PHYSICAL REVIEW C 89, 065211 (2014)

The reaction t N — swxr N in chiral effective field theory with explicit A(1232) degrees of freedom
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The reaction 7 N — swr N is studied at tree level up to next-to-leading order in the framework of manifestly
covariant baryon chiral perturbation theory with explicit A(1232) degrees of freedom. Using total cross-section
data to determine the relevant low-energy constants, predictions are made for various differential as well as total
cross sections at higher energies. A detailed comparison of results based on the heavy-baryon and relativistic
formulations of chiral perturbation theory with and without explicit A degrees of freedom is given.
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I. INTRODUCTION

Chiral perturbation theory (xPT) is nowadays a standard
tool to analyze low-energy hadronic reactions in harmony
with the symmetries of QCD. It was originally formulated
by Weinberg [1] and, a few years later, extended and applied
by Gasser and Leutwyler to study the low-energy dynamics
of the Goldstone bosons at the one-loop level in both the
SU2) [2] and the SU(3) [3] sectors. Starting with the
pioneering work by Gasser et al. [4], xPT has also been
extensively used in the baryon sector (see Refs. [5-7] for
review articles, and references therein). In the framework of
x PT, low-energy hadronic observables are calculated within
the chiral expansion, where the expansion parameter Q is
defined as the ratio of the soft scales corresponding to external
momenta, denoted generically by ¢, or the pion mass M, and
the chiral symmetry breaking scale A, ~ 1 GeV. While in
the Goldstone boson sector the hard scale A, only enters the
amplitude through values of the low-energy constants (LECs)
so that pion loop integrals calculated using dimensional
regularization automatically fulfill the chiral power counting,
special treatment of the nucleon mass my ~ A, is required in
the baryon sector. The standard way to maintain the power
counting in the nucleon sector is to use the heavy-baryon
(HB) version of the effective Lagrangian [8,9]. In the heavy-
baryon formulation of chiral perturbation theory (HB x PT), the
nucleon mass does not appear in the propagators and enters
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only in the form of 1/my corrections to the vertices, which
leads to the same suppression of dimensional regularization
loop integrals as in the Goldstone boson sector. It is, however,
known that the HB expansion has, for certain observables
such as some of the nucleon electroweak and scalar form
factors [10,11], a very limited range of convergence. It is thus
advantageous to use a manifestly Lorentz-invariant effective
Lagrangian rather than its HB version. Power counting can
still be maintained using the method of Becher and Leutwyler
[11] to extract the soft (i.e., infrared singular) parts of the loop
integrals leading to the so-called infrared regularized xPT.
Alternatively, the proper chiral scaling of the loop integrals
can be restored in the covariant framework by imposing
the appropriate renormalization conditions as proposed in
Refs. [12,13] within the so-called extended on-mass-shell
scheme. We refer the reader to Ref. [7] for a detailed discussion
and comparison of the various yPT formulations and their
applications in the single-baryon sector; see also Ref. [14] for
arecent application of these ideas in the two-nucleon sector.
Another popular idea for extending the range of applica-
bility of xPT in the nucleon sector is based on the explicit
treatment of the A(1232), the close-by resonance with an
excitation energy of A =ma —my = 293 MeV. All effects
of the A in the standard approach are encoded in the LECs
of pion-nucleon interactions beyond leading order (LO). The
low excitation energy of the A and its strong coupling to
the w N system lead, however, to unnaturally large values of
certain LECs, which can, potentially, spoil the convergence
of the chiral expansion. One can, therefore, argue that the
explicit inclusion of the A in xPT by treating the A-nucleon
mass splitting as a soft scale will allow us to resum a
certain class of important contributions and improve the
convergence compared to the A-less theory [15,16]. The
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improved convergence of HB x PT-A compared to the standard
HBxPT has indeed been confirmed for = N scattering [17],
proton Compton scattering (see [18] and references therein),
nuclear forces (see, e.g., [19-21]), and other processes (see
Ref. [7] for a review). It should, however, be emphasized
that the explicit inclusion of the A makes calculations in
the covariant framework considerably more involved and also
leads to the appearance of additional LECs.

In the present work we analyze in detail single-pion produc-
tion off nucleons from threshold up to the A resonance region
using various formulations of x PT. The reactionm# N — na N
has already attracted considerable interest on the experimental
and theoretical sides which, historically, goes back to the
possibility of using this process for the extraction of the w
scattering lengths (see Refs. [22—24] in the context of x PT and
amore general discussion in Ref. [25] with references to earlier
work). Single-pion production off nucleons is also of special
interest from the point of view of x PT. First of all, it involves
three pions in the initial and final states so that one may expect
for the scattering amplitude to be strongly constrained by the
chiral symmetry of QCD. It therefore provides an excellent
testing ground for xPT. On the other hand, the relatively
high energies involved in this pion production reaction and
the proximity of resonances with a strong coupling to the
w7 N final state make the pursuit of a theoretical description of
this reaction rather challenging. One expects for this process
to be particularly well suited for studying the role of the A
isobar, relativistic effects and unitarity and thus for testing
various available formulations of x PT. Indeed, in Ref. [26] a
relativistic tree level calculation including the A and the Roper
resonance with LO pion-baryon vertices (i.e. dimension one
couplings only) was performed and the appearing parameters
were determined from other sources. The resulting total and
differential cross section data were generally well described,
encouraging further studies in baryon y PT. Last but not least,
it is worth mentioning that the reaction 7 N — s N provides
complementary information to pion-nucleon scattering in the
sense that it is sensitive to certain LECs which cannot be
extracted from the 7 N system. The most prominent example
is the LEC d,¢ which governs the quark mass dependence of
the nucleon axial vector coupling constant. As a matter of fact,
the lack of knowledge of its precise value represents one of the
main sources of theoretical uncertainty in chiral extrapolations
of nuclear observables [27-33].

All these arguments provide a strong motivation to take
a fresh look at the reaction 1N — 7w N in the framework
of xPT. In Refs. [24,34], it was analyzed within HB x PT at
tree- and leading one-loop levels, respectively. A tree-level
calculation based on the relativistic pion-nucleon Lagrangian
is reported in Ref. [35]. The role of unitarity corrections in a
HB calculation was in particular stressed in Ref. [36]. While
these studies already showed that the predictions of yPT are
in a satisfactory agreement with experimental data, we expect
to be able to improve on them in the A region by explicitly
taking into account the A degrees of freedom systematically,
extending the earlier work of Ref. [26]. To the best of our
knowledge, no calculations of this reaction using xPT with
explicit A’s beyond the LO pion-baryon couplings has been
performed. In this paper we fill this gap and study single-
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pion production off nucleons in the framework of relativistic
baryon xPT with explicit A degrees of freedom at complete
tree level with the inclusion of the terms from the dimension-
two effective Lagrangian.

