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The quantized Skyrme model is applied to the πN scattering problem, especially the P11 wave amplitude.
The field fluctuation and the zero mode are consistently taken into account, and the quantum correction to the
Born term is calculated. It is found that this 1/Nc correction is comparable with the Born term and is crucially
important for the πN scattering problem in the Skyrme model.
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I. INTRODUCTION

The Skyrme model is one of the effective models of QCD
and describes the nucleon structure in a completely different
manner from the constituent quark model [1]. Based on the
spontaneous breakdown of the SUR(2) × SUL(2) chiral sym-
metry, this model is a nonlinear field theory of the pseudoscalar
Nambu-Goldstone pion. The static soliton solution with the
hedgehog configuration satisfies the nonlinear Euler-Lagrange
equation for the classical pion field. The isospin rotation of
this soliton is quantized in order to produce a nucleon state
built on a single soliton vacuum. This model was succeeded
in reproducing the static property of a nucleon with less than
30% accuracy [2].

The effective model has a purpose to get the understanding
of low-lying baryons and their resonances. Although the static
property is an important source, much more information can
be extracted from the dynamical matter such as meson-baryon
interactions. Therefore the validity of the Skyrme model
should be judged by applying it, for example, to the πN
scattering problem. The pion field must be quantized in
addition to the isospin rotation of the classical soliton so as to
deal with the pion-nucleon interaction.

The method of quantization is well established for the
nonlinear field theory with a nontrivial classical solution [3–5].
By defining the field fluctuation on the classical solution, the
Lagrangian is expanded with respect to this fluctuation. The
second-order term becomes the basis for the canonical method
of quantization.

When the field fluctuation is built on the spatially localized
solution, there inevitably appears the zero mode. The field
fluctuation should be treated separately from this zero mode;
otherwise the canonical quantization does not work. As for the
zero mode, a collective coordinate is properly introduced and
treated as the quantum mechanical operator.

In the Skyrme model, the quantization is carried out for the
zero mode by Ref. [2] and brings out the static property of a
nucleon. The field fluctuation is quantized in a series of works
by Walliser et al. [6–8], and has been energetically investigated
in its application to the pion nucleon interaction [9–14].

It is not an easy task, however, to show that the Skyrme
model is really available for the dynamical property of a
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nucleon in spite of these examinations. There has been a bias
that this model is not suitable for the πN scattering problem,
e.g., the Yukawa problem and the missing of Born term.

But this is not the case. The possibility of the Skyrme model
as an effective tool to study the pion-nucleon interaction was
not argued enough exhaustively. The field fluctuation and the
zero mode have still not been considered in a fully consistent
manner. In fact it is possible to show that the Skyrme model
safely reproduces the Born term and the Yukawa coupling of
the πN scattering [15].

There exist many experimental data for which the con-
ventional picture of the constituent quark model does not
work, e.g., the light mass of N (1440) and �(1405), the mass
difference between N (1535) and N (1520), the strong coupling
of N (1535) with the η meson, and so on [16]. New data of
the pion photoproduction is now available, and systematic
analyses are energetically performed so as to know more about
the nature of baryons and mesons [17,18]. A well-established
model is desired, and we really expect that the Skyrme model
is a candidate for the effective model of baryons.

In this paper, we evaluate a quantum correction to the Born
term in the Skyrme model, which emerges from the canonical
quantization of the field fluctuation. The zero mode for the
isospin rotation and the spatial translation of the classical
soliton is consistently taken into account together with the
field fluctuation. Employing the chiral reduction formula [19],
we examine the πN scattering problem by using this quantized
Skyrme model.

We especially choose the P11 wave amplitude because it
occupies a major part of the πN scattering amplitude. We
consider this partial wave as a test ground of our attempt
developed here.

In the next section we briefly describe the static aspect
of the Skyrme model of Ref. [2]. We develop the canonical
quantization in Sec. III and apply it to the calculation of the
πN P11 wave amplitude in Sec. IV. We show our results in
Sec. V and summarize this work in the last section.

