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Pole positions and residues from pion photoproduction using the
Laurent-Pietarinen expansion method
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We applied a new approach to determine the pole positions and residues from pion photoproduction multipoles.
The method is based on a Laurent expansion of the partial-wave T matrices, with a Pietarinen series representing
the regular part of energy-dependent and single-energy photoproduction solutions. The method is applied to
multipole fits generated by the MAID and George Washington University SAID (GWU-SAID) groups. We show
that the number and properties of poles extracted from photoproduction data correspond very well to results
from πN elastic data and values cited by the Particle Data Group (PDG). The photoproduction residues provide
new information for the electromagnetic current at the pole position, which are independent of background
parametrizations, which is not the case for the Breit-Wigner representation. Finally, we present the photodecay
amplitudes from the current MAID and SAID solutions at the pole for all four-star nucleon resonances below
W = 2 GeV.
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I. INTRODUCTION

Revisions to the Review of Particle Properties (RPP) by
the Particle Data Group (PDG) [1] and contributions to recent
baryon spectroscopy workshops [2,3] have emphasized the
fact that poles, and not Breit-Wigner parameters, properly
determine and quantify resonance properties linking scattering
theory and QCD. However, the optimal method for extracting
pole parameters from single-channel T matrices remains an
open question. Experimentalists are quite familiar with fits to
data using Breit-Wigner functions (either with constant param-
eters and very general backgrounds, or with energy-dependent
masses and widths) but are less experienced when complex-
energy poles are desired. At present, poles are usually extracted
from theoretical single- or multichannel models, which are
first solved with free parameters fit to the data. Only then is
an array of standard pole-extraction methods applied: analytic
continuation of the model functions into the complex-energy
plane [4–8], speed plot [9], time delay [10], N/D method [11],
regularization procedure [12], etc. However, this often requires
continuing an obtained analytic solution, which implicitly
contains both singular and regular (background) parts, into
the complex-energy plane. Consequently, the analytic form of
the full solution, and its pole parameters, vary from model to
model and the pole-background separation method requires an
intimate knowledge of the underlying model.
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In Ref. [13] we presented a new approach to quantifying
pole parameters of single-channel processes based on a
Laurent expansion of partial-wave T matrices in the vicinity
of the real axis. Instead of using the conventional power-series
description of the nonsingular part of the Laurent expansion,
we represented this by using a convergent series of Pietarinen
functions. As the analytic structure of the nonsingular part is
usually well understood (including physical cuts with branch
points at inelastic thresholds, and unphysical cuts in the
negative-energy plane), we find that one Pietarinen series
per cut represents the analytic structure fairly reliably. The
number of terms in each Pietarinen series is determined by the
quality of the fit. The method has been tested in two ways:
on a toy model constructed from two known poles, various
background terms, and two physical cuts, and on several sets of
realistic πN elastic energy-dependent partial-wave amplitudes
[George Washington University SAID (GWU-SAID) [14,15]
and Dubna-Mainz-Taipei [16,17] ]. We have shown that the
method is robust and stable, using up to three Pietarinen series,
and is particularly convenient in fits to single-energy solutions,
which are more directly tied to experiment. Apart from its ease
of use, it provides a tool for the extraction and comparison
of pole properties from different analyses. There have been
several recent studies of model dependence in single-energy
photoproduction amplitude reconstruction [18] (both helicity
and multipole), with extensions to other reactions as well [19].
The simplicity of the our expansion method enables us to
self-consistently analyze and compare results from different
approaches, as described below.
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Here we apply the new approach to determine pole positions
and residues from single-pion photoproduction multipoles.
The method has been applied to energy-dependent and single-
energy multipole fits generated by the MAID and GWU-SAID
groups for eight dominant multipoles. We show that the
number and properties of poles extracted from photoproduc-
tion data correspond very well to results from πN elastic
data and values cited by Particle Data Group (PDG) [1].
The photoproduction residues provide new information for
the electromagnetic current at the pole position, which is
independent of background parametrizations used in the Breit-
Wigner approach.

With pole positions and residues confidently determined
for MAID and SAID ED solutions, we have further evaluated
the photodecay amplitudes at the pole positions and made a
comparison with other very recent analyses.

Below, in Sec. II, we give an overview of the expansion
method. In Sec. III, this method is applied to both energy-
dependent and single-energy results from the MAID and SAID
groups for eight dominant multipoles. At this point we also
discuss our extended error analysis. In Sec. IV, we summarize
and discuss our results for each partial wave. In Sec. V, we
present our photodecay amplitudes and compare them to other
recent extractions. Finally, in Sec. VI we summarize our results
and conclude with prospects for further work.

II. FORMALISM

For the convenience of the reader, in this section we
outline the Laurent-Pietarinen (L + P) method, which is given
a detailed description in Ref. [13].

A. Laurent (Mittag-Leffler) expansion

The starting point of our method is a generalization of the
Laurent expansion, applied to multipoles, using the Mittag-
Leffler theorem [13,20]; a theorem expressing a function in
terms of its k first-order poles and an entire function:

T (W ) =
k∑

i=1

a
(i)
−1

W − Wi

+ BL(W ), a
(i)
−1,Wi,W ∈ C. (1)

Here, W , a
(i)
−1, and Wi are the c.m. energy, residua, and

pole positions for the ith pole, respectively, and BL(W ) is a
regular function in the whole complex plane.1 It is important
to note that this expansion is not a representation of the

1At this point it seems worth mentioning that, historically, there are
two variables which were used to parametrize invariant amplitudes:
the c.m. energy W and the invariant Mandelstam variable s. Accord-
ing to our understanding, their choice is completely equivalent, and
it is a matter of personal taste which of the two to use. In this paper
we opted to use W in favor of s, because up to now this was the way,
how the RPP [1] lists the Baryon properties, and we wanted to make
the paper more friendly to the reader. When one goes into details,
we do see some advantages in using W because the residues can be
directly compared with the width but, as we said, this is not decisive
and is just a matter of personal preference.

unknown function T (W ) in the full complex-energy plane
but is restricted to the part of the complex-energy plane
where the expansion converges and is defined by the area
of convergence of the Laurent expansion. If we choose poles
as expansion points, the Laurent series converges on the open
annulus around each pole, where the center of the annulus is
the pole position. The outer radius of the annulus extends to the
position of the next singularity (such as a nearby pole). Thus,
our Laurent expansion converges on a sum of circles located at
the poles, and this part of the complex-energy plane in principle
includes the real axis. Therefore, fitting the expansion (1) to
the experimental data on the real axis can in principle give the
exact values of the scattering matrix poles.

The novelty of our approach is a particular choice for the
non-pole-contribution BL(W ), based on an expansion method
used by Pietarinen in the context of πN elastic-scattering
analysis. Before proceeding, we briefly review this method.

B. Pietarinen series

A specific type of conformal mapping technique was
proposed and introduced by Ciulli [21,22] and Pietarinen [23]
and used in the Karlsruhe-Helsinki partial-wave analysis [24]
as an efficient expansion of invariant amplitudes. It was later
used by a number of authors for solving various problems
in scattering and field theory [25] but was not applied to the
pole search prior to our recent study [13]. A more detailed
discussion of the use of conformal mapping, and this method
in particular, can be found in Refs. [13,20].

If F (W ) is a general, unknown analytic function having a
cut starting at W = xP , then it can be represented in a power
series of “Pietarinen functions” in the following way:

F (W ) =
N∑

n=0

cn X(W )n, W ∈ C,

(2)

X(W ) = α − √
xP − W

α + √
xP − W

, cn, xP , α ∈ R,

with α and cn acting as tuning parameters and coefficients of
the Pietarinen function X(W ), respectively.

The essence of the approach is the fact that a set
(X(W )n, n = 1,∞) forms a complete set of functions defined
on the unit circle in the complex-energy plane having a
branch cut starting at W = xP . The analytic form of the
function is, at the beginning, undefined. The final form of
the analytic function F (W ) is obtained by introducing the
rapidly convergent power series with real coefficients, and the
degree of the expansion is automatically determined in fitting
the input data. In the exercise of Ref. [23], as many as 50 terms
were used; in the present case, covering a more narrow energy
range, fewer terms are required.

C. Application of Pietarinen series to scattering theory

The analytic structure of each partial wave is well known,
with poles parametrizing resonant contributions, cuts in the
physical region starting at thresholds of elastic and all possible
inelastic channels, plus t-channel, u-channel, and nucleon
exchange contributions quantified with the corresponding
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negative-energy cuts. However, the explicit analytic form of
each cut contribution remains to be determined. Instead of
guessing the exact analytic form, we propose to use one
Pietarinen series to represent each cut, with the number of
terms determined by the quality of the fit to the input data. In
principle, we have one Pietarinen series per cut, with known
branch points xP , xQ, . . ., and coefficients determined by the
fit to a real physical process. In practice, we have too many
cuts (especially in the negative-energy range), thus we reduce
their number by dividing them into two categories: all negative-
energy cuts are approximated with only one effective negative-
energy cut represented by one (Pietarinen) series (we denote its
branch point as xP ), while each physical cut is represented by
a separate series with branch points (xQ,xR, . . .) determined
by the physics of the process. In our present analysis of pion
photoproduction γN → πN , we fit all partial waves starting at
the pion threshold for which the process becomes a measurable
quantity. Therefore we fix our second branch point xQ to the
pion threshold at W = 1077 MeV. For the third branch point
xR we will compare results when a physical branch point is
either fixed or fit. Further branch points were found to be
unnecessary in our present data analysis.