Our paper is organized as follows. In Sec. II we discuss the
relevant terms in the effective pion-nucleon-A Lagrangian.
The decomposition of the transition matrix elements into the
corresponding invariant amplitudes is considered in Sec. III
while the relevant observables are defined in Sec. V. Section IV
specifies all tree-level contributions to the amplitude up to
next-to-leading order (NLO). The details of the calculation and
the fitting procedure are reported in Sec. VI, while predictions
for observables not used in the fitting procedure are collected in
Sec. VII. Finally, the main results of our study are summarized
in Sec. VIII. The Appendix contains explicit expressions for
the kinematical variables and weight functions we use.

II. EFFECTIVE LAGRANGIAN

We employ the so-called small-scale expansion or ¢
expansion throughout this work, with the expansion parameter
being defined as [16]

M, A
g€ {i,—”,—}; ¢))
AX AX AX

i.e., the A-nucleon mass splitting is treated on the same footing
as the pion mass (see, however, Ref. [37] for an alternative
power counting scheme). We now discuss the terms in the
effective Lagrangian relevant for our calculation.

The relativistic effective Lagrangian needed to describe
pion-nucleon dynamics at tree level consists of the following
pieces (see Ref. [38] for a full list of terms),

Leig = LD + L0 + L2 + L0 + L2 + 20 + L2,
(2)

where the superscripts refer to the chiral dimension. The first
term in Eq. (2) describes the meson interaction,

F!B
2
where the pions are collected in the SU(2) matrix-valued field

U(x) = u(x)?* given by

F? .
L2 = Tﬂ (9, UT"U) + (MUT+UM), (3)

Ry 2 2

U=1+1

wtor Bau—1) ,
T T T T
F, 2F F3 8 F

)

“

where « is a constant representing the freedom in the definition
of the pion field. Further, F, is the pion decay constant,'
M = diag(m,, my) is the quark mass matrix, and B is an
LEC.

'Since the calculation in the present work is carried out at the
tree level, we do not have to differentiate between the pion decay
constant in the chiral limit and its physical value. The same applies
also to other quantities such as the nucleon mass and the nucleon
axial vector coupling.
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The next two terms in Eq. (2) give the leading and
subleading pion-nucleon Lagrangians,

LYY = \P[UD —my + %‘ws}v,

- 1
£512])v = ‘I’|:C1(X+> +c <_W (u,u,) {D",D"} + H«C->
(%)

N
C3 C4

oy leu) =3

s 22 o

where my and g4 denote the nucleon mass and axial vector
coupling, c;’s refer to further LECs, and the proton and neutron
are given in the isodoublet representation,

W= (p). 6)
n

The covariant derivative in Eq. (5) in the absence of external
sources is defined via

Ly v g, u,]

D,=03,+T, with T, =3@u+udu’). (7
In addition, the abbreviation
xo=uxul +uxfu with x =2BM (8)
and the chiral vielbein
u, = i(uT8ﬂu —u BMuT) ©)]

are used.

The inclusion of the A(1232) as an explicit degree of
freedom adds the last four terms to the effective Lagrangian
in Eq. (2). The A isobar is described by a Rarita-Schwinger
isospurion \I!L, a spin-3/2 field, which is constructed via
coupling of a spin-1 to a spin-1/2 field, treated as an isodoublet
with an additional isovector index i € {1,2,3}. The pion-A
Lagrangian up to second order reads [16,17]

L = -k [(ilz)"f — mad¥)gu — (v DY + v, DY)

s

+iy By + madiy,y, + S it ys

(10)
82 iy i 83, ij v
+ ?(Vuuvj +ullyy)ys + 7)/#1,4 ’Vsyv}\llj,

A
C - . .
£33 = 59,0 @yupd” (x1) O @W] +Hee. 4+,

where terms with two or more pion fields in ﬁf)A are not shown
since they do not contribute to the reaction 1N — n N at
order &2. Here, the quantity ®%(z) is defined via ©®"%(z) =
g™ + zy*y*, and z, g2, and g3 denote the so-called off-shell
parameters. Note that the dependence of the amplitude on such
off-shell parameters can be absorbed into a redefinition of the
corresponding LECs (see Refs. [39—41] for more details). It
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is, therefore, convenient to choose
7=g =g=0, (11)

which specifies our conventions for the calculations in the
manifestly covariant framework. Here and in what follows,
we show explicitly the dependence on some of the off-shell
parameters in order to maintain consistency between the
covariant and the HB calculations, as explained below. The
covariant derivative in Eq. (10) is given by
D =9,8Y +Ti with T/ =T,8 —ie”*(zT,).
(12)
Finally, the pion-nucleon-A Lagrangian reads [16,17]

LD s = ha[ ¥ 0 @l Wy + Bul, 0 ()W ],

. o by . .
‘CSI)VA = W;@““(Z)[lmw(’xﬂyﬂ + %w;wéyﬁysrl (13)

bs . i, b
+ Ewéw}’gyﬂyﬂ’ + alwaﬁlDﬁ]\D +Hec,

where % 4 is the m N A axial coupling, b; are further LECs, and
w), = 3Tr[t'ug] and  wyy = STr[c'[Da,ugll. (14)

a2
It should be emphasized that the free spin-3/2 Lagrangian
is nonunique and usually written in terms of an unphysical
“gauge” parameter A, whose entire dependence of the observ-
ables can be absorbed into redefinition of the A field. We have
not shown explicitly the dependence on the parameter A in
the effective Lagrangian by making the choice A = —1. This
particular choice is convenient in the covariant approach since
it leads to the simplest form of the free Lagrangian and thus
also of the free A propagator,
v +ma v 1 v
Ga'(p) = ——fz s <g“ -3y
Lty eyt 2 p“p“>

3 na 3 mzA

5)

Since we are particularly interested here in the role of
relativistic effects, we also carry out the calculations within
HB x PT. In this approach, the nucleon four-momentum p,, is
separated into a large piece close to the on-shell kinematics
and a soft residual contribution k,, via

Pu=my vy +ky, (16)

with v, being the four-velocity of the nucleon with the prop-
erties v> = 1 and v° > 1. The nucleon field ¥ is decomposed
into eigenstates of y with eigenvalues +1 and —1, the so-called
“light” and “heavy” fields, respectively,

_ imyvx p+
N, = "™V Py,

‘ A7)
hy = €™ P,

with the projection operators P = %(1 + ¥). Ny and h,
correspond to the upper and lower components of a Dirac
spinor and, thus, positive- and negative-energy solutions,
respectively. The effects of the /2, components at low energies

can be interpreted as contact terms so that the resulting
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Lagrangian involves only N, and its derivatives. Analogously,
the A resonance is included by defining a “light” spin-3/2 and
isospin-3/2 field

T = I P (P) (18)

v

with the spin and isospin projection operators P33/ * and Eg/ 2

respectively. The other “heavy” component is integrated out of
the action. For more details on the HB expansion in the pion-
nucleon-A sector the reader is referred to Refs. [16,17]. For the
calculation at order €2, the required HB effective Lagrangian
involves the following pieces:

Lar=L2 4+ L0 4 £O 4 f0 4 pO) 4 pO) 4 pO

(19)
The explicit form of the nucleon terms can be found in
Ref. [38], while the A terms are given in Ref. [16]. We
emphasize, however, that the authors of Ref. [16], whose
results for the HB effective Lagrangian are adopted in our
work, made the choice for the gauge parameter A = 0 without
specifying the values of the off-shell parameters. In order
to be consistent with the convention used in the covariant
calculations [see Eq. (11)], one has to choose in the HB
framework

t=—1 fh=-g. &H=-8 (20)
(see Ref. [42] for more details).