II. SKYRME MODEL: BRIEF REVIEW

The Skyrme model is a nonlinear σ model characterized
by the classical soliton with the hedgehog configuration. The
collective coordinate method of quantization is applied to this
soliton so as to bring a nucleon state out of the pion field.
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The SUR(2) × SUL(2) chiral symmetry is spontaneously
broken to the SUV (2) vector symmetry. The representative
ξ of the left coset SUR(2) × SUL(2)/SUV (2) and its proper
combinations U = ξ 2, Lμ = U †∂μU are employed to write a
Lagrangian density [1,20–22]

L = −f 2
π

4
trLμLμ + 1

32e2
tr[Lμ,Lν][Lμ,Lν]

+ m2
πf 2

π

4
tr(U + U †) , (1)

where mπ is the pion mass, fπ is the pion decay constant, and e
is the model parameter. The first term comes from the nonlinear
σ model, and the second term (the Skyrme term) is introduced
to stabilize a static soliton solution. Explicit breaking of the
chiral symmetry is taken into account in the third term.

The pion field, denoted by the isovector pseudoscalar field
�ϕ, is introduced by the exponential mapping ξ = exp(i �ϕ ·
�τ/2fπ ) where �τ is the Pauli matrix. The classical Euler-
Lagrange equation has the static soliton solution �ϕc with the
hedgehog configuration

�ϕc = fπF (r)r̂, (2)

where r̂ = �r/|�r | [23,24]. With this configuration the
Lagrangian (1) becomes

Lc[F ]=−f 2
π

2

(
F ′2 + 2

sin2 F

r2

)

− 1

2e2

sin2 F

r2

(
2F ′2 + sin2 F

r2

)
+ m2

πf 2
π cos F, (3)

and F (r) satisfies the nonlinear differential equation(
1 + 2

(fπe)2

sin2 F

r2

)
F ′′ + 2

r
F ′ − sin 2F

r2

+ 1

(fπe)2

sin 2F

r2
F ′2 − 1

(fπe)2

sin 2F sin2 F

r4

−m2
π sin F = 0, (4)

where F ′ = dF/dr and F ′′ = d2F/dr2. The boundary con-
dition, F (0) = π and F (∞) = 0, provides a unit winding
number to the classical soliton. Asymptotic behavior of F (r)
is exp(−mπr)/r when r → ∞, and π − ar around r = 0 with
a positive constant a [25].

By using the collective coordinate method of quantization,
an isospin eigenstate is built on the classical soliton. Owing
to the hedgehog configuration, the isospin rotation is exactly
compensated by the spatial rotation. Then the simultaneous
eigenstate is obtained both for the isospin and spin operators,
and this eigenstate is identified as a nucleon state.

The rotation of Uc(�r ) = exp (iF (r)r̂ · �τ ) in the isospin
space is given by

U (t,�r ) = A(t)Uc(�r )A†(t) (5)

where A(t) is the SU(2) matrix parametrized by three Euler
angles depending on time: [α(t),β(t),γ (t)],

A(t) = e
i
2 γ (t)τ3e

i
2 β(t)τ2e

i
2 α(t)τ3 . (6)

By using Eq. (5), the Lagrangian (1) becomes

L = 1

2
I �� · �� +

∫
Lc[F ] d3r, (7)

where �� is the angular velocity,

�� = −itr�τ ȦA† =

⎛
⎜⎝

−α̇ sin β cos γ + β̇ sin γ

α̇ sin β sin γ + β̇ cos γ

α̇ cos β + γ̇

⎞
⎟⎠ , (8)

and I is the moment of inertia of the classical soliton,

I = 2f 2
π

3

∫
sin2 F

{
+ 1

(fπe)2
F

(
F ′2 + sin2 F

r2

)}
d3r. (9)

The canonical quantization is carried out by treating these
Euler angles as quantum mechanical operators; α(t) → α,
∂L/∂α̇ → −i∂/∂α, and so on. The isospin Îa defined by