In summary, the set of equations which define the Laurent
expansion plus the Pietarinen series method (L + P method) is

T (W ) =
k∑

i=1

a
(i)
−1

W − Wi

+ BL(W ),

BL(W ) =
M∑

n=0

cn X(W )n +
N∑

n=0

dn Y (W )n

+
L∑

n=0

en Z(W )n + · · · ,

X(W ) = α − √
xP − W

α + √
xP − W

,

Y (W ) = β − √
xQ − W

β + √
xQ − W

,

(3)

Z(W ) = γ − √
xR − W

γ + √
xR − W

+ · · · ,

a
(i)
−1,Wi,W ∈ C,

cn, dn, en,α, β, γ, . . . ∈ R,

xP , xQ, xR ∈ R or C,

k,M,N,L . . . ∈ N.

Because our input data are on the real axes, the fit is
performed only on this dense subset of the complex-energy
plane. All Pietarinen parameters in the set of equations (3) are
determined by the fit.

We observe that the class of input functions which may be
analyzed with this method is quite extensive. One may either fit
partial-wave amplitudes obtained from theoretical models, or
possibly experimental data directly. In either case, the T matrix
is represented by this set of equations (3), and minimization is
usually carried out in terms of χ2.

D. Real and complex branch points

While the fit strategy outlined in Eqs. (3) implies the use of
purely real branch points, we know that there are, in principle,
also complex branch points in the complex-energy plane. This
feature can be seen simply starting from three-body unitarity
conditions [26]. However, real or complex branch points
describe different physical situations. If the branch points
xP , xQ, . . . are real numbers, this means that our background
contributions are defined by stable initial- and final-state
particles. All resonance contributions to the observed process
are created by intermediate isobar resonances; all other initial-
and final-state contributions are given by stable particles and
are described by Pietarinen expansions with real branch-point
coefficients. From experience, we know that this is not true: a
three-body final state is always created, provided that energy
balance allows for it, and in three-body final states we typically
do have a contribution from one stable particle (nucleon or
pion), and many other combinations of two-body resonant
substates, such as σ , ρ, 	, . . .. These resonant substates
produce complex branch points.

As demonstrated below, we claim that the single-channel
character of the L + P method prevents us from establishing,
with certainty, which mechanism dominates. Specifically,
with only single-channel information available, we have two
alternatives: either we obtain a good fit with an extra resonance
and stable initial- and final-state particles (real branch points),
or we may obtain a good fit with one fewer resonance and a
complex branch point. Having only single-channel data, we
are not able to distinguish between the two. This effect was
already noted, in the context of the Jülich model, with a ρN
complex branch point interfering and intermixing with the
N (1710)1/2+ resonance signature, as discussed in Ref. [27].

One advantage of the Pietarinen expansion method is its
simple extension to complex branch points. We can check the
above statements through applications of the L + P method
to the photoproduction multipole M

1/2
1− , connected to the P11

partial wave from elastic pion-nucleon scattering.

III. APPLICATION OF L + P METHOD TO POLE
EXTRACTION FROM PHOTOPRODUCTION MULTIPOLES

Fits to photoproduction data, particularly pion and kaon
photoproduction, have been significantly advanced with the
availability of new and precise measurements of polarization
observables (both single- and double-polarization). This has
revived the study of amplitude reconstruction from data with
minimal theoretical input. However, significant discrepancies
do still remain in comparisons of the major analyses. Results
are generally reported either as energy-dependent (ED) fits,
giving a functional representation of the amplitudes over some
extended energy range, or as single-energy (SE) solutions,
which analyze data in narrow bins of energy. In the SE case, a
significant variation is possible, because a given bin does not
generally contain a sufficient set of observables to uniquely
determine an amplitude. Some constraints from the underlying
ED fit are usually necessary to obtain a fit. Still, these SE fits
do give a better representation of the data and can give hints of
structure possibly missing in the global ED fit. It is therefore of
interest to find a method of extracting resonance information
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from these less-smooth sets of amplitudes. In the ED case, if
one has the fit function, it is in principle possible to locate poles
from a mapping of the amplitude in the complex-energy plane.

In this paper we use the flexibility of the proposed L + P
method (usable for both theoretical and experimental input), to
extract pole parameters (pole positions and residues) for two
well-known sets of ED and SE photoproduction amplitudes:
the MAID [28] and GWU-SAID [14] results for single-pion
photoproduction. Electric and magnetic multipole amplitudes
are analyzed in the fits.

A. The fitting procedure

We use three Pietarinen functions (one with a branch point
in the unphysical region to represent all left-hand cuts, and
two with branch points in the physical region, to represent
the dominant inelastic channels) combined with the minimal
number of poles. In addition, we allow the possibility that one
of the branch points becomes a complex number, accounting
for all three-body final states in an effective manner. We
generally start with five Pietarinen terms per decomposition,
and the anticipated number of poles (one for most channels,
two for E

1/2
0+ ). The discrepancy criteria are defined below in

terms of reduced χ2
dp for SE and its analog, the discrepancy

parameter Ddp, for ED solutions. This quantity is minimized
using MINUIT and the quality of the fit is also visually inspected
by comparing the fitting function with fitted data. If the fit
is unsatisfactory (discrepancy parameters are too high, or fit
visually does not reproduce the fitted data), at first the number
of Pietarinen terms is increased and, if this does not help, the
number of poles is increased by one. The fit is repeated, and the
quality of the fit is re-estimated. This procedure is continued
until we have reached a satisfactory fit.

Pole positions, residues, and Pietarinen coefficients α, β, γ ,
ci , di , and ei are our fitting parameters. However, in the strict
spirit of the method, Pietarinen branch points xP , xQ, and xR

should not be fitting parameters; we have declared that each
known cut should be represented by its own Pietarinen series,
fixed to known physical branch points. While this would be
ideal, in practice the application is somewhat different. We
can never include all physical cuts from the multichannel
process. Instead, we represent them by a smaller subset.
Thus, in our model, Pietarinen branch points xP , xQ, and xR

are not generally constants; we have explored the effect of
allowing them to vary as fitting parameters. In the following,
we demonstrate that, when searched, the branch points in the
physical region still naturally converge towards branch points
which belong to channels which dominate particular partial
waves, but may not actually correspond to them exactly. The
proximity of the fit results to exact physical branch points
describes the “goodness of the fit,” namely, it tells us how well
certain combinations of thresholds are indeed approximating
a partial wave. And this, together with the choice of the degree
of the Pietarinen polynomial, represents the model dependence
of our method. We do not, of course, claim that our method
is entirely model independent. However, the method chooses
the simplest function with the given analytic properties which
fits the data and increases the complexity of the function only
when the data require it.

B. Error analysis

In our principal paper [13] we tested the validity of
the model on a number of well-known πN amplitudes and
concluded that the method is very robust and stable. However,
in that paper we did not present an error analysis, deferring it to
the forthcoming paper. We fulfilled this promise in Ref. [29],
and we repeat its essence for the convenience of the reader.

For energy-dependent solutions, we introduce the discrep-
ancy or deviation parameter per data point Ddp (the substitute
for χ2 per data point, χ2

dp, when analyzing experimental data)
in the following way:

Ddp = 1

2NE

NE∑
i=1

[(
ReT fit

i − ReT ED
i

ErrRe
i

)2

+
(

ImT fit
i − ImT ED

i

ErrIm
i

)2
]

, (4)

where NE is the number of energies, and errors of energy-
dependent solutions are introduced as

ErrRe
i = 0.05

∑NE

k=1

∣∣ReT ED
k

∣∣
NE

+ 0.05
∣∣ReT ED

i

∣∣,
ErrIm

i = 0.05

∑NE

k=1

∣∣ImT ED
k

∣∣
NE

+ 0.05
∣∣ImT ED

i

∣∣.
When errors of the input amplitudes are not given and one
wants to make a minimization, errors have to be “defined.”
There are two simple ways to do it: either assign a constant
error to each data point, or introduce an energy-dependent
error as a certain percentage of the given value. However, both
definitions have drawbacks. For the first recipe only high-
valued points are favored, while in the latter case low-valued
points tend to be almost exactly reproduced. We find neither
of these to be satisfactory, thus we follow prescriptions chosen
by the GWU and Mainz groups and use a sum of constant and
energy-dependent errors.

In the L + P method, we consider both statistical and
systematic errors. Statistical errors are simply taken over from
the MINUIT program, which is used for minimization. It is
shown separately in all tables as the first term. Systematic
errors are the errors of the method itself and require a more
detailed explanation. By construction it is clear that the method
has its natural limitations. Our Laurent decomposition contains
only two branch points in the physical region, and this is far
from enough in a realistic case. Functions representing the
multipole amplitudes, in principle containing more than two
branch points, will in our model be approximated by a different
analytic function containing only two. This approximation will
be the main source of our errors. Therefore, we define the
following procedure for quantifying systematic errors:

(i) We completely release the first (unphysical) branch
point xP , because this represents a sum of many
background contributions.