III. INVARIANT AMPLITUDES

In this section we discuss the decomposition of the T matrix
for the reaction 7N — mwx N in terms of the corresponding
invariant amplitudes, following Ref. [35]. Throughout this
work, the kinematical variables are defined as

79 (q1) N(p = myv +k)
— 7)) (@) N'(p' =myv + k), (21

where N denotes a nucleon and 7¢ a pion with the isospin
quantum number a.

A. Relativistic chiral perturbation theory

In the relativistic case, the 7 matrix can be expressed in
terms of four invariant amplitudes F; (i € {1,2,3,4}), which
depend on the five Mandelstam variables

s=p+a)?, si=@+p) =@+
h=(@-q)? b=(@—q) 22)
The spin structure of the 7 matrix can be parametrized as

T = i ys (F{* + (g, + 45" + ¢y — 45 F"™
+(dods — g3 Fi" ), (23)

where the superscripts on the spinors i, u refer to the spin. The
isospin decomposition of the invariant amplitudes reads

Fabc — X ( aSbCB + _L,bBaCBZ + 'L’C(SabB3 + achl{t) XN
(24)
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Here, the B;’s have the following symmetry under exchange
of the two outgoing particles:
B (s,51,82,11,12) = € B} (5,52,51,12,11),
€34 = —1. (25)

€12 =1,

In the five physically accessible channels, the amplitudes
contributing to each channel reduce to

L. 77p—a7%:F = x/EBil,

F, =v2(B! + B}),
F,=v2(B?+ BY), (26
. F; = B} + B},

II. mp>nnn:
m. 77p—natatn:
IV. n7p—ata%
V. n’p—>7r0n’p:Fi=Bi2+Bi4.

The unpolarized invariant matrix element squared in the
relativistic formalism has the form

2
|M| Z ss’ YY

with the weight functions y;; = y;; given by the trace over the
respective Dirac structures (see the Appendix).

Z eA F* 27)

1]1

B. Heavy-baryon chiral perturbation theory

In the HB framework, the spin structure of an amplitude is
given by a combination of the noncommuting Pauli-Lubanski
spin vectors §,. In the case of 7N — 7w N, the transition
matrix can be written in terms of four invariant amplitudes, A,
B, C, and D, which depend on the five momenta, k, k', ¢1, g2,
and ¢3, and are defined via [34]

TSl:lyl,)L' —(s)(S q1 Aubc+s 9 Babc+S g Cubc
+i€uap 9 q;qg"vﬂ D“b”)uff). (28)

Here, the HB spinor u'® is given in the Pauli spinor represen-
tation,

) Xs
u(p) = Pu®(p) = J\/( 0 ) (29)
The normalization factor
O+ m
N = pTmn (30)
2m N

ensures the proper matching to the relativistic theory and has
to be taken into account in the 1/my expansion,

NN =1 +o(i2). 31)
nmy

Thus, for a tree-level calculation, the normalization factors can
be set equal to 1. The isospin decomposition is the same as in
the relativistic case, namely,

yabe _ X}Tv/ (.L,a(sbcxl + ‘L’b(SaCXQ + .L,caabX3 + iEach4) XN
X € {A,B,C,D}, (32)
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FIG. 1. LO graphs for the reaction # N — mwr N. Nucleons are denoted by solid lines; pions, by dashed lines. A is denoted by a double

solid line. Crossed diagrams are not shown.

and thus the reduction in the five physically accessible
channels is the same:

. =7p— 7'7% : X = \/in,

X = V2(X, + X2),

. 7tp—>ratrtn: X =vV2X,+ X3),  (33)
X = X3+ Xy,

X =X+ Xy4.

. 77 p—>natan

IV. ntp—atap:
V. np->nanp:

The unpolarized invariant matrix element squared in the HB
formalism reads

|M|2 Z ss’

1
= Z['AF(I% +|BI’q3+|CI*q3 + (A*B + AB*)q, - 4>

+(A*C+ AC*)q,-q3+(B*C+ BC")q, - q3
+4IDPg7g5¢5(1 — x7) (1 — x3)
x(l— (z — x1x2)? >j|

(1=x)(1=x3)/ 1

where xi, x;, and z are the cosines of the angles between ¢
and ¢q,, ¢ and g3, and ¢, and q3, respectively.

(34)

IV. TREE-LEVEL CONTRIBUTIONS TO THE
SCATTERING AMPLITUDE

The LO and NLO diagrams emerging at orders &' and
2 in the small-scale expansion in the relativistic framework
are shown in Figs. 1 and 2, respectively. The LO diagrams

nucleon-A axial constant /4. Subleading diagrams involve a
single insertion of the LEC ¢; from E;ZZ)V, which are known
from pion-nucleon scattering, or b; from Eff])\, A- We do not
show diagrams involving an insertion of the LEC c#, whose
contributions are taken into account by using the physical
values of the mass of the A isobar.

‘When performing the calculation within the HB framework,
one needs to take into account additional diagrams involving
1/my-vertices shown in Fig. 3. Notice that these vertices
are fixed by the Poincaré invariance and do not involve any
additional parameters.