Îa = − ∂L

∂�a

= −I�a (10)

becomes the differential operator satisfying the SU(2) Lie
algebra. The spin operator is similarly defined as

Ĵa = iItrτaȦ
†A, (11)

which satisfies the same commutation relation as Îa . Since
Ĵ 2 = Î 2 and

∑
b DabĴb = −Îa , where Dab is the three-

dimensional representation of the SU(2) element, the simul-
taneous eigenstate of Ĵ 2 = Î 2, Î3, and Ĵ3 in “the Euler angle
representation” is given by the D function

〈αβγ |J = I,I3,J3〉 = (−1)−I3

√
2J + 1

8π2
DJ=I

−I3,J3
(α,β,γ ),

(12)

which is normalized in the parameter space of SU(2). This
eigenstate is a nucleon state in the Skyrme model.

III. QUANTIZATION: FIELD FLUCTUATION

The field fluctuation is defined as �χ (t,�r) = �ϕ(t,�r) −
fπF (r)r̂ . Taking account of the isospin rotation, we write U
in the Lagrangian (1) as

U (t,�r ) = A(t) exp

(
i

(
F (r)r̂ + 1

fπ

�χ (t,�r )

)
· �τ

)
A(t)†.

(13)

Making a Taylor expansion up to the second order of �χ , we
obtain the Lagrangian

L = 1

2
I �� · �� +

∫
Lc[F ] d3r

+
∫ (

gF (r)
∂ �χ
∂t

· ∂ �χ
∂t

− �χ · Hf �χ
)

d3r, (14)

where gF (r) = [sin F (r)/F (r)]2 and Hf is the linear differ-
ential operator. We note here that this operator depends on
F (r) instead of showing a complicated expression of Hf . The
first-order term with respect to �χ is not there because the
classical soliton gives the minimum of action integral.
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The conjugate field to �χ is

πi(t,�r) = δL

δ(∂χi/∂t)
= gF (r)

∂χi

∂t
, (15)

and the Hamiltonian becomes

H = 1

2I Î · Î −
∫

Lc[F ]d3r

+1

2

∫ {
1

gF (r)
�π · �π + �χ · Hf �χ

}
d3r. (16)

Following the canonical procedure, we treat �χ and �π as the
quantum field operators and apply the equal time commutation
relation for them:

[χ̂i(t,�r ),π̂j (t,�r ′)] = iδij δ(�r − �r ′) . (17)

The linear differential equation satisfied by �̂χ is obtained as

gF (r)
∂2 �̂χ (t,�r )

∂t2
+ Hf �̂χ (t,�r ) = 0, (18)

through the Heisenberg equation.
In order to make the normal mode expansion for �̂χ , we need

the eigenfunction �χp of Hf

Hf �χp(�r) = gF (r)ω2
p �χp(�r). (19)

Because Hf is the self-adjoint operator in spite of the
complicated dependence on F (r), the eigenfunctions span the
complete and orthonormal set. Since F (r) → 0 in r → ∞, the
asymptotic form of Eq. (19) becomes(−∇2 + m2

π

) �χp(�r ) = ω2
p �χp(�r ) (20)

and �χp approaches exp(i �p · �r) with ω2
p = m2

π + p2.
The classical soliton takes the hedgehog configuration in

which the isovector field is directed in r̂ . This configuration
is invariant under the simultaneous rotation in the coordinate
space and the isospin space. Because the differential equa-
tion (19) is also invariant under this rotational symmetry,
the vector spherical harmonics (Y (E)

JM , Y
(L)
JM , Y

(M)
JM ) is useful

to extract the radial dependence of Eq. (19) [26,27].
There are three types of eigenfunctions of Eq. (19): two

linear combinations of Y
(E)
JM and Y

(L)
JM

χ
(k)
pJM (�r ) = R

(E)
pJ (r)Y (E)