(ii) We keep the first physical branch point xQ fixed
at xQ = 1077 MeV (the πN threshold) because we
know that this threshold branch point should always
be present.
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(iii) The error analysis is done by varying the remaining
physical branch point xR in two ways:
(a) We fix the third branch point xR to the threshold

of the dominant inelastic channel for the chosen
partial wave (for instance, the η threshold for
an S wave) if only one inelastic channel is
important or, in case of several equally important
inelastic processes, we perform several fits with
the xR branch point fixed to each threshold in
succession.

(b) We release the third branch point xR completely
allowing MINUIT to find an effective branch point
representing all inelastic channels. It is clear that

if only one channel is dominant, the result of the
fit will be very close to the dominant inelastic
channel [see S11(pE0+) (1486ηN vs 1495free)] or
otherwise in some effective location (see all other
partial waves).

(iv) We average results of the fit and obtain a standard
deviation.

The list of all values for the branch point xR is given in the
appendix.

The quality of our fits for the ED solutions is measured by
the deviation Ddp defined in Eqs. (4) and (5).

TABLE I. Pole positions in MeV and residues of four dominant isospin 1/2 multipoles as moduli in mfm GeV and phases in degrees for
real branch points. The results from L + P expansion are given for GWU-SAID and MAID energy-dependent (ED) and single-energy (SE)
solutions. Resonances marked with a star indicate resonances which can be alternatively explained by the ρN complex branch point. Empty
lines indicate that a resonance pole could not be found with a significant statistical weight.

Multipole Source Resonance ReWp −2ImWp |Residue| θ

SAID ED N (1535) 1/2− 1501 ± 4 ± 2 95 ± 9 ± 2 0.245 ± 0.030 ± 0.008 −(25 ± 7 ± 3)◦

MAID ED 1516 ± 1 ± 2 94 ± 3 ± 2 0.234 ± 0.009 ± 0.004 −(2 ± 3 ± 7)◦

MAID SE 1511 ± 1 ± 6 93 ± 2 ± 7 0.210 ± 0.002 ± 0.021 −(5 ± 1 ± 7)◦

SAID SE 1501 ± 1 ± 2 112 ± 2 ± 7 0.312 ± 0.003 ± 0.022 −(18 ± 1 ± 3)◦

SAID ED N (1650) 1/2− 1655 ± 8 ± 3 127 ± 10 ± 7 0.119 ± 0.019 ± 0.013 −(18 ± 14 ± 9)◦
S11(pE0+)

MAID ED 1678 ± 2 ± 2 135 ± 3 ± 2 0.289 ± 0.010 ± 0.009 +(12 ± 3 ± 4)◦

MAID SE 1681 ± 1 ± 3 113 ± 1 ± 6 0.231 ± 0.001 ± 0.024 −(21 ± 1 ± 6)◦

SAID SE 1650 ± 1 ± 1 117 ± 2 ± 14 0.153 ± 0.002 ± 0.026 −(8 ± 5 ± 5)◦

SAID ED N (1895) 1/2− – – – –
MAID ED 1913 ± 4 ± 8 258 ± 10 ± 37 0.327 ± 0.015 ± 0.2 −(68 ± 4 ± 10)◦

MAID SE – – – –
SAID SE – – – –
SAID ED N (1440) 1/2+ 1360 ± 4 ± 1 183 ± 10 ± 9 0.290 ± 0.015 ± 0.039 −(61 ± 4 ± 1)◦

MAID ED 1367 ± 1 ± 1 190 ± 3 ± 2 0.306 ± 0.011 ± 0.004 −(44 ± 4 ± 1)◦

MAID SE 1379 ± 2 ± 4 183 ± 3 ± 5 0.394 ± 0.003 ± 0.005 −(36 ± 1 ± 5)◦

P11(pM1−) SAID SE 1367 ± 2 ± 8 235 ± 3 ± 8 0.547 ± 0.006 ± 0.052 −(75 ± 1 ± 6)◦

SAID ED N (1710)∗ 1/2+ 1789 ± 9 ± 4 550 ± 25 ± 3 0.609 ± 0.031 ± 0.014 +(98 ± 3 ± 4)◦

MAID ED 1694 ± 22 ± 12 269 ± 44 ± 35 0.029 ± 0.005 ± 0.008 +(65 ± 5 ± 9)◦

MAID SE 1678 ± 5 ± 3 99 ± 14 ± 23 0.062 ± 0.006 ± 0.012 −(16 ± 4 ± 2)◦

SAID SE – – – –
SAID ED N (1520) 3/2− 1514 ± 1 ± 0 109 ± 4 ± 1 0.373 ± 0.017 ± 0.010 +(16 ± 2 ± 1)◦

MAID ED 1509 ± 1 ± 0 106 ± 1 ± 1 0.375 ± 0.003 ± 0.001 +(11 ± 1 ± 1)◦

MAID SE 1514 ± 1 ± 4 120 ± 1 ± 6 0.385 ± 0.005 ± 0.024 +(12 ± 1 ± 2)◦

D13(pE2−) SAID SE 1514 ± 1 ± 1 111 ± 1 ± 0.5 0.382 ± 0.004 ± 0.003 +(14 ± 1 ± 3)◦

SAID ED N (1700)∗ 3/2− 1638 ± 13 ± 13 362 ± 24 ± 17 0.382 ± 0.032 ± 0.059 +(4 ± 5 ± 11)◦

MAID ED – – – –
MAID SE – – – –
SAID SE 1654 ± 5 ± 15 257 ± 10 ± 47 0.187 ± 0.007 ± 0.080 −(1 ± 3 ± 7)o

SAID ED N (1680) 5/2+ 1674 ± 2 ± 0.5 113 ± 4 ± 0 0.157 ± 0.008 ± 0 −(5 ± 3 ± 0)◦

MAID ED 1663 ± 1 ± 0 118 ± 2 ± 1 0.150 ± 0.003 ± 0.001 −(3 ± 1 ± 1)◦

MAID SE 1669 ± 1 ± 1 113 ± 1 ± 1 0.145 ± 0.005 ± 0.002 +(2 ± 1 ± 1)◦

F15(pE3−) SAID SE 1677 ± 1 ± 1 115 ± 1 ± 3 0.174 ± 0.002 ± 0.008 +(1 ± 1 ± 2)◦

SAID ED N (2000)∗ 5/2+ – – – –
MAID ED 1801 ± 14 ± 4 141 ± 28 ± 13 0.007 ± 0.002 ± 0.003 +(32 ± 14 ± 9)◦

MAID SE – – – –
SAID SE 1923 ± 4 ± 68 172 ± 30 ± 22 0.081 ± 0.004 ± 0.047 +(62 ± 3 ± 87)◦
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For SE solutions we use the statistical errors and obtain the
standard χ2

dp definition:

χ2
dp = 1

2NE

NE∑
i=1

[(
ReT fit

i − ReT SE
i

ErrRe
i

)2

+
(

ImT fit
i − ImT SE

i

ErrIm
i

)2
]

, (5)

where ErrRe
i and ErrIm

i are standard statistical errors of the SE
solutions (real and imaginary parts, respectively).

IV. RESULTS AND DISCUSSION ON
PHOTOPRODUCTION MULTIPOLES

A. Real branch points

We have analyzed 24 partial-wave amplitudes (electric and
magnetic multipoles) from MAID and SAID solutions up to F
waves. From this large number of results we have selected eight
important multipoles for detailed discussions: pE

1/2
0+ , pM

1/2
1− ,

E
3/2
1+ , M

3/2
1+ , pE

1/2
2− , E

3/2
2− , pE

1/2
3− , and M

3/2
3+ . For the rest of the

multipoles, we will present and discuss only the basic results.
In Tables I and II and in Figs. 1–4, we summarize the

results of all our fits for real branch points. We performed the
analyses for ED and SE multipoles of the GWU-SAID CM12
solution [14] and the MAID MAID2007 solution [28].

Tables VIII and IX, given in the appendix, summarize
the results of the Pietarinen expansion parameters for real
branch points. We show three branch points xp,xQ,xR and the

deviation Ddp in the case of ED solutions and the χ2
dp per data

points in the case of SE solutions. The latter ones should have a
χ2

dp close to 1. However, because the SE points are not always
Gaussian-distributed data points, the χ2

dp values are generally
in the range of 1–4. For the ED solutions we have used an error
definition, taking into account relative and absolute errors of
the order of 5%. Therefore, for a good fit, the deviation Ddp is
much smaller, in the range of 10−4–10−2. As already discussed
in Sec. B, we estimated the stability of our fits and the variation
of the resonance parameters by applying three or four different
assumptions for the effective third branch point.