We further emphasize that, given the fact that the A isobar
is an unstable particle, it is not appropriate to use the free
A propagator given in Egs. (15) in the resonance region
corresponding to p? ~ mA. In particular, dressing of the A
becomes necessary, resumming all 1-A-irreducible diagrams,
which obviously become large in the kinematical region with
p? —mA = O(M?) (see Ref. [37] for details). Here we take
this effect into account using the following simple expressions
for the A propagator, where, in particular, the imaginary part
of the derivative of the self-energy has been neglected (see
Ref. [37]). In the relativistic framework it reads

ptma
—m3% +imal

A (p) = —

1 pty” —p'y*
3 mAa

219“19”)
3 mzA ’

(35)

1
X (g“” - 5)/“1/“ +

with I" being the decay width of the A(1232) resonance, while
the expression in the HB framework has a simpler form:

are constructed solely from the lowest-order vertices and thus Auv W(p) = -1 ' ( 2/2);“; gl (36)
depend only on the well-known LECs F;, g4 and the pion- k—A+ 30 33 3
\\ // it \ A \ /7 \\ // / \\ // /
L 4 A4
\\ 1, \\ 2,7 \ / // \\ / // \\ / //
\\ / // N /o0 N / // \ // 20\ R
/ i 4 / P4 A
\ / \\ /7 \ /! \\ /s \\ 7,

FIG. 2. NLO graphs for the reaction 7N — i N. A filled circle (filled square) denotes an insertion of the ¢; (b;) vertices. Crossed

diagrams are not shown.
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N /o ‘\ r \\ /7 \\ V] \\ /7
A\ /4 X {4\ VR RN /4 N i
\ /1 \ o \ r ) \ r \ ’
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‘\ ’ 7 \\ 7 7 \\ R \\ 1,7 N s
\ i \ A \ A | 4 N A
\ ly 7 4 Vs 7 1 N %
\ \ \
00—+ “—& o< o+ &
N - _- A \ \ \
" \ 1N AN 1o /7
N \ A Y Y R Y
\\0 \ / / \ / / \ /0 / \ / /
L é. = %:I L L L .o =.
‘\ /7 ‘\ /7 ‘\ /7 ‘\ /v ‘\ VA
LU A A U AN A U A A VY A A N A
\ VA \ /7 \ r oy \ /7 \ /7
—_t e —— QL —>—=¢=(—>— ——== L =

FIG. 3. Additional NLO graphs contributing to the reaction 7 N — 7 N in the heavy-baryon framework. A hatched circle/square denotes

a pure 1/my insertion. Crossed diagrams are not shown.

At the level of accuracy of our calculations this should
be completely sufficient. In fact, in Ref. [26] the energy
dependence of the width was incorporated. A more refined
and consistent treatment of the A propagator will be done in a
future work. See Ref. [43] for a related work.

While “dressing” of the A is, strictly speaking, only
required in the resonance region, we use the expressions in
Egs. (35) and (36) for the A propagator in all diagrams and for
all kinematical regions. Given that I' ~ O(M?), this procedure
affects contributions to the amplitude at orders €3, which are
beyond the scope of the present work.

For the nucleonic contributions to the scattering amplitude,
the results within the covariant and HB frameworks we obtain
agree with the ones published in Refs. [24,34]. The expressions
for the A contributions to the amplitude are too involved to
be given here but can be made available as a Mathematica
notebook upon request.

V. OBSERVABLES

To match the conventions adopted by the experimentalists,
one needs to calculate the differential cross sections with
respect to different kinematical variables. In particular, there
are differential cross sections with respect to the outgoing
pion energies and solid angles. Thus, it is advantageous to
express the integration variables in spherical coordinates and
pion energies. There is a second set of differential cross
sections, which are with respect to the kinematics of the
final dipion system. These can be derived from the first
set.

The experimentalists’ convention suggests to choose the
coordinate frame such that ¢ defines the z-direction and ¢,
lies in the x z-plane so that, by construction, the azimuthal angle
of 7? is zero [see Fig. 4(a)]. It is advantageous to introduce
an auxiliary angle ¢ [see Fig. 4(b)], which is related to the

FIG. 4. (Color online) Kinematics and the definitions of angles 6, 6, and ¢, (a), ¢ (b), @ and 8 (c), and ¢’ (d).
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azimuthal angles x; = cos 6; via

(1 —x)(1 = z2)cos ¢. 37

The formulas for the total and the double- and triple-
differential cross sections of the first set thus read

Xy =X1Z2 +

4mN

d d
= Gny sl /w ‘”2/0) “

xf dxlf d¢ |MP.
—1 0

(38)
d’o 8m%,S / /
dw do |IM|?,
dnd ~ Gm3slgn] Jo:
do _ 4m%S|q>lq;| M2
da,ddQs — (4m)5/s1q11po ’

where the integration limits are given by
wf = !
P 2(s — 25w + M2)
X[(«/— — a)g)(s — 25wy — mi, + 2M§)

+ |q2|\/(s 25w —m3)’ —4miM2]  (39)

and
— M)’ —m} + M
w;, = My, a);“= s )~ my X
2(\/— - Mrr)
S is a Bose symmetry factor: S = 1/2 for identical outgoing

pions and S = 1 otherwise. The kinematical variables in the
center-of-mass system (CMS) are defined according to

(40)

s = (my + My)* +2myTy,

2 2
s+ M m

g N
W= ———,

2Js
1 :s—2\/§w3+M§,
szzs—Z\/Ea)z-i-Mi, (41)
n=2(M; - ww+q: - q2),
nh=2(M; - wws+q1 - q3),

1
9211931z = wrws — V/s(w2 + w3) + M + E(s —my),

where T, is the kinetic energy of the incoming pion in the
laboratory frame. Furthermore,

. w3 (%(s —m?v) —ﬁwz) +M§(a}2+w3 —\/5)
= By .

(42)
Using the double- and triple-differential cross sections in
Eq. (38), one defines the angular correlation function W as
follows:

W—a d*o d’o @3)
= 47T .
dw2d92d93 da)dez

The second set of differential cross sections is with respect
to the final dipion system with g»3 = g2 + g3 [see Fig. 4(c)].
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Again, it is advantageous to define an auxiliary angle ¢’ [see
Fig. 4(d)], which is related to x; via

x1 =cos Beosa + /(1 —cos?a)(l — cos? B)cos ¢, (44)

Denoting the final dipion mass M2_, the scattering angle of
the two outgoing pions in the CMS of the final dipion 6, and

with 1 = (g1 — ¢» — g3)?, the differential cross sections read

do
dt/dw / do¢’ | M
M2, (4n>4s|q23||q1|2/ 2 [, 497 IME
do dm:?
= da)/ do’ |IM
@ (4n>4s|q1|2/ |q23|/ 2 |, 40T IME,
do
d d 45
YR, (4n>4s|q23||q1|2/ “’2/ PUIME, @5

d 2
7 S /dMﬁn/dcosa
dcosé (471)4s|q1|2

/ M4 1145
X da)z .
g2 sing’ /(1 — cos? a)(1 — cos? B)

The integration boundaries for ¢ are given by

= M2+ M2 —2wiwx3 £+ 2|q1]|g23]  with
(46)

M3, +s—my

2./s '
The integration boundaries for w, are restricted to the overlap
of the interval [} , w;r ] from Eq. (40) and the interval [®; d);r ]

with
5 — M2 ) (M2, — 4M2
+ \/(0)23 rrz?éz Ligid 71) ) (47)

The integration boundaries for M2 are

w3 = Wy + w3 =

P )
@2 =5

1 ([t
2+ 2 2 2 2
M= — <§(s+mN — MZ) +myM;
mN

g1l —st(4m% — t)) (48)

and also Mﬁn € (4M§,(f — my)?). Finally, the integration
for the differential cross section with respect to the scattering
angle is restricted by the condition sin¢’ < 1. Furthermore,
the magnitudes of the pion momenta in the dipion CMS are

M47‘r - 2M7%71 (t + M7'2t) + (t B Mﬁ)z
4M2

2
91|

s

(49)

/2 Mrz[rr _4M7'2[

VI. FITTING PROCEDURE

The scattering amplitude for the reaction N — N
depends on several LECs as explained in Sec. IV. Throughout
this work, we use the following values for the various LECs
and masses entering the LO effective Lagrangian: M, =
139.57MeV, F; = 92.4MeV,my = 938.27MeV, g4 = 1.26,
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TABLE I. LEC ¢; from the pion-nucleon sector for two fits in a
A-full and A-less theory. All values are given in GeV~!.