JM (θ,ϕ) + R
(L)
pJ (r)Y (L)

JM (θ,ϕ) (21)

for k = 1,2, and

χ
(3)
pJM (�r ) = R

(M)
pJ (r)Y (M)

JM (θ,ϕ). (22)

The spatial angular momentum is L = J ± 1 for Y
(E)
JM and

Y
(L)
JM and their parity is (−1)J±1, while L = J for Y

(M)
JM and the

parity is (−1)J . By substituting Eq. (21) in Eq. (19), we obtain
the coupled ordinary differential equation for R

(E)
pJ and R

(L)
pJ ,

− 1

r2

d

dr

(
r2

dR
(L)
pJ

dr

)
+ J (J + 1)

r2
R

(L)
pJ +

(
2
gF

r2
+ d2gF

dF 2

F 2

r2
+ 4

dgF

dF

F

r2

)
R

(L)
pJ −

(
2gF + dgF

dF
F

) √
J (J + 1)

r2
R

(E)
pJ

+ gF

(fπe)2

{
−2

F 2

r2

d2R
(L)
pJ

dr2
+

√
J (J + 1)

FF ′

r2

dR
(E)
pJ

dr
−

√
J (J + 1)

(
F ′2

r2
− 2FF ′′

r2

)
R

(E)
pJ + J (J + 1)

F 2

r4
R

(L)
pJ

}

+ gF

(fπe)2

sin 2F

F

(
−2

√
J (J + 1)

F 2

r4
R

(E)
pJ

)
+ 1

(fπe)2

sin 2F

F

(√
J (J + 1)

F ′2

r2
R

(E)
pJ − 2

FF ′

r2

dR
(L)
pJ

dr
− 2

FF ′′

r2
R

(L)
pJ

)

+ 2

(fπe)2
cos F

(
−F ′2

r2
+ gF

F 2

r4

)
R

(L)
pJ + 1

(fπe)2

sin2 2F

r4
R

(L)
pJ + (

m2
π cos F − gF ω2

p

)
R

(L)
pJ = 0. (23)

According to the asymptotic forms in r → ∞, the orthog-
onality relation is given by∫

d3rgF (r) �χ (k′)∗
p′J ′M ′ (�r ) · �χ (k)

pJM (�r )

= (2π )3

p2
δ(p′ − p)δJ ′J δM ′Mδk′k (24)

and the completeness relation becomes

∑
kJM

∫ ∞

0

dpp2

(2π )3
gF (r)χ (k)∗

pJM,i ′ (�r ′)χ (k)
pJM,i(�r ) = δi ′iδ

3(�r ′ − �r ).

(25)

We write the normal mode expansion of �̂χ (�r ) as

�̂χ (�r ) =
∑
kJM

∫ ∞

0

dpp2√
(2π )32ωp

{
â

(k)
pJMe−iωpt �χ (k)

pJM (�r )

+ â
(k) †
pJMeiωpt �χ (k)∗

pJM (�r )
}
, (26)

where â
(k)
pJM (â(k) †

pJM ) is the annihilation (creation) operator for
the dynamical particle in the Skyrme model (we use a term
“the dynamical pion”).

Although the eigenfunction �χ (k)
pJM is distorted by the

classical soliton, the creation and annihilation operators for
the dynamical pion satisfy the free-particle commutation
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relation,

[
â

(k)
pJM, â

(k′) †
p′J ′M ′

] = (2π )32ωp

p2
δ(p − p′)δJJ ′δMM ′δkk′ . (27)

For the P11 wave amplitude considered in this work, the
spatial angular momentum is L = 1 and relevant value of J is 0
and 2. We focus on the eigenfunction with J = 0 and L = 1 (a
purely longitudinal wave) because it takes the same functional
form as the hedgehog configuration; χ

(L)
p0M = R

(L)
p0 (r)r̂/

√
4π .