In Tables I and II, we present our results on the pole
parameters of the nucleon resonances N∗ and 	 that we
found in our analysis. These are the pole positions Wp with
Mp = ReWp and �p = −2ImWp as well as (γ,π ) residues in
terms of magnitude and phase, Rγ,π = |Rγ,π |eiθ . Note that the
photoproduction residues listed here are not the residues of a
(γ,π ) T matrix, but residues of the electromagnetic multipoles
E
± and M
±, which carry a dimension, e.g., mfm. Therefore,
we use mfm GeV as a convenient dimension of Rγ,π .

In the following, we discuss our results in detail for each
partial wave.

The S11 partial wave is the only case with two four-star
resonances. Both resonances are well determined from the
pE

1/2
0+ multipoles of the MAID and SAID analyses. Only for

the second state, N (1650)1/2−, do we find a discrepancy in
the strength, it appears two times as strong in the MAID
analysis when compared to SAID. A third resonance state,
N (1895)1/2−, is found, but only in the MAID ED solution.

TABLE II. Pole positions in MeV and residues of four dominant isospin 3/2 multipoles as moduli in mfm GeV and phases in degrees for
real branch points. The results from L + P expansion are given for GWU-SAID and MAID energy-dependent (ED) and single-energy (SE)
solutions. Empty lines indicate that a resonance pole could not be found with a significant statistical weight.

Multipole Source Resonance ReWp −2ImWp |Residue| θ

SAID ED 	(1232) 3/2+ 1211 ± 0.5 ± 1 101 ± 1 ± 0 0.183 ± 0.005 ± 0.001 −(154 ± 1 ± 1)◦

MAID ED 1211 ± 0.5 ± 0.5 99 ± 0.5 ± 0.5 0.184 ± 0.002 ± 0.003 −(155 ± 1 ± 1)◦

MAID SE 1215 ± 0 ± 4 87 ± 0 ± 1 0.154 ± 0.001 ± 0.010 −(155 ± 0 ± 8)◦

P33(E1+) SAID SE 1220 ± 1 ± 1 85 ± 1 ± 2 0.146 ± 0.002 ± 0.002 −(143 ± 1 ± 1)◦

SAID ED 	(1600) 3/2+ 1470 ± 16 ± 15 396 ± 34 ± 17 0.127 ± 0.099 ± 0.014 +(109 ± 5 ± 15)◦

MAID ED 1550 ± 7 ± 4 347 ± 12 ± 29 0.087 ± 0.005 ± 0.019 +(127 ± 5 ± 4)◦

MAID SE – – – –
SAID SE – – – –
SAID ED 	(1232) 3/2+ 1211 ± 0.5 ± 0.5 101 ± 1 ± 1 2.974 ± 0.013 ± 0.028 −(26 ± 1 ± 1)◦

MAID ED 1209 ± 0.5 ± 0.5 99 ± 0.5 ± 0.5 2.963 ± 0.021 ± 0.040 −(31 ± 1 ± 1)◦

MAID SE 1210 ± 0 ± 1 100 ± 0 ± 1 3.010 ± 0.003 ± 0.020 −(30 ± 0 ± 1)◦

P33(M1+) SAID SE 1211 ± 0 ± 0.5 101 ± 0 ± 1 3.008 ± 0.002 ± 0.033 −(27 ± 0 ± 1)◦

SAID ED 	(1600) 3/2+ 1522 ± 12 ± 7 409 ± 24 ± 11 1.195 ± 0.100 ± 0.104 −(132 ± 2 ± 6)◦

MAID ED 1498 ± 10 ± 22 326 ± 20 ± 20 0.499 ± 0.005 ± 109 −(149 ± 1 ± 20)◦

MAID SE – – – –
SAID SE 1512 ± 3 ± 14 408 ± 5 ± 39 1.173 ± 0.016 ± 0.205 −(144 ± 1 ± 9)◦

SAID ED 	(1700) 3/2− 1650 ± 4 ± 0 255 ± 8 ± 3 0.672 ± 0.026 ± 0.022 −(177 ± 2 ± 1)◦

MAID ED 1649 ± 1 ± 1 223 ± 2 ± 2 0.874 ± 0.004 ± 0.011 −(175 ± 1 ± 2)◦
D33(E2−)

MAID SE 1671 ± 0 ± 10 376 ± 1 ± 6 1.792 ± 0.001 ± 0.169 −(160 ± 1 ± 8)◦

SAID SE 1662 ± 1 ± 3 324 ± 2 ± 6 1.075 ± 0.010 ± 0.044 −(161 ± 1 ± 3)◦

SAID ED 	(1950) 7/2+ 1884 ± 3 ± 1 231 ± 8 ± 1 0.278 ± 0.016 ± 0.003 −(16 ± 2 ± 1)◦

MAID ED 1898 ± 1 ± 1 271 ± 3 ± 1 0.339 ± 0.009 ± 0.003 −(11 ± 1 ± 1)◦
F37(M3+)

MAID SE 1880 ± 1 ± 7 240 ± 1 ± 9 0.283 ± 0.003 ± 0.033 −(24 ± 1 ± 6)◦

SAID SE 1882 ± 1 ± 1 236 ± 2 ± 2 0.283 ± 0.003 ± 0.004 −(17 ± 1 ± 1)◦
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FIG. 1. (Color online) L + P fit to GWU-SAID CM12 ED solutions. Dashed blue and full red lines denote real and imaginary parts
of multipoles, respectively. (a) pE0+(1/2), (b) pM1−(1/2), (c) E1+(3/2), (d) M1+(3/2), (e) pE2−(1/2), (f) E2−(3/2), (g) pE3−(1/2), and
(h) M3+(3/2). All multipoles are in mfm.

It shows up with a normalized strength of 2.5, a rather large
value for a resonance only listed as two star. It will be an
important candidate to watch for in forthcoming SE analyses
from complete experiment studies.

The P11 partial wave shows a consistency only for the
existence of the Roper state N (1440)1/2+. The second
resonance state N (1710)1/2+ (state with three PDG stars) is
more problematic. It varies considerably in our analyses. The
width differs by a factor of five while the residue strength
differs even more. In the MAID SE solution, see Fig. 3, a

clear enhancement is seen in the imaginary part of the pM
1/2
1−

multipole near 1700 MeV. In the same region, however, the
SAID SE solution in Fig. 4 appears rather smooth. This is
another important case to be better determined with future
double-polarization experiments. At this point, it is worth
noting that this state may also be compensated by different
background parametrizations which both can similarly well
describe the fitted data. One possible explanation for this
problem can be given within the framework of L + P expansion
method. Real branch points in the L + P method describe
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FIG. 2. (Color online) L + P fit to MAID MAID2007 ED solutions. Dashed blue and full red lines denote real and imaginary parts
of multipoles, respectively. (a) pE0+(1/2), (b) pM1−(1/2), (c) E1+(3/2), (d) M1+(3/2), (e) pE2−(1/2), (f) E2−(3/2), (g) pE3−(1/2), and
(h) M3+(3/2). All multipoles are in mfm.

the situation when only two-body → two-body processes
contribute, while the complex branch point is a mathematical
implementation of the situation when the three-body final
state, containing a two-body resonant subchannel, is also
important. When only real branch points are considered, this
second N (1710)1/2+ state is needed to explain the data.
However, when a complex ρN branch point is used (indicating
a resonance in the ππ subchannel of a three-body final state),
the second resonance in the πN channel is no longer needed.
This will be further explored in the following section.

For the P33 partial wave, we have two multipoles E
3/2
1+ and

M
3/2
1+ . The pole of the 	(1232)3/2+ shows up quite consis-

tently. Only for the widths and the residues in the SE analysis
do we obtain 10% lower values. We also found the second state
in this partial wave, the 	(1600)3/2+, in both ED solutions
with some larger deviations in the M1+ analysis. It is remark-
able that this resonance is found in the MAID ED solution,
where it is not explicitly included in terms of a Breit-Wigner
resonance, due to its status of only three star. However, due to
the unitarization procedure in MAID, it is implicitly contained

065208-8



POLE POSITIONS AND RESIDUES FROM PION . . . PHYSICAL REVIEW C 89, 065208 (2014)

1000 1200 1400 1600 1800 2000

0

5

10

15

pE
0+

(1
/2

) 
(m

fm
)

1000 1200 1400 1600 1800 2000
-2

-1

0

1

2

3

4

5

pM
1-

(1
/2

) 
(m

fm
)

1000 1200 1400 1600 1800 2000
-4

-3

-2

-1

0

1

2

E
1+

(3
/2

) 
(m

fm
)

1000 1200 1400 1600 1800 2000
-20

0

20

40

60

M
1+

(3
/2

) 
(m

fm
)

1000 1200 1400 1600 1800 2000
-4

-2

0

2

4

6

8

pE
2-

(1
/2

) 
(m

fm
)

1000 1200 1400 1600 1800 2000

-10

-8

-6

-4

-2

0

2

4

E
2-

(3
/2

) 
(m

fm
)

1000 1200 1400 1600 1800 2000
W(MeV)

-1

0

1

2

3

pE
3-

(1
/2

) 
(m

fm
)

1000 1200 1400 1600 1800 2000
W(MeV)

-1

0

1

2

3

M
3+

(3
/2

) 
(m

fm
)

S
11 P

11

P
33 P

33

D
13

D
33

F
15 F

37

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 3. (Color online) L + P fit to MAID MAID2007 SE solutions. Dashed blue and full red lines denote real and imaginary parts
of multipoles, respectively. (a) pE0+(1/2), (b) pM1−(1/2), (c) E1+(3/2), (d) M1+(3/2), (e) pE2−(1/2), (f) E2−(3/2), (g) pE3−(1/2), and
(h) M3+(3/2). All multipoles are in mfm.

through the πN unitarization phase. For the 	(1232)3/2+
resonance, pole positions and residues were already published
in the late 1990s. The numerical values which we find here
with the L + P method agree very well with the pole positions
and residues from E

3/2
1+ and M

3/2
1+ amplitudes in Refs. [30,31].