Cq ) C3 Cy4

(a) A-full xPT

KH —-0.95 1.90 —1.78 1.50

GW —1.41 1.84 —2.55 1.87
(b) A-less xPT

KH —0.75 3.49 —4.77 3.34

GW —1.13 3.69 —5.51 3.71

A =294 MeV, I' = 118 MeV. For the m NA axial coupling
constant /14, we adopt the same value as used in Ref. [42],
namely h4 = 1.34, corresponding to the large- N, prediction.
Note that this value is close to the one determined from the
width of the A resonance (in the covariant framework). At
NLO we encounter contributions proportional to the LEC ¢;’s
from ﬁfz)v Since we intend to investigate, among others, the
role played by the A isobar by comparing the results obtained
within the A-less and A-full formulations of chiral EFT, we
adopt here the values of the c¢;’s determined from the fits
to pion-nucleon scattering in Refs. [42,44] and collected in
Table 1. These fits have been performed to the partial-wave
analyses of the group at George Washington University (GW)
[45] and the Karlsruhe-Helsinki analysis (KH) [46] at the
subleading one-loop order of HB x PT with and without explicit
A and using the same values of various parameters as specified
above. The values for the A-less approach are consistent
with the theoretically cleaner determination from inside the
Mandelstam triangle [47]. Thus, given that the values of the
LEC ¢;’s are fixed, there are no free parameters in the A-less
approach at order ¢°.

It should be emphasized that the values of ¢;’s adopted
in our study are taken from fits to wN phase shifts carried
out at a higher order, namely, g* (€* + ¢*), within the A-less
(A-full) HB approach.? The values of ¢;’s determined from
N scattering are known to change strongly (moderately)
when going from the order ¢” to ¢* (g3 to ¢*), indicating
a large theoretical uncertainty due to truncation of the chiral
expansion at the tree level. Given that the main focus of our
work is to compare predictions for the reaction tN — N
based on different theoretical formulations, we refrain from a
detailed discussion of the accuracy of our calculations and,
in particular, of the sensitivity to the values of ¢;’s. This
issue will be addressed in an upcoming publication where
the calculations will be extended to the one-loop level.

Further LECs contribute to the amplitude in the A-full
approach at order 2. In particular, in addition to the c;’s from

2Furthermore, the analyses in Refs. [42,44] are performed assuming
that the nucleon mass scales as my ~ Af( /M, as commonly done
in few-nucleon studies. This counting rule differs from the standard
one, my ~ A, usually adopted in the single-nucleon sector, and also
used in the present work, and leads to a stronger suppression of 1/my
corrections. The impact of this inconsistency is irrelevant at the level
of accuracy of our calculations.
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Ef}v, there are also contributions involving the LECs b3, by,

bs, and bg from E;z,)v . and g from £}, whose determination
is discussed below. Note that there is a large- N, prediction for

the leading-order pion-A coupling constant g;, namely,
g1 =384 =227, (50)

which is used in some fits as described below.

Isospin breaking is accounted for in a minimal way by
shifting 7, from the isospin symmetric threshold to the
physical threshold of each channel [35]. In the laboratory
frame, the incoming pion kinetic energy at threshold is

My + My + m/N)2 — (my + Mya)?
sz

T = , (5D

whereas the isospin symmetric case (m)y =my, My =
My = Myc = M) yields

3M,
my

T — A (1 + ) =170.71 MeV.  (52)
The resulting shifts §7, = T — 7% for each channel are
thus

L 7 p— 7% :8T, =—10.21 MeV,
II. =7p— atnn: 8T, = +1.68 MeV,
. ntp - atatn:6T, = +1.68 MeV, (53)
IV. ntp— at7% : 8T, = —5.95 MeV,
V. 7 p— n'n " p:8T, =—5.95MeV.

All fits described below are performed globally to the
experimental data in all five channels simultaneously. For
the fitting procedure, only the total cross-section data were
used, which are taken from the compilation [48] and from
[49,50,51]. The x? is given by the square of the difference
between our calculated values of the total cross section and
the experimental central values divided by the squared errors
on the latter. Typically a very good fit corresponds to a x? per
degree of freedom (2 /dof) close to 1.

A. Heavy-baryon chiral perturbation theory

Given the expected validity range of HBxPT, only data
with T, < 250 MeV were used in the fits. The choice of
this still rather high energy is motivated by the fact that in
some channels there are essentially no data in the very-near-
threshold region.

In the static limit, the LECs b3 and bg are redundant because
they can be fully absorbed into shifts of other LECs [52],

hA — hA - A(b3 +b6),
¢ = 24 Sha (bs + be),

3 — ¢35 — Sha (bs + bg), 1)
cs = ¢4+ 3ha (bs + be),

by — by + (5 g1 — g4)(bs + b),
bs — bs — 381 (b3 + be),
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TABLE II. LECs determined from global fits to the total cross-section data at NLO using the KH set of LEC ¢;’s from Table I(a) as input.
A superscript asterisk indicates that the corresponding value is kept fixed. Values of LEC b; are given in GeV~!.

Fit with KH C,"S 81 b4 + b5 b4 — b5 b3 + b() b3 — b() Xz/dOf
HB approach
T, < 250 MeV 1.361+0.73 16.61 +0.66 —1.75+£9.78 - - 9.42
2.27* 16.00 £ 0.37 —7.99+£5.71 - - 9.63
Relativistic
T, < 250 MeV 1.68+1.38 5.05+0.39 —12.08 £15.59 0.08 +1.39 —1.02+8.40 3.36
2.27* 4.97+0.29 —17.71+£12.22 0.394+0.86 1.60+7.62 3.40
T, <400 MeV 1.41+0.22 4.35+0.08 1.62+1.87 —1.07+£0.18 3.14+1.61 4.26
2.27* 4.51+0.12 1.17£1.61 —1.17+0.12 7.36 £2.03 4.66
which is equivalent to setting b3 = —bg in the amplitudes as and in the left panel in Fig. 6 for the relativistic calculation. As

done in Ref. [42]. Thus, the only free parameters one is left
with at NLO are g, b4, and bs.

