366116
2 5 2 5 0.85835832
ONE-BODY DENSITY MATRIX FOR 2JF = 1 2TF =

1 2JI = 1 2TI = 1 2JO = 0 TO =, 2
NBRA 2*JBRA NKET 2*JKET VALUE
2 1 2 1 0.36984837
2 3 2 3 0.04794379
2 5 2 5 0.32467225
ONE-BODY DENSITY MATRIX FOR 2JF = 1 2TF =

1 2JI = 1 2TI = 1 2JO = 2 TO =, 0
NBRA 2*JBRA NKET 2*JKET VALUE

2 1 2 1 0.44514263
2 3 2 1 -0.01197751
2 1 2 3 0.01197751
2 3 2 3 -0.05428837
2 5 2 3 -0.12172578
2 3 2 5 0.12172578
2 5 2 5 0.12280637
ONE-BODY DENSITY MATRIX FOR 2JF = 1 2TF =

1 2JI = 1 2TI = 1 2JO = 2 TO =, 2
NBRA 2*JBRA NKET 2*JKET VALUE
2 1 2 1 -0.40780345
2 3 2 1 -0.01278520
2 1 2 3 0.01278520
2 3 2 3 0.01209672
2 5 2 3 0.10547489
2 3 2 5 -0.10547489
2 5 2 5 -0.24110544
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