The D13 partial wave can be analyzed in two multipoles,
where the largest one, the pE

1/2
2− , is presented here. The first

state N (1520)3/2− is very consistent in both ED and SE
analyses, the second state N (1700)3/2− is only found in the
SAID solutions.

The D33 partial wave is also very important in pion photo-
production, but the photodecay amplitudes in the Breit-Wigner
parametrizations differ substantially in the PDG listings. The
figures of the E

3/2
2− multipoles appear very similar for MAID

and SAID solutions, while the 	(1700)3/2− pole parameters
found in our L + P expansion give a rather consistent picture.
However, systematic differences between the ED and SE
solutions appear much larger than the differences between
MAID and SAID solutions. The newly analyzed double-
polarization data of pion photoproduction will certainly tighten
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ALFRED ŠVARC et al. PHYSICAL REVIEW C 89, 065208 (2014)

1000 1200 1400 1600 1800 2000

0

5

10

15

pE
0+

(1
/2

) 
(m

fm
)

1000 1200 1400 1600 1800 2000
-2

-1

0

1

2

3

4

5

pM
1-

(1
/2

) 
(m

fm
)

1000 1200 1400 1600 1800 2000
-4

-3

-2

-1

0

1

2

E
1+

(3
/2

) 
(m

fm
)

1000 1200 1400 1600 1800 2000
-20

0

20

40

60

M
1+

(3
/2

) 
(m

fm
)

1000 1200 1400 1600 1800 2000
-4

-2

0

2

4

6

8

pE
2-

(1
/2

) 
(m

fm
)

1000 1200 1400 1600 1800 2000

-10

-8

-6

-4

-2

0

2

4

E
2-

(3
/2

) 
(m

fm
)

1000 1200 1400 1600 1800 2000
W(MeV)

-1

0

1

2

3

pE
3-

(1
/2

) 
(m

fm
)

1000 1200 1400 1600 1800 2000
W(MeV)

-1

0

1

2

3

M
3+

(3
/2

) 
(m

fm
)

S
11 P

11

P
33 P

33

D
13

D
33

F
15 F

37

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 4. (Color online) L + P fit to GWU-SAID CM12 SE solutions. Dashed blue and full red lines denote real and imaginary parts
of multipoles, respectively. (a) pE0+(1/2), (b) pM1−(1/2), (c) E1+(3/2), (d) M1+(3/2), (e) pE2−(1/2), (f) E2−(3/2), (g) pE3−(1/2), and
(h) M3+(3/2). All multipoles are in mfm.

constraints for this state. It is worth mentioning that some
structure is observed in the SE solutions of MAID and SAID
around a c.m. energy of 1300 MeV, a region where certainly
no resonance is expected in this partial wave. While it looks
up as a peak in the SAID solution, in MAID it appears more
as a largely scattered region. Our L + P formalism cannot find
any physical explanation for this structure.

The F15 partial wave is very similar to the previous
one. In the electric pE

1/2
3− multipole, a very pronounced

resonance structure shows up for the N (1680)5/2+ state and all
resonance parameters are consistently found. The second state,

N (2000)5/2+, another candidate for a complex ρN branch
point, shows up very inconclusively in our L + P analysis.
We can find it in the ED solution of MAID and in the SE
solution of SAID. In the other two solutions it is not seen.
The parameters clearly cannot really be considered for the
same resonance state; even the mass differs by more than
100 MeV, and the residue strength by more than an order
of magnitude. The 2012 PDG tables list two states with
a two-star rating: N (1860)5/2+ and N (2000)5/2+. Further
efforts are necessary to clarify these resonances in pion
photoproduction.
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TABLE III. Pole positions in MeV and residues as moduli in mfm GeV and phases in degrees for a ρN complex branch point. The results
from the L + P expansion are given for GWU-SAID and MAID energy-dependent (ED) and single-energy (SE) solutions.

Multipole Source Resonance ReWp −2ImWp |Residue| θ Ddp/χ 2
dp

P11(pM1−) SAID ED N (1440) 1/2+ 1361 192 0.326 −60◦ 0.0051
MAID ED 1367 188 0.297 −44◦ 0.0043
MAID SE 1381 178 0.369 −31◦ 3.13

D13(pE2−) SAID ED N (1520) 3/2− 1514 109 0.371 +16◦ 0.0078
SAID SE 1511 108 0.354 +10◦ 2.63

F15(pE3−) MAID ED N (1680) 5/2+ 1662 122 0.125 −6◦ 0.0005
SAID SE 1672 117 0.177 −3◦ 3.51

The F37 partial wave, finally, appears rather clean both in the
figures and in the resonance parameters of the 	(1950)7/2+
state.

B. Complex branch points

In an alternative approach, we replaced the third real branch
point xR by a complex ρN branch point, xR = 1708 − 70i.
For the P11, D13, and F15 partial waves, where we already
discussed problems with the second resonance states, we found
solutions that can equally well describe the partial-wave data.

These results are shown in Table III. As the deviations of
the fits χ2

dp (Ddp) are almost identical in all cases, the fits
to the data overlap on Figs. 1–4, so we do not show extra
figures. The only way to distinguish between the two options
(real vs complex branch point) is a comparison with existing
data in the three-body channel, but they have not yet been
included in an analysis of the type discussed in the present
study. This demonstrates quite well that either much-more-
precise data on polarization experiments are required and/or
data in different channels, because γp → ππN or γp → K�
are badly needed in order to determine whether the resonance
is formed in the two-body subsystem of a three-body final state
(complex Pietarinen branch point) or is a genuine intermediate-
state resonance (real Pietarinen branch point).

Just as an illustration that resonance-background
separation for two-body and three-body intermediate states
is very different, in Fig. 5 we compare absolute values
of background and resonance contributions for the very
important P11(pM1−) multipole.

We see that the background term contains much more
structure in the complex-branch-point case but, lacking more
data, we have to conclude that the alternative explanations are
equally valid without including another channel explicitly.

V. RESULTS AND DISCUSSION ON
PHOTODECAY AMPLITUDES

In addition to the eight selected multipoles, which are
shown in the figures and discussed above in detail with
respect to single-energy solutions, we also analyzed all other
multipoles from the MAID and SAID ED solutions up to
L = 3. In order to evaluate the photodecay amplitudes of all
13 four-star resonances below W = 2 GeV, we also require
the pole positions and residues from all other multipoles.
In Table IV, we list all of these pole parameters needed for
further calculations together with the discrepancy parameters
Ddp which indicates the high quality of the fit.

Together with the results in the previous tables, we now
have a complete set of electromagnetic residues, which allows
us to relate the residues of the photoproduction multipoles
to the normalized residues (NR)hγ,π and to the photodecay
amplitudes Ah for helicity h = 1/2 and 3/2.

For consistency with the elastic and inelastic hadronic
reactions, we first introduce the unitary and dimensionless
T -matrix elements T h

γ,π .
Following the notation of Ref. [32], the (γ,π ) T -matrix

element for helicity h is given by

T h
γ,π =

√
2kqAh

αC, (6)

where α denotes the partial wave and k, q are the c.m. momenta
of the photon and the pion. The factor C is

√
2/3 for isospin
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FIG. 5. (Color online) Absolute values of the total amplitude,
the resonance, and background terms for the P11(pM1−) MAID SE
solution are denoted by solid (red), dash-dotted (magenta), and dashed
(blue) lines respectively. Panel (a) shows the result for two resonances
and a real branch point, and panel (b) shows the results for one
resonance and a complex ρN branch point.
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TABLE IV. Pole positions in MeV and residues of multipoles as moduli in mfm GeV and phases in degrees of all multipoles needed to
obtain photodecay amplitudes.