B. Relativistic chiral perturbation theory

In this case, we have carried out the fits using the same
energy interval as in the HB approach, 7, < 250 MeV, as
well as the larger energy range of 7, < 400 MeV. Note that,
contrary to the HB formulation, the LECs b3 and bg are no
longer redundant at order &2 and have to be determined from
the data, so that one is left with a total of five unknown
parameters. Furthermore, given that we employ here the values
of the LECs ¢; of Ref. [42] as input in our analysis and in order
to ensure a meaningful comparison with the HB x PT results,
we have to account for the shifts induced in the LECs /4,
2.3.4, and b4 5 by the nonvanishing linear combination b3 + bg
as specified in Eq. (54).

C. Results

At NLO several fits were performed, both with a free and
with a fixed value of g;. The results with the ¢;’s taken
from the upper row in Table I(a) (KH) are summarized in
Table II.

In all cases, we find that the LECs b4 and bs are strongly
anticorrelated. This is visualized in Fig. 5 for the HB approach

FIG. 5. (Color online) Fit in HB x PT: anticorrelation between by
and bs (g, = 2.27).

a result, while the value of the linear combination b4 + bs can
be reliably extracted in each fit, there is a very large uncertainty,
about 100%, for the linear combination by — bs. Further, the
LECs b3 and bg also appear to be strongly anticorrelated
in the relativistic approach as shown in the right panel in
Fig. 6.

The significance of relativistic effects in the reaction
nN — mr N is clearly seen in the strong reduction of x2/dof
from ~9.5 in the HB approach to ~3.4 in relativistic x PT. In
addition, the unnaturally large value of the linear combination
by + bs, by + bs ~ 16 GeV~!, in HBPT indicates that the
energies up to 7, =250 MeV employed in the fit are
probably beyond the applicability range of the order-¢> HB
approximation. In contrast, the fits carried out within the
relativistic y PT framework lead to reasonably natural values
for by + bs.

In order to test the stability of our results and to get further
insights into the applicability range of relativistic x PT, we have
extended the energy range used in the fits up to 7, = 400 MeV
(see the last two rows in Table II). Remarkably, including
the higher-energy data only increased the value of x2/dof by
about 30%. As expected, including higher energies in the fit
stabilizes the results for the LECs, which manifests itself in
the significantly reduced error bars. It is comforting to see that
the values of all LECs extracted from the unconstrained fits up
to T, = 250 MeV and T, = 400 MeV agree with each other
within the error bars. One also observes that the anticorrela-
tions between the LECs b4 and bs as well as bz and bg are
much less pronounced in the higher-energy fit. The situation is
similar in the constrained fits, although the deviations between
the extracted LECs tend to be somewhat larger.

We further observe that there is a fairly minor sensitivity
to the LEC g;. In particular, fixing g; to its large-N¢ value
appears to only mildly affect the x2/dof and also has little
impact on the extracted values of other LECs. This manifests
itself in rather large error bars for g; when performing fits up
to 7, = 250 MeV. The extracted values in the HB approach,
g1 = 1.36 £ 0.73, and relativistic xPT, g; = 1.68 & 1.38,
agree well with each other as well as with the large-N, value
of gy =2.27. The higher-energy fit within the relativistic
framework yields a similar result but with reduced error
bars, g = 1.41 £ 0.22, which is somewhat smaller than the
large- N, prediction. It should, however, be emphasized that it
is not completely consistent to fit g; while, at the same time,
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FIG. 6. (Color online) Fit in yPT: anticorrelation between b, and bs (a) (g, = 2.27, b3 = 0.99 GeV~!, by = —0.61 GeV~') and between

by and bs (b) (g1 = 2.27, by = —6.37 GeV~!, bs = 11.34 GeV™)).

using the values for the LEC c¢; as input, which have been
extracted from w N scattering in Ref. [42] using g; fixed to
its large- N, value. This could be improved in the future by
carrying out a simultaneous analysis of the 7N — w N and
wN — s N reactions.

Last but not least, we have also carried out fits using the
GW set of ¢;’s from Table I, which lead to slightly different
values for the fitted parameters without affecting any of the
conclusions. The LECs resulting from the constrained fits up
to T, = 250 MeV using the KH and GW sets of LEC ¢;’s as
input are listed in Table III.

VII. PREDICTIONS

We are now in the position to make predictions for various
observables. Here and in what follows, we use the values of
the LECs collected in Table III. This allows us to make a
meaningful comparison between the predictions in the HB
and those in the relativistic x PT. We also use both the KH
and the GW sets of the LEC ¢; from Table I in order to
estimate the uncertainty associated with the pion-nucleon
system which provides input for our calculations. Thus, all
predictions at NLO (Q? or €?) are visualized by bands whose
width corresponds to the variation of the LEC ¢; between
the KH and the GW values. Further, while we have analyzed
all available low-energy observables in this reaction, we only
show selected representative examples in the following.

The predictions for the total cross sections with incoming
pion energies up to 400 MeV are presented in Fig. 7, in both the

A-full and the A-less theories. The A-less calculations were
performed with the ¢;’s taken from Table I(b). As can be seen,
the relativistic approach describes the data at higher energies
much better than the HB one, which is fully in line with the
observations made in the previous section. The predictions
within HB x PT at NLO appear to significantly underestimate
the data in almost every channel, whereas the A-full HB
predictions overshoot the cross sections for 7;; > 300 MeV.
The inclusion of the A in the relativistic case is mainly
noticeable in the upper two channels, whereas the description
of the other three channels is similar.

The HB approach also fails to describe various differential
cross sections at NLO, most noticeably the double-differential
cross section with respect to the solid angle €2, and the pion
kinetic energy T» = w, — M, inthe channelr~p — 77 n.
The data for this observable are reported in Ref. [53] and the
comparison between the predictions of relativisticand HB x PT
are presented in Fig. 8. While the inclusion of the A in the HB
formulation at order € shifts the theoretical results towards
the data, these shifts are too small and are unable to bring the
theory in agreement with the data. We emphasize, however,
that the data are well described by the next-to-next-to-leading
order (Q%) A-less HB calculation in Ref. [34]. The relativistic
A-full approach is able to describe the data properly already at
NLO. Moreover, even the A-less covariant formulation yields
a reasonably good description of the data at this order. The
description of the data is somewhat better in x PT with explicit
A except for the cross section at /s = 1262 MeV and the
largest value of the kinetic energy of 7, T, = 31.4 MeV.

TABLE III. LECs determined from global fits to the total cross-section data at NLO using the KH and GW sets of LECs ¢; from Table I as
input. A superscript asterisk indicates that the corresponding value is kept fixed. Values of LECs b; are given in GeV~!.