The linear differential equation satisfied by R
(L)
p0 (r) is

(
1 + 2

(fπe)2

sin2 F

r2

)
1

r2

d

dr

(
r2

dR
(L)
p0

dr

)
− 2

r2
cos 2FR

(L)
p0

− 2

(fπe)2

1

r2

(
2 sin2 F

r
− F ′ sin 2F

)
dR

(L)
p0

dr

+ 2

(fπe)2

1

r2

{
F ′′ sin 2F − cos F

(
sin2 F

r2
− F

′2
)

− sin2 2F

2r2
+ 1

r

(
2 sin2 F

r
− F ′ sin 2F

)}
R

(L)
p0

− (
m2

π cos F − gF ω2
p

)
R

(L)
p0 = 0 . (28)

This peculiar form of the excitation corresponds to the
breathing mode of the classical soliton, i.e., the excitation,
without changing its shape.

Here we comment on the zero mode in connection with
the vector spherical harmonics. Two types of the zero mode
are there in the Skyrme model. The one is due to the spatial
translation. This zero mode is obtained by the gradient of the
hedgehog configuration,

∇mF (r)r̂ =
√

4π

3

dF

dr
Y

(L)
1m +

√
8π

3

F

r
Y

(E)
1m . (29)

The other one is due to the isospin rotation. The infinitesimal
isospin rotation is given by the corresponding spatial rotation,

LmF (r)r̂ = −
√

8π

3
FY

(M)
1m , (30)

where Lm is the angular momentum operator. Since these
zero modes are orthogonal to �χ (k)

pJM in Eq. (26) owing to the

orthogonality of Y
(k)
JM and the nonzero value of ωp, they do not

mix with our field fluctuation.
Before ending this section, we summarize our view for

the pion and the nucleon in our treatment. The canonical
quantization provides us these particles. Both are emerged
from the classical soliton; the nucleon appears by quantizing
the zero mode while the pion is embedded in the field
fluctuation.

IV. AXIAL VECTOR CURRENT AND AMPLITUDE

The quantized Skyrme model developed so far is now used
to calculate the πN P11 wave amplitude. We employ the chiral
reduction formula developed by Yamagishi and Zahed [19].
This formula provides us a practical way of analysis for the
scattering phenomena in the effective theory with the chiral

symmetry. The S matrix is written as the time-ordered product
of relevant currents.

The S matrix for the elastic πN scattering is given by

〈πb(k2)N (p2)|Ŝ − 1|πa(k1)N (p1)〉
= − i

fπ

m2
πδab

∫
d4xe−(k1−k2)·x〈N (p2)|σ (x)|N (p1)〉

− 1

f 2
π

∫
d4x1d

4x2e
−ik1·x1+ik2·x2

×〈N (p2)|T(k1 · jA, a(x1) k2 · jA, b(x2))|N (p1)〉

+ 1

f 2
π

∫
d4xe−i(k1−k2)·xεabc

×〈N (p2)|k1 · jV, c(x)|N (p1)〉, (31)

where jA, a and jV, c are the axial-vector and the vector
currents, respectively; a, b, and c are the pion isospin index;
and σ is the scalar current. Because the P11 wave amplitude
is related with the second term of the right-hand side of
Eq. (31), we consider the axial-vector current in the following
calculations.

The symmetry transformation by gL(�α) ∈ SUL(2) and
gR(�α) ∈ SUR(2) is

U → U ′ = gL(�α)Ug
†
R(�α), (32)

where �α parametrizes the group element gL. For an infinites-
imal �α, the corresponding Nöther current (the left current)
is

J
μ
L, a = − ∂δL

∂(∂μαa)
, (33)

and the right current J
μ
R, a is derived in a similar way as J

μ
L, a .

We obtain the axial vector current J
μ
A, a = J

μ
R, a − J

μ
L, a which

satisfies the Partially Conserved Axial-vector Current (PCAC)
relation

∂μJ
μ
A,a = fπm2

ππa, (34)

where the right-hand side is due to the explicit breaking of the
chiral symmetry, and πa is the pseudoscalar-isovector field.