Multipole Source Resonance ReWp −2ImWp |Residue| θ 10 2Ddp

S31(E0+) SAID ED N (1620) 1/2+ 1596 ± 3 ± 1 124 ± 6 ± 1 0.332 ± 0.019 ± 0.002 (138 ± 3 ± 5)◦ 0.59
MAID ED 1595 ± 2 ± 1 131 ± 3 ± 1 0.423 ± 0.009 ± 0.003 (153 ± 1 ± 1)◦ 0.34

P13(pE1+) SAID ED N (1720) 3/2+ 1651 ± 7 ± 2 311 ± 15 ± 10 0.108 ± 0.001 ± 0.008 −(48 ± 3 ± 2)◦ 0.07
MAID ED 1713 ± 2 ± 1 239 ± 4 ± 3 0.103 ± 0.002 ± 0.002 −(21 ± 1 ± 1)◦ 0.55

P13(pM1+) SAID ED N (1720) 3/2+ 1637 ± 3 ± 14 307 ± 7 ± 10 0.071 ± 0.002 ± 0.002 −(148 ± 2 ± 20)◦ 0.45
MAID ED 1679 ± 3 ± 2 243 ± 6 ± 4 0.083 ± 0.002 ± 0.003 −(63 ± 1 ± 2)◦ 0.44

P31(M1−) SAID ED 	(1910) 1/2+ 1778 ± 16 ± 4 394 ± 35 ± 5 0.356 ± 0.037 ± 0.016 −(97 ± 5 ± 7)◦ 0.07
MAID ED 1895 ± 1 ± 6 326 ± 2 ± 1 0.386 ± 0.003 ± 0.007 (6 ± 1 ± 1)◦ 0.93

D13(pM2−) SAID ED N (1520) 3/2− 1515 ± 1 ± 0 110 ± 2 ± 1 0.177 ± 0.003 ± 0.001 (1 ± 1 ± 0)◦ 0.41
MAID ED 1509 ± 0.5 ± 0.5 102 ± 1 ± 1 0.169 ± 0.001 ± 0.003 (8 ± 0.5 ± 0.5)◦ 0.46

D15(pE2+) SAID ED N (1675) 5/2− 1657 ± 3 ± 2 143 ± 6 ± 3 0.012 ± 0.002 ± 0.002 (66 ± 3 ± 2)◦ 0.33
MAID ED 1663 ± 1 ± 1 137 ± 2 ± 1 0.010 ± 0.001 ± 0.001 (79 ± 1 ± 3)◦ 0.25

D15(pM2+) SAID ED N (1675) 5/2− 1656 ± 2 ± 3 139 ± 5 ± 1 0.028 ± 0.002 ± 0.001 −(27 ± 3 ± 1)◦ 0.08
MAID ED 1658 ± 1 ± 6 138 ± 1 ± 1 0.036 ± 0.001 ± 0.001 −(20 ± 1 ± 0)◦ 0.46

D33(M2−) SAID ED 	(1700) 3/2− 1637 ± 2 ± 3 273 ± 5 ± 1 0.151 ± 0.003 ± 0.001 −(16 ± 1 ± 3)◦ 0.92
MAID ED 1645 ± 1 ± 3 211 ± 2 ± 2 0.125 ± 0.001 ± 0.002 −(10 ± 1 ± 3)◦ 0.93

F15(pM3−) SAID ED N (1680) 5/2+ 1674 ± 1 ± 1 112 ± 3 ± 2 0.093 ± 0.002 ± 0.001 −(14 ± 3 ± 2)◦ 0.63
MAID ED 1642 ± 1 ± 10 123 ± 1 ± 1 0.112 ± 0.001 ± 0.001 −(11 ± 1 ± 0)◦ 0.96

F35(E3−) SAID ED N (1905) 5/2+ 1817 ± 5 ± 2 257 ± 12 ± 3 0.049 ± 0.003 ± 0.001 (6 ± 3 ± 2)◦ 0.05
MAID ED 1842 ± 4 ± 8 248 ± 8 ± 13 0.017 ± 0.002 ± 0.002 −(34 ± 2 ± 5)◦ 0.09

F35(M3−) SAID ED N (1905) 5/2+ 1815 ± 4 ± 2 266 ± 7 ± 1 0.046 ± 0.002 ± 0.001 −(20 ± 2 ± 2)◦ 0.63
MAID ED 1834 ± 2 ± 2 288 ± 4 ± 5 0.038 ± 0.001 ± 0.001 −(27 ± 1 ± 2)◦ 0.12

F37(E3+) SAID ED 	(1950) 7/2+ 1879 ± 3 ± 2 231 ± 7 ± 2 0.014 ± 0.001 ± 0.001 −(91 ± 2 ± 2)◦ 0.98
MAID ED 1878 ± 1 ± 1 222 ± 3 ± 3 0.012 ± 0.000 ± 0.001 −(115 ± 2 ± 2)◦ 0.18

3/2 and −√
3 for isospin 1/2. The helicity multipoles Ah

α are
given in terms of electric and magnetic multipoles:

A1/2

+ = − 1

2 [(
 + 2)E
+ + 
M
+], (7)

A3/2

+ = 1

2

√

(
 + 2)[E
+ − M
+], (8)

A1/2
(
+1)− = − 1

2 [
E(
+1)− − (
 + 2)M(
+1)−], (9)

A3/2
(
+1)− = − 1

2

√

(
 + 2)[E(
+1)− + M(
+1)−], (10)

with J = 
 + 1/2 for “+” multipoles and J = (
 + 1) − 1/2
for “−” multipoles, all having the same total spin J .

Compared to the e.m. multipoles, which carry a dimension
of length, the T -matrix elements used here are dimensionless
and have residues defined by the pole term:

T pole,h
γ,π (W ) = Rh

γ,π

M − W − i�/2
. (11)

In Table V we list the normalized residues

(NR)hγ,π = Rh
γ,π

�p/2
, (12)

together with the photodecay amplitudes

Ah = C

√
qp

kp

2π (2J + 1)Wp

mNResπN

ResAh
α, (13)

=
√

π (2J + 1)Wp

k2
pmNResπN

Rh
γ,π , (14)

where the subscript p denotes quantities evaluated at the pole
position. For the elastic residues ResπN and the pole positions
Wp = Mp − i�p/2, we use the values of the GWU-SAID
partial-wave analysis, SP06 [14].

The errors shown for the normalized residues and for the
photodecay amplitudes are obtained by error propagation from
the uncertainties in the residues of the e.m. multipoles, listed
in the previous tables. We considered the total errors of the E,
M residues, which arise from the fitting and from the variation
of the branch points. We also checked uncertainties from the
pole positions; however, these errors are significantly smaller
than the residue errors and can be neglected.

In almost all cases, our results in Table V show a very
consistent behavior in the comparison between the analyses of
the MAID and SAID solutions, with deviations mostly within
1σ–2σ . An exception can be found for the N (1650)1/2−. For
this second resonance in the S11 partial wave, the normalized
residues and photodecay amplitudes in our analyses of MAID
and SAID differ by more than a factor of two. However, this is
not too surprising, as a look in the Particle Data Listings show
that the Breit-Wigner amplitudes also differ by more than a
factor of two and even the elastic pole residues show very
large deviations.

Very recently, pole values for the photodecay amplitudes
of nucleon resonances were also analyzed and published by
the Bonn-Gatchina group [8], the Argonne-Osaka group [33],
and the Jülich group [34]. In Tables VI and VII, we show a
comparison with our current work. For many amplitudes, the
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TABLE V. Normalized pion photoproduction T -matrix residues (dimensionless) with helicity 1/2 and 3/2 and photodecay amplitudes in
units of GeV−1/2. The complex quantities are given in magnitudes and phases.