Fit C; 81 b4 + b5 b4 — b5 b3 + b(, b3 — b6 XZ/dOf
HB approach
T, <250 MeV KH 2.27* 16.00 £ 0.37 —7.99+5.72 - - 9.63
GW 2.27* 15.99 £ 0.37 —8.42+5.77 - - 9.65
Relativistic
T, <250 MeV KH 2.27* 4.97+0.29 —-17.711£12.22 0.39 +0.86 1.60 + 7.62 3.40
GW 2.27* 4.34+0.29 —18.24 +£10.77 0.70 £ 0.76 1.41 +6.38 3.47
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xPT HBYPT

o[mb]

04 02 03 0.4 0.2 03 04 02 03 0.4
T,[GeV]
FIG. 7. (Color online) Predictions for the total cross section up to 7, >~ 400 MeV. Columns from left to right correspond to the A-full

covariant xPT, A-less covariant x PT, A-full HB xPT, and A-less HB x PT predictions, respectively. Dashed and solid lines refer to LO (i.e.,

order Q' or €') and NLO (i.e., up to order Q or £?) results. Energies used in the fit at NLO are below the vertical dotted line. Bands at NLO
correspond to use of the KH and GW sets of LECs c;.
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FIG. 8. (Color online) NLO xPT predictions for the double-differential cross sections for 7~ p — 77 ~n with respect to the kinetic
energy and the solid angle of the outgoing 7 *; see Eq. (38). Upper and lower panels correspond to the relativistic and heavy-baryon approaches,
respectively. Light-gray (blue) and dark-gray (red) bands (the latter nearly shrink to lines) refer to A-less and A-full calculations, respectively.

Bands correspond to use of the KH and GW sets of LECs ;.

Given the failure of the NLO HB approach for the double-
differential cross sections, we leave out the HB predictions
in what follows and focus entirely on the results based on
the relativistic framework. First, we consider the angular
correlation function W defined in Eq. (43) in the channel
7~ p— ntx n. Figure 9 (Figure 10) shows our NLO
predictions in the A-less and A-full relativistic approaches
in comparison with experimental data taken from Ref. [54] for
fixed 6; and 6, (6; and ¢,). One observes that the A-full
results tend to have a stronger curvature, which, in most
cases, is in better qualitative agreement with the shape of
the experimental data. Generally, the data are reasonably well

described in both approaches (given that the calculations are
carried out at NLO in the low-energy expansion). The largest
deviations between the € results and the data emerge at the
lowest values of 6, and 8; = 39.0°...41.5° (see Fig. 9). In
fact, the predictions of the A-less framework appear to be
closer to the data in these cases (although the shape of the
data is better described in the A-full theory). Given that these
cases correspond to the largest differences between the Q2
and the €2 results, and their magnitude is comparable with
the deviation from the data, it is conceivable that higher-
order corrections might be significant under these kinematical
conditions.
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FIG. 9. (Color online) NLO relativistic xPT predictions for the angular correlation functions in the 7~ p — 777 ~n channel at fixed 6,
and 6, for \/s = 1301 MeV; see Eq. (43). Light-gray (blue) and dark-gray (red) bands refer to A-less and A-full calculations, respectively.
Bands correspond to use of the KH and GW sets of LEC ;.

We next turn to the single-differential cross sections with ~ experimental data from Ref. [49] in the left and right

respect to M2_ and t [see Eq. (45)]. Our predictions for panels in Fig. 11, respectively. In each case we compare the
do/dM?, and do/dt are shown in comparison with the  two channels, namely, 7~ p — n*7 nandn*p — n¥rx*n.
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FIG. 10. (Color online) Comparison of NLO relativistic A-full and A-less xPT predictions for the angular correlation functions in the
7~ p — mwm~n channel at fixed 6, and ¢, for \/s = 1301 MeV; see Eq. (43). For remaining notation see the caption to Fig. 9.
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FIG. 11. (Color online) Comparison of NLO relativistic A-full and A-less xPT predictions for the single-differential cross sections with
respect to M2 and ¢, respectively, between the two channels 7~ p — 77w ~n (left) and 7 "p — m " n (right); see Eq. (45). For remaining

notation see the caption to Fig. 9.

We recall that the total cross section is very accurately
predicted at order € in the w*m~ channels (see Fig. 7).
It is comforting to see that both single-differential cross
sections are also well described in the A-full approach.
On the other hand, A-less results at order Q2 strongly
underpredict the experimental data, which is in line with the
observed underprediction of the total cross section. This is the

most pronounced example of the importance of the explicit
inclusion of the A isobar we found in our analysis. In the
77T channel, the single-differential cross sections are found
to be poorly described at both Q? and €2 orders. In particular,
even the shape of the cross section do'/d Miﬂ is not correctly
reproduced. The situation is slightly better for the cross
section do/dt. The observed large deviations from the data
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FIG. 12. (Color online) Comparison of NLO relativistic A-full and A-less x PT predictions for the double-differential cross sections with
respect to M2 and t between the two channels 7~ p — 7+ ~n (left) and 7+ p — w7 *n (right) for two different incoming pion energies;

see Eq. (45). For remaining notation see the caption to Fig. 9.

should not come as a surprise given that the predicted total
cross section significantly overestimates the experimental
data in both the A-less and the A-full formulations. We also
looked at the double-differential cross section d’c /(dtd M)
in the same two channels and found large deviations between
the theory and the data (see Fig. 12). The large discrepancies
between the theory and the experimental data in the w7~
channel, where the single-differential and total cross sections
are well reproduced, appear to be somewhat surprising.

Finally, our results for the single-differential cross sections
with respect to cos 0 at the two lowest energies in the 7~ p —
atm~n and 7 p — wtwtn channels are shown in Fig. 13.
Our predictions have the same magnitude as the experimental
data but show a different shape. As might be expected from
the results for the total cross section, the deviations are most
pronounced in the 7 ¥ channel. Note, further, that the effect
of the explicit treatment of the A isobar is fairly minor for
these particular observables.

It is instructive to compare our results with the earlier cal-
culations within the HB [34] and relativistic [35] frameworks.
For the total cross sections, our HB results at LO and NLO
are very close to the corresponding ones in Ref. [34] and
feature similar underprediction of the data for the 7~ p case.
The Q3 results in that work show a significant improvement,
which we now interpret as resulting mainly from taking into
account 1/my corrections. Also, for the double-differential
cross sections dzo'/szde, our predictions at /s = 1242
MeV at LO and NLO and /s = 1262 MeV at LO are close
to the ones in Ref. [34]. Our NLO results at the higher energy
appear, however, to be significantly closer to the data than
those in that work, which probably can be traced back to
the different choice of ¢;’s. While not explicitly shown, we

observe that our HB results for other observables are similar to
those in [34]. Finally, the order- Q? relativistic xPT calculation
in Ref. [35] also provides a very useful benchmark for our
analysis. We have verified that our results agree with those for
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FIG. 13. (Color online) Comparison of NLO relativistic A-full
and A-less xPT predictions for the single-differential cross sections
with respect to cos 6 between the two channels 7~ p — 77 ~n (left)
and7* p — w7t n (right) for two different incoming pion energies;
see Eq. (45). For remaining notation see the caption to Fig. 9.
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all observables shown in that work. Finally, we compare with
the results in Ref. [26]. Their LO calculation with explicit A’s
and the Roper resonance describes the total cross-section data
somewhat better than our LO A-full approach, however, it is
of a quality similar to that of our NLO A-full calculation. It
is conceivable that this difference is mostly due to the explicit
inclusion of the Roper resonance in Ref. [26]. Note, however,
that there is no power counting underlying this calculation, as
it only uses the leading dimension 1 derivative pion-baryon
couplings.