Before using this axial vector current in the reduction
formula, we must subtract the pion pole contribution mixed in
through the PCAC relation [19,28]. The pole-free axial vector
current is defined by

j
μ
A, a = J

μ
A, a + fπ∂μπa. (35)

By using the expressions

J
μ
A, a = − if 2

π

4
trτa(U∂μU † − U †∂U ) (36)

and

πa = ifπ

4
trτa(U † − U ), (37)

the pole-free axial vector current is given as a function of U .
Using Eq. (13) and making a Taylor expansion about �̂χ up to
its first order, we write the spatial component of Eq. (35) as

�jA, a = �j (c)
A, a + �j (q)

A, a, (38)
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where the first term is the “classical” part

j
(c)
A, ia = f 2

π (1 − cos F )

{
sin F

r
δij −

(
F ′ + sin F

r

)
r̂i r̂j

}
1

2
trτaAτjA

† (39)

and the second term is the “quantum” part depending linearly on �̂χ

ĵ
(q)
A, ia = fπ

{
1

r

[(
cos F − sin F

F

)
(1 − cos F ) + sin2 F

]
(δij − r̂i r̂j )r̂ · �̂χ − F ′ sin F r̂ · �̂χr̂i r̂j + sin F

F
(1 − cos F ) ∇i χ̂j

− 1

F

(
1 + sin F

F

)
(1 − cos F )

[
F r̂ · ∇i �̂χr̂j +

(
F ′ − F

r

)
r̂ · �̂χr̂i r̂j + F

r
χ̂i r̂j + F ′r̂i χ̂j

]

+ 2

F

(
1 + sin F

F

)
(1 − cos F ) F ′r̂ · �̂χr̂i r̂j

}
1

2
trτaAτjA

†. (40)

The time component of the axial vector current (35) depends on 1/I and is smaller than the spatial components by 1/Nc. We
therefore consider only the spatial part in the following calculations.

The second term of Eq. (31) becomes

〈πb(k2)N (p2)|Ŝ − 1|πa(k1)N (p1)〉2nd

= − 1

f 2
π

∫
d4x1d

4x2e
−ik1x1+ik2x2〈N (p2)|T(�k1 · �j (c)

A, a[�r1 − �R(t1)]�k2 · �j (c)
A, b[�r2 − �R(t2)]

)|N (p1)〉

− 1

f 2
π

∫
d4x1d

4x2e
−ik1x1+ik2x2〈N (p2)|T(�k1 · �̂j (q)

A, a[�r1 − �R(t1)] �k2 · �̂j (q)
A, b[�r2 − �R(t2)]

)|N (p1)〉

= i(2π )4δ4(k1 + p1 − k2 − p2)(MBorn(�k1,�k2) + MQc(�k1,�k2)), (41)

whereMBorn depends on the “classical” part of the axial-vector
current, which is free from the field fluctuation, and MQc

depends on the “quantum” part.
In Eq. (41), the intermediate state consists of the nucleon

[described by Eq. (12) with I = J = 1/2] and the dynamical
pion. We consider the partial wave J = 0 (and L = 1) in
Eq. (26) because this excitation takes the same form as the
hedgehog configuration. MBorn is the Born term, which has
no contribution from the dynamical pion, and is made up of the
nucleon pole term (s channel) and its crossing (u channel), and
MQc represents the quantum correction due to the dynamical
pion propagating in the intermediate state.

We introduce the central position of the soliton as the
time-dependent coordinate �R(t) in Eq. (41). When the static
property of a nucleon is considered, this coordinate is usually
set to be 0 and no reference is paid to it. As for the πN S matrix,
because �R(t) is related with the zero mode for the translational
invariance of the classical soliton, we should quantize it by the
collective coordinate method.

We substitute the expressions (38)–(40) to Eq. (41) and
calculateMBorn andMQc. Since the classical soliton is treated
as a heavy object in the canonical quantization, the nucleon
state built on this soliton has necessarily large mass. Following
this nonrelativistic view of the nucleon state, we approximate
the nucleon energy by its mass.