Resonance Source (NR)1/2
γ,π (NR)3/2

γ,π A1/2 A3/2

	(1232) 3/2+ MAID ED 0.0366(12) 128(2)◦ 0.0722(20) 141(2)◦ 0.130(2) 161(2)◦ 0.258(3) 174(2)◦

SAID ED 0.0363(11) 134(2)◦ 0.0727(18) 146(2)◦ 0.129(2) 167(2)◦ 0.259(2) 179(2)◦

N (1440) 1/2+ MAID ED 0.0165(11) 126(4)◦ 0.058(1) −176(6)◦

SAID ED 0.0156(23) 109(8)◦ 0.055(3) 167(11)◦

N (1520) 3/2− MAID ED 0.0068(7) 175(6)◦ 0.0480(6) 5(1)◦ 0.019(2) −178(7)◦ 0.133(2) 12(1)◦

SAID ED 0.0100(14) 147(7)◦ 0.0482(25) 6(2)◦ 0.028(4) 154(7)◦ 0.133(6) 13(2)◦

N (1535) 1/2− MAID ED 0.0276(20) −6(10)◦ 0.071(3) 6(10)◦

SAID ED 0.0289(49) −29(9)◦ 0.074(10) −17(11)◦

	(1620) 1/2− MAID ED 0.0189(6) −32(2)◦ 0.065(1) 19(2)◦

SAID ED 0.0148(16) −47(6)◦ 0.051(1) 4(9)◦

N (1650) 1/2− MAID ED 0.0496(38) 9(7)◦ 0.100(10) 46(6)◦

SAID ED 0.0204(64) −21(21)◦ 0.041(6) 16(27)◦

N (1675) 5/2− MAID ED 0.0038(3) 6(6)◦ 0.0055(3) −40(3)◦ 0.016(1) 21(6)◦ 0.024(1) −25(4)◦

SAID ED 0.0036(5) 10(12)◦ 0.0044(6) −55(7)◦ 0.015(2) 25(12)◦ 0.019(2) −40(8)◦

N (1680) 5/2+ MAID ED 0.0096(7) 150(5)◦ 0.0454(8) −10(1)◦ 0.027(2) 156(5)◦ 0.129(2) −4(1)◦

SAID ED 0.0049(19) 124(20)◦ 0.0433(17) −12(3)◦ 0.014(5) 130(20)◦ 0.123(4) −6(3)◦

	(1700) 3/2− MAID ED 0.0158(3) −8(2)◦ 0.0166(5) −2(3)◦ 0.125(2) 20(2)◦ 0.132(4) 27(3)◦

SAID ED 0.0141(7) −14(2)◦ 0.0117(12) −1(3)◦ 0.112(3) 15(3)◦ 0.093(7) 28(5)◦

N (1720) 3/2+ MAID ED 0.0076(3) −41(2)◦ 0.0024(2) −159(4)◦ 0.069(1) 17(3)◦ 0.022(3) −101(2)◦

SAID ED 0.0065(6) −72(7)◦ 0.0049(8) 150(9)◦ 0.059(2) −14(8)◦ 0.045(5) −151(11)◦

	(1905) 5/2+ MAID ED 0.0019(2) −32(5)◦ 0.0025(2) 144(4)◦ 0.017(1) −10(6)◦ 0.023(1) 166(5)◦

SAID ED 0.0017(2) −51(8)◦ 0.0042(2) 167(3)◦ 0.015(2) −29(9)◦ 0.038(1) −172(4)◦

	(1910) 1/2+ MAID ED 0.0062(2) −8(2)◦ 0.036(1) −80(2)◦

SAID ED 0.0057(7) −111(13)◦ 0.033(5) 177(11)◦

	(1950) 7/2+ MAID ED 0.0182(7) 160(2)◦ 0.0240(9) 165(2)◦ 0.090(2) −179(3)◦ 0.119(3) −174(2)◦

SAID ED 0.0155(10) 154(3)◦ 0.0193(14) 161(3)◦ 0.076(4) 175(4)◦ 0.095(5) −178(4)◦

TABLE VI. Comparison of pole positions and photodecay amplitudes in units of GeV−1/2 between MAID (MD07), SAID (CM-12), Jülich
(fit 2) [34], Bonn-Gatchina [8], and ANL-Osaka [33] for four-star resonances with isospin 1/2.

Resonance Source ReWp −2ImWp A1/2 A3/2

N (1440) 1/2+ MAID 1360(5) 183(19) 0.058(1) −176(6)◦

SAID 1367(2) 190(5) 0.055(3) 167(11)◦

Jülich 1353 212 0.054 137◦

BnGa 1370(4) 190(7) 0.044(7) 142(5)◦

ANL-O 1374 152 0.050 −12◦

N (1520) 3/2− MAID 1509(1) 104(8) 0.019(2) −178(7)◦ 0.133(2) 12(1)◦

SAID 1514(2) 110(5) 0.028(4) 154(7)◦ 0.133(6) 13(2)◦

Jülich 1519 110 0.024 156◦ 0.117 19◦

BnGa 1507(3) 111(5) 0.021(4) 180(5)◦ 0.132(9) 2(4)◦

ANL-O 1501 78 0.038 3◦ 0.094 −173◦

N (1535) 1/2− MAID 1516(3) 94(5) 0.071(3) 6(10)◦

SAID 1501(6) 95(11) 0.074(10) −17(11)◦

Jülich 1498 74 0.050 −45◦

BnGa 1501(4) 134(11) 0.116(10) 7(6)◦

ANL-O 1482 196 0.161 9◦
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TABLE VI. (Continued.)

Resonance Source ReWp −2ImWp A1/2 A3/2

N (1650) 1/2− MAID 1678(4) 135(5) 0.100(10) 46(6)◦

SAID 1655(11) 127(17) 0.041(6) 16(27)◦

Jülich 1677 146 0.023 −29◦

BnGa 1647(6) 103(8) 0.033(7) −9(15)◦

ANL-O 1656 170 0.040 −44◦

N (1675) 5/2− MAID 1661(10) 138(4) 0.016(1) 21(6)◦ 0.024(1) −25(4)◦

SAID 1657(6) 141(11) 0.015(2) 25(12)◦ 0.019(2) −40(8)◦

Jülich 1650 126 0.022 38◦ 0.036 −41◦

BnGa 1654(4) 151(5) 0.024(3) −16(5)◦ 0.026(8) −19(6)◦

ANL-O 1650 150 0.005 −22◦ 0.033 −23◦

N (1680) 5/2+ MAID 1653(22) 121(6) 0.027(2) 156(5)◦ 0.129(2) −4(1)◦

SAID 1674(3) 113(6) 0.014(5) 130(20)◦ 0.123(4) −6(3)◦

Jülich 1666 108 0.013 120◦ 0.126 −24◦

BnGa 1676(6) 113(4) 0.013(4) 155(22)◦ 0.134(5) −2(4)◦

ANL-O 1665 98 0.053 −5◦ 0.038 −177◦

N (1720) 3/2+ MAID 1696(22) 241(12) 0.069(1) 17(3)◦ 0.022(3) −101(2)◦

SAID 1644(24) 309(27) 0.059(2) −14(8)◦ 0.045(5) −151(11)◦

Jülich 1717 208 0.051 −8◦ 0.014 37◦

BnGa 1660(30) 450(100) 0.110(45) 0(40)◦ 0.150(35) 65(35)◦

ANL-O 1703 140 0.234 2◦ 0.070 173◦

TABLE VII. Same as in Table VI for four-star resonances with isospin 3/2.

Resonance Source ReWp −2ImWp A1/2 A3/2

	(1232) 3/2+ MAID 1211(1) 99(1) 0.130(2) 161(2)◦ 0.258(3) 174(2)◦

SAID 1211(1) 101(1) 0.129(2) 167(2)◦ 0.259(2) 179(2)◦

Jülich 1220 86 0.114 153◦ 0.229 165◦

BnGa 1210(1) 99(2) 0.131(4) 161(2)◦ 0.254(5) 171(1)◦

ANL-O 1211 102 0.133 165◦ 0.257 177◦

	(1620) 1/2− MAID 1595(3) 131(4) 0.065(1) 19(2)◦

SAID 1596(4) 124(7) 0.051(1) 4(9)◦

Jülich 1599 71 0.028 −88◦

BnGa 1597(4) 130(9) 0.052(5) −9(9)◦

ANL-O 1592 136 0.113 −1◦

	(1700) 3/2− MAID 1647(6) 217(13) 0.125(2) 20(2)◦ 0.132(4) 27(3)◦

SAID 1644(12) 264(20) 0.112(3) 15(3)◦ 0.093(7) 28(5)◦

Jülich 1675 303 0.109 −12◦ 0.111 21◦

BnGa 1680(10) 305(15) 0.170(20) 50(15)◦ 0.170(25) 45(10)◦

ANL-O 1707 340 0.059 −70◦ 0.125 −75◦

	(1905) 5/2+ MAID 1838(16) 268(41) 0.017(1) −10(6)◦ 0.023(1) 166(5)◦

SAID 1816(8) 262(17) 0.015(2) −29(9)◦ 0.038(1) −172(4)◦

Jülich 1770 259 0.013 19◦ 0.072 67◦

BnGa 1805(10) 300(15) 0.025(5) −23(15)◦ 0.050(4) 180(10)◦

ANL-O 1765 188 0.008 −97◦ 0.018 −90◦

	(1910) 5/2+ MAID 1895(7) 326(3) 0.036(1) −80(2)◦

SAID 1778(20) 394(40) 0.033(5) 177(11)◦

Jülich 1788 575 0.246 −133◦

BnGa 1850(40) 350(45) 0.023(9) 40(90)◦

ANL-O 1854 368 0.052 170◦

065208-14



POLE POSITIONS AND RESIDUES FROM PION . . . PHYSICAL REVIEW C 89, 065208 (2014)

TABLE VII. (Continued.)

Resonance Source ReWp −2ImWp A1/2 A3/2

	(1950) 7/2+ MAID 1888(12) 247(31) 0.090(2) −179(3)◦ 0.118(3) −174(2)◦

SAID 1882(8) 231(9) 0.076(4) 175(4)◦ 0.095(5) −178(4)◦

Jülich 1884 234 0.071 151◦ 0.089 155◦

BnGa 1890(4) 243(8) 0.072(4) 173(5)◦ 0.096(5) 173(5)◦

ANL-O 1872 206 0.062 171◦ 0.076 −178◦

magnitudes are in good agreement, while the residue phases
differ quite substantially. An exception is seen in the 	(1232)
resonance: only the Jülich results are somewhat different.
Similar to the elastic πN residues, where the residue phase
is a measure of the nonresonant background, here also for
the photoproduction residues we can assume that the residue
phases give a measure of the photoproduction background
contributions. And this part of the amplitude is less well
known, for most resonances, than the resonance contribution
itself. In the near future the efforts in the complete experiment
analysis of pseudoscalar photoproduction will certainly help
to clarify this situation.