VIII. SUMMARY AND OUTLOOK

In this paper we have analyzed single-pion production off
nucleons at tree level up to NLO using the HB and manifestly
covariant formulations of y PT with and without inclusion of
explicit A isobar degrees of freedom. The main results of our
study can be summarized as follows:

(i) We worked out the leading and subleading contri-
butions of the A isobar to the invariant amplitudes
in the reaction 7 N — wx N using both the HB and
manifestly covariant formulations of xPT.

(i) In order to determine the LEC b; entering the sub-
leading pion-nucleon-A Lagrangian, several global
fits to the available low-energy data for the total
cross sections in the five channels 7~ p — 7%7°n,
mp—o>atnn,atp > atntn, ntp - 7tn0p,
and 7~ p — 7%~ p have been performed. For the
LEC ¢;’s, which parametrize subleading pion-nucleon
interactions, we adopted the values extracted from
pion-nucleon scattering. Using the large-N, predic-
tions for the LECs hy and g; entering the LO La-
grangians £} and £!) , and restricting the energy
inthe fitby 7, = 250 MeV, the extracted values for the
linear combinations b4 + bs and b3 + bg are found to
be of a natural size when using the covariant approach.
We observe strong anticorrelations between the LECs
b4 and bs as well as b3 and bg, which prevent a reliable
determination of the linear combinations b4 — bs and
bz — bg. The anticorrelations are found to be much less
pronounced if the energy range in the fit is increased
up to T, = 400 MeV. The resulting values of all LEC
b;’s are then found to be of a reasonably natural size.
This is in contrast with the fits carried out in the HB
approach, where an unnaturally large value for b4 + bs
is found. Note that in this formulation the amplitude
does not depend on the LECs b3 ¢, and the LECs by 5
are also found to be strongly anticorrelated.

(iii)) We explored the sensitivity of the total cross section
to the LO wAA coupling g, which is difficult to
access in other processes such as, e.g., pion-nucleon
scattering, by performing unconstrained fits to the total
cross-section data. The resulting values g, = 1.36 &
0.73 and g; = 1.68 &= 1.38 in the HB and relativistic
formulations, respectively, are (in the HB approach,
only barely) consistent with the the large- N, prediction
for this LEC, namely, g; = 2.27. Extending the fit to
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400 MeV within the relativistic formulation leads to a
somewhat smaller value of g; = 1.41 &+ 0.22.

(iv) We found that the covariant framework allows for a
clearly superior description of the experimental data
at NLO compared to the HB formulation at the same
order. Further, as expected, the explicit treatment of
the A isobar leads to a better description of the data
compared to the standard A-less formulation, most
notably of the 7~ p — n°7% and 7~ p — ntmn
total cross sections at higher energy as well as of the
single-differential cross sections with respect to M,
and ¢ in the 7~ p — w77~ n channel. Still, certain
single- and double-differential cross sections could
not be properly described at this order in the chiral
expansion. Finally, we found that there is fairly minor
dependence of the extracted LECs and predictions for
various observables on the variation in the LEC ¢;’s
used as input in our calculation.

In the future, this work has to be extended in several
directions. First, one has to go to the next higher order
in the chiral expansion and include pion loop contributions
within the covariant framework. This will allow one not
only to test the convergence of the chiral expansion, but
also possibly to constrain the LEC d;6, which governs the
quark mass dependence of the nucleon axial vector coupling
constant. In addition, it would be very interesting to carry
out a simultaneous analysis of the reactions 7N — 7 N and
m N — mw N. We expect that such a study will result in a more
precise determination of the LEC ¢;’s as compared to elastic
pion-nucleon scattering. These LECs govern, in particular, the
longest-range three-nucleon force and thus play a prominent
role in ongoing studies of few- and many-nucleon systems. It
is also conceivable that such a combined analysis will allow for
a better determination of the LO pion-A coupling constant g;.
As a further step, the explicit inclusion of the Roper resonance
might also be considered. Work along these lines is in
progress.
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APPENDIX: KINEMATICS AND WEIGHT FUNCTIONS

The weight functions y;; appearing in Eq. (27) are defined
as

= —m?\,—l-Mfr — S48 +85—1H —1,
Yio = —my(2m3 + 25 — 251 — 252+ 11 + 1),
yi3 = my(—t; + 1),
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Yia = (51— 82) + 52052 — 11) + M7 (01 — 1)
+my(s1 — 52+t — b) + 51(—s1 + h),
Yo = —3m‘,‘v + 2Mi — M§(3s + 51+ 5)+ 5@+t + 1)
—my(3M2 + 65 —4s; —4ds; + 1) + 1),
Y23 = 581 — 882 + S1t — Sata +my (=1 + 52 — 1 + 1)
+ M2(=2s1 + 255 — 1] + 1),
Yoq = mN(mi, + 2M§ +5—5 — sz)(2s1 — 25 4+t — 1),
yi3 = 3my — 2My — (s — 2s1)(s — 252 + 11) — (s — 252)2
—my(SM2 =25 + 251 + 25+ 1 + 1)
+ M2(3s — 351 — 355 + 2(t; + 1)),
yu = —my(my —2M: +5 — 51 — 52)
X (Zmi, + 4M§ —25s—t — tz),
Yag = (mfv +5—51—5)((s1 —s2)(=s1 + 50— 11 + 1)
+ (=my +5)(—=m} + 5 + 11 + 1))
+ M2 (—5s2 + 4M? (—Mﬁ +2s) — 57+ 65157 — 53
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+2(s1 —s2)(—11 +12)
+m3 (3my — 8MZ + 6(s — 51 — $2) + 2(t) + 1))
+25(s1 + 52 — 1 — 1)), (A1)

where y;; = y;; and the products of the four vectors are
expressed in terms of the Mandelstam variables via

2p-qi=s—my — My,
2p-@p=s5—s5+1t — Mz,
2p-gs=5—s1+t— Mz,
2p-p/=s1+sz—s—t1—t2+mi,+M§,
2q, -q2=2M72,—t1,

(A2)
2q1 - q3 = 2M? — 1y,
24, ~p’=s+t1+t2—m%\,—3M§,
2¢0 - q3 = 5 — 51 — 52+ my,
2y p' =51 —my — M,

2q3 - p' =5y —mi — M2
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