For the elastic P11 wave amplitude, we obtain MBorn as

MBorn(�k,�k) = −8f 2
π

9

4πk2

3

J (k)2

ωk

, (42)

where �k and (ωk) is the pion momentum (energy). We define

J (q) = 4π

∫ ∞

0
drr2

{
j0(qr)

(
fA1(r) + 1

3
fA2(r)

)

−2

3
j2(qr)fA2(r)

}
, (43)

where j0(qr) and j2(qr) are the spherical Bessel function, and

fA1(r) = sin F

r
(1 − cos F ) , (44)

fA2(r) = −
(

F ′ + sin F

r

)
(1 − cos F ) . (45)

The result for MQc is

MQc(�k,�k) = −4πk2

3

∫ ∞

0

dqq2

(2π )32ωq

J̃ (k,q)2

ω − ωq + iε

+1

9

4πk2

3

∫ ∞

0

dqq2

(2π )32ωq

J̃ (k,q)2

ω + ωq

= Ms
Qc(�k,�k) + Mu

Qc(�k,�k) . (46)

We write the s-channel and u-channel parts asMs
Qc and Mu

Qc,
separately. We define

J̃ (k,q) =
√

4π

∫ ∞

0
drr2j0(kr)

×
(

R
(L)
q 0 (r)fA3(r) + dR

(L)
q 0

dr
fA5(r)

)
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− 2
√

4π

3

∫ ∞

0
drr2j2(kr)

×
(

R
(L)
q 0 (r)fA4(r) + dR

(L)
q 0

dr
fA5(r)

)
(47)

where

fA3(r) = −F ′ sin F

3
+ 2

3r
(1 − cos F )(1 + 2 cos F ), (48)

fA4(r) = −F ′ sin F − 1

r
(1 − cos F )(1 + 2 cos F ), (49)

fA5(r) = −(1 − cos F ). (50)

MQc is the 1/Nc correction toMBorn because fπ ∼ √
Nc. The

explicit form of the πN P11 wave amplitude is now completed.
In the next section we show the numerical results for this
amplitude.

V. RESULTS AND DISCUSSION

Since our purpose is not the parameter search, we use the
parameter value of Ref. [2] without any change. The Skyrme
model has two parameters, fπ = 64.5 MeV and e = 5.45,
which are fixed to reproduce the N� mass difference in the
static treatment. No other additional parameters are introduced
in this work.

Figure 1 shows F (r) obtained by solving Eq. (4) with the
proper boundary conditions. F (r) is used to calculate the radial
function R

(L)
p0 . This function does not couple with R

(E)
pJ because

J = 0 [see Eq. (28)]. The r dependence of R
(L)
p0 at small r

and its asymptotic form at large r is determined by L not
by J . Although the centrifugal barrier is apparently absent
in Eq. (23) when J = 0, the “potential” −2/r2 (same as the
P -wave centrifugal barrier) emerges out of the F (r)-dependent
term. This characteristic behavior of the “potential” has been
also pointed out in Ref. [29].

Figure 2 shows R
(L)
p0 at p = 296 MeV/c (ωp = 330 MeV)

given by Eq. (28) and compares it with the spherical Bessel

0 1 2 3
0

1

2

3

r [fm]

F
 (r

)

FIG. 1. F (r) for the hedgehog configuration.

0 1 2 3

−0.4

0.1

0.6

r [fm]

R
(L

)
p0

 (r
)

FIG. 2. The radial function R
(L)
p0 for the dynamical pion (solid

curve) at p = 296 MeV/c (ωp = 330 MeV), and the spherical Bessel
function j1(pr) (dashed curve).

function j1(pr). Both functions are multiplied by r for
convenience in this figure. The dynamical pion in this partial
wave feels attractive force from the nucleon state through the
F (r)-dependent “potential.” This attractive force is observed
up to ωp ∼ 600 MeV and reaches its maximum value around
ωp = 330 MeV. Although this radial function does not directly
correspond to the pion scattering wave, the πN P11 wave
amplitude is influenced by R

(L)
p0 through Eq. (47).