VI. SUMMARY AND CONCLUSIONS

In this work, we applied the L + P method to the partial-
wave amplitudes of the MAID and SAID solutions for single-
pion photoproduction. We analyzed both energy-dependent
and single-energy solutions and determined pole positions
and residues from electromagnetic multipoles in the region
up to W ∼ 2 GeV. The pole positions are compared with
values listed in the Particle Data Tables and show almost
perfect agreement with data coming from other channels.
Presently, inelastic residues are very sparse in the Particle Data
Tables, with no residues for meson photoproduction yet listed.
However, since the PDG is recommending the replacement of
Breit-Wigner parameters by pole parameters in future listings,
we find that the L + P method, being controllably model
dependent, is a good method to extract this information from
both ED and SE partial-wave amplitudes.

We found that, for all partial waves, the first resonance
state can be consistently analyzed with the L + P technique
and good agreement on the pole positions can be observed.
This also gives us confidence in the determination of the
complex residues for pion photoproduction. In the special
case of the S11 partial wave, the second (four-star) resonance
N (1650)1/2− can be equally-well analyzed, while a third
N (1895)1/2− can only be found in the MAID ED solution. For

most other (two- and three-star) resonances, our analysis finds
large deviations among the four different solutions. From these
resonances, the 	(1600)3/2+ is best determined; other states,
such as N (1710)1/2+, N (1700)3/2−, and N (2000)5/2+,
give inconclusive results. All three of them, however, can
alternatively be replaced by a complex branch point in the
appropriate P11, D13, and F15 partial waves. For these partial
waves, we demonstrated that the amplitudes can be similarly
described by either a real branch point and two resonances or
a complex branch point and only one resonance.

Furthermore, for all partial waves, we investigated the four-
star resonances in the energy region W < 2 GeV with respect
to the normalized T -matrix residues and the photodecay
amplitudes at the pole positions. We compared our results
with other very recently published analyses and find good
agreement for the dominant amplitudes, but also considerable
deviations for smaller amplitudes or amplitudes of nucleon
resonances that are less well determined.

In conclusion, we found that a single-channel partial-wave
analysis can consistently determine the pole position and
parameters of the lowest nucleon resonances but cannot dis-
tinguish between higher resonances and alternative complex
branch points. However, with the additional information of
other decay channels, especially with three-body final states,
a unique determination should be possible.
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APPENDIX

Tables VIII and IX compare results with the third branch
point either fixed, based on the threshold for a dominant
inelastic channel, or allowed to adjust for a best fit. The
variation is used in the estimation of systematic errors, as
discussed in Sec. IIIB.

TABLE VIII. Parameters from L + P expansion are given for GWU/SAID and MAID energy-dependent (ED) solutions. Nr is the number
of resonance poles; xP , xQ, xR are branch points in MeV.

Multipole Source

SAID ED MAID ED

Nr xP xQ xR 102Ddp Nr xP xQ xR 102Ddp

2 142 1077πN 1215ππN 0.49 3 −3778 1077πN 1215ππN 1.20
S11(pE0+) 2 900 1077πN 1486ηN 0.35 3 −131 1077πN 1486ηN 1.01

2 889 1077πN 1495free 0.31 3 −393 1077πN 1379free 0.98
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TABLE VIII. (Continued.)

Multipole Source

SAID ED MAID ED

Nr xP xQ xR 102Ddp Nr xP xQ xR 102Ddp

2 900 1077πN 1215ππN 0.13 2 309 1077πN 1215ππN 0.31
P11(pM1−) 2 900 1077πN 1370Real(π	) 0.15 2 494 1077πN 1370Real(π	) 0.28

2 871 1077πN 1375free 0.12 2 123 1077πN 1515free 0.15

2 883 1077πN 1215ππN 0.12 2 838 1077πN 1215ππN 0.20
P33(pE1+) 2 899 1077πN 1370Real(π	) 0.12 2 167 1077πN 1370Real(π	) 0.19

2 818 1077πN 1218free 0.09 2 534 1077πN 1222free 0.09

2 900 1077πN 1215ππN 0.08 2 −5238 1077πN 1215ππN 1.29
P33(M1+) 2 788 1077πN 1370Real(π	) 0.05 2 −218 1077πN 1370Real(π	) 1.50

2 507 1077πN 1238free 0.02 2 900 1077πN 1265free 0.89

2 900 1077πN 1215ππN 0.28 1 485 1077πN 1215ππN 0.35
2 832 1077πN 1370Real(π	) 0.34 1 528 1077πN 1370Real(π	) 0.33

D13(pE2−)
2 900 1077πN 1700Real(ρN) 0.36 1 48 1077πN 1700Real(ρN) 0.17
2 900 1077πN 1232free 0.28 1 898 1077πN 1717free 0.06

1 900 1077πN 1215ππN 0.18 1 900 1077πN 1215ππN 0.45
D33(pE2−) 1 537 1077πN 1370Real(π	) 0.19 1 609 1077πN 1370Real(π	) 0.46

1 900 1077πN 1105free 0.15 1 900 1077πN 1222free 0.34

1 900 1077πN 1215ππN 0.01 2 899 1077πN 1215ππN 0.11
1 856 1077πN 1370Real(π	) 0.02 2 883 1077πN 1370Real(π	) 0.14

F15(pE3−)
1 898 1077πN 1700Real(ρN) 0.02 2 898 1077πN 1700Real(ρN) 0.12
1 900 1077πN 1222free 0.01 2 −118 1077πN 1126free 0.10

1 897 1077πN 1370Real(π	) 0.01 1 −1931 1077πN 1370Real(π	) 0.03
F37(pE3+) 1 755 1077πN 1700Real(ρN) 0.01 1 −977 1077πN 1700Real(ρN) 0.03

1 900 1077πN 1285free 0.01 1 −215 1077πN 1230free 0.02

TABLE IX. Parameters from L + P expansion are given for GWU-SAID and MAID single-energy (SE) solutions. Nr is the number of
resonance poles, xP , xQ, xR are branch points in MeV.

Multipole Source

MAID SE SAID SE

Nr xP xQ xR χ 2
dp Nr xP xQ xR χ 2

dp

2 −950 1077πN 1215ππN 3.88 2 −9935 1077πN 1215ππN 3.02
S11(pE0+) 2 −395 1077πN 1486ηN 3.86 2 −4986 1077πN 1486ηN 2.53

2 876 1077πN 1491free 3.53 2 556 1077πN 1499free 2.47

2 −1037 1077πN 1215ππN 3.03 1 −1256 1077πN 1215ππN 3.02
P11(pM1−) 2 −810 1077πN 1370Real(π	) 2.74 1 −12191 1077πN 1370Real(π	) 3.05

2 −3417 1077πN 1362free 2.73 1 −10673 1077πN 1324free 2.97

1 −2754 1077πN 1215ππN 3.38 1 754 1077πN 1215ππN 3.00
P33(pE1+) 1 −1759 1077πN 1370Real(π	) 3.34 1 615 1077πN 1370Real(π	) 3.02

1 46 1077πN 1467free 3.21 1 −1267 1077πN 1155free 2.98

1 −1670 1077πN 1215ππN 3.26 2 −1116 1077πN 1215ππN 2.94
P33(M1+) 1 −7265 1077πN 1370Real(π	) 3.27 2 60 1077πN 1370Real(π	) 2.86

1 −387 1077πN 1250free 3.24 2 639 1077πN 1236free 2.84

1 −6892 1077πN 1215ππN 2.77 2 775 1077πN 1215ππN 2.68
1 −96 1077πN 1370Real(π	) 2.79 2 716 1077πN 1370Real(π	) 2.66

D13(pE2−)
1 −232 1077πN 1700Real(ρN) 3.02 2 831 1077πN 1700Real(ρN) 2.57
1 900 1077πN 1193free 2.61 2 179 1077πN 1737free 2.33
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TABLE IX. (Continued.)

Multipole Source

MAID SE SAID SE

Nr xP xQ xR χ 2
dp Nr xP xQ xR χ 2

dp

1 862 1077πN 1215ππN 5.04 1 638 1077πN 1215ππN 2.53
D33(pE2−) 1 835 1077πN 1370Real(π	) 4.71 1 837 1077πN 1370Real(π	) 2.45

1 899 1077πN 1556free 4.61 1 −663 1077πN 1374free 2.36

1 −27038 1077πN 1215ππN 3.63 2 900 1077πN 1215ππN 3.34
1 −923 1077πN 1370Real(π	) 3.93 2 −139 1077πN 1370Real(π	) 3.26

F15(pE3−)
1 −715 1077πN 1700Real(ρN) 3.08 2 900 1077πN 1700Real(ρN) 2.86
1 90 1077πN 1705free 3.03 2 −165 1077πN 1717free 2.69

1 894 1077πN 1370Real(π	) 2.49 1 −146 1077πN 1370Real(π	) 1.66
F37(pE3+) 1 70 1077πN 1700Real(ρN) 2.06 1 667 1077πN 1700Real(ρN) 1.68

1 −247 1077πN 1649free 1.87 1 −1504 1077πN 1270free 1.64
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