Now we calculate the πN P11 wave amplitude. Figure 3
shows MBorn, Ms

Qc, and Mu
Qc as functions of the pion

energy. Both MBorn and Mu
Qc are real valued amplitude,

while Ms
Qc is complex valued one because the πN channel

opens in the intermediate state [see the propagator in Eq. (46)].
MBorn dominates the amplitude for wide energy range. While

200 400 600

−5

0

5

A
m

pl
itu

de
 [f

m
]

ωp [MeV]

FIG. 3. (Color online) The πN P11 amplitudes MBorn (black
solid curve), Re Ms

Qc (red [gray] solid curve), Im Ms
Qc (red [gray]

dashed curve), and Mu
Qc (blue [gray] solid curve) are shown as

functions of the pion energy ωp .
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the contribution of Mu
Qc is small, the strength of Ms

Qc is
compatible with that of MBorn around ωp = 300 MeV.

We consider this results from the large-Nc viewpoint on
which the Skyrme model is grounded. The large-Nc limit
is indeed important to classify various contributions that
appeared in the quantization procedure. Here we find that it is
not straightforward to understand our results in the large-Nc

argument.
Although MQc is merely a small 1/Nc correction to MBorn

when Nc → ∞, both amplitudes have comparable strength in
the real world with Nc = 3. This result suggests that the higher
order contributions in the 1/Nc expansion are not always
“small” when Nc = 3. In fact the zero mode for the isospin
rotation, which is no more than the O(1/Nc) contribution on
the mass of baryons, is indispensable to reproduce the correct
form of MBorn. And this zero mode is of critical importance
for the dynamical problems in the Skyrme model together with
the field fluctuation which is the O(N0

c ) contribution.
This serious problem for the 1/Nc expansion in the chiral

soliton model has already been pointed out in the detailed
analysis of the strangeness [30–32]. The well-known methods
of quantization for the SU(3) Skyrme model, the bound-state
approach [29] and the rigid rotor approach [33], are equivalent
in the large-Nc limit. There appears, however, apparent
difference between them when Nc = 3 in the calculation of
observables, such as the baryon mass. These considerations
argue that we must be careful in using any estimation based
on the 1/Nc expansion in the chiral soliton model. Our
observation obtained here is in accordance with this argument.

Note the peak in Im Ms
Qc at ωp ∼ 330 MeV which reflects

the attractive feature observed in R
(L)
p0 . Although we expect

that it might be related with the nucleon structure, it is too
early to draw a decisive conclusion before doing more

quantitative analysis, e.g., the parameter search in comparison
with the experimental data. It is, however, important that the
structure information about the nucleon can be extracted from
the quantum correction due to the field fluctuation. Our results
argue that the quantization is neccesary to examine the nucleon
and its resonances in the Skyrme model.

VI. SUMMARY

Considering the field fluctuation and the zero mode in a
fully consistent manner, we have applied the quantized Skyrme
model to the πN scattering problem. We have introduced the
dynamical pion in the single soliton vacuum. We have properly
taken account of the F (r)-dependent effect on the dynamical
pion, and we have also safely separated the zero mode from
the field fluctuation.

In our calculation of the πN P11 wave amplitude, the
amplitude obtained by quantizing the field fluctuation has
comparable strength with the Born amplitude. It is necessary
for the Skyrme model to deal with the field fluctuation in
addition to the zero mode so as to consider the πN scattering
problem.

Since the fluctuation considered here is the breathing mode
in the P11 wave amplitude, it is interesting if this peak might
be related with the Roper resonance. Although we need
more examination in order to draw a decisive conclusion,
we consider that the Skyrme model is really available for
the practical study of the dynamical matter of the nucleon
structure.
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