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Hadronization within a Nambu–Jona-Lasinio model with a Polyakov loop
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I developed a dynamical model devoted to studying the cooling of a quark-antiquark plasma and its
hadronization into mesons and baryons. To perform this modeling, I considered the Nambu–Jona-Lasinio (NJL)
model, completed by the inclusion of a Polyakov loop, to form the PNJL model. I studied the mesonization, but
also the baryonization of this system, thanks to cross sections calculated according to

√
s, the temperature, and

the densities. In the performed simulations, I identified the dominant reactions. I also underlined the existence of
a remote interaction between quarks. A purpose of this paper was to compare the NJL and PNJL results to see if
one of these two models can make it possible to obtain a full hadronization of an open system initially composed
of quarks and antiquarks.
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I. INTRODUCTION

Nowadays, the phase transition between the quark gluon
plasma (QGP) and the hadronic matter is an intensely studied
phenomenon, experimentally and theoretically. In the frame-
work of experiments performed in the BNL Relativistic Heavy
Ion Collider (RHIC) or in the CERN Large Hadron Collider
(LHC), e.g., Ref. [1], we hope to have a better understanding
of the involved physics. Moreover, the cooling of the QGP
constitutes a fascinating challenge theoretically. It requires
modeling the interaction between the interacting particles.
It notably includes the estimation of the associated cross
sections. However, the description of such physics appears
as a rather delicate task because the associated QCD equations
cannot be fully solved at the involved energies. Lattice QCD
calculations [2–7] allow interesting progress in our knowledge
of the quark physics. However, this approach showed its
limitations to work at high baryonic densities because of the
fermion sign problem [7,8].

At the same time, the Nambu–Jona-Lasinio model [9,10]
proved its reliability to describe quark physics for a long
time. This model was progressively improved by various
developments since its creation. One can notably quote
papers as Refs. [11,12] and [13–16], and then Refs. [17]
and [18–21]. Some recent papers should also to be mentioned,
such as Refs. [22,23]. About current evolutions, I mention,
for example, the study of eight-quark interactions [24–28],
proving that the model continues to be enhanced. Furthermore,
thanks to the use of the Matsubara formalism [29], this
approach is able to work at finite temperatures. Also, the model
makes it possible to work at finite chemical potentials and
therefore at finite densities [23]. The NJL approach considers
that the interactions between quarks can be reduced to a
punctual interaction [30], assumed by massive gluons. These
ones are represented by scalar terms. So, they intervene by way
of effective coefficients. In fact, the gluons do not really exist
in the framework of the NJL model as dynamical degrees
of freedom. The absence of confinement is an important
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consequence of this approximation. Also, the model is not
renormalizable. In practice, this difficulty is solved by the use
of a cutoff � in the numerical calculations. The NJL model
makes it possible to model effective u,d,s quarks, starting
from their naked masses. Then, these effective quarks are
usable to treat composite particles, such as mesons [17,31–33].
Furthermore, some approaches to describe baryons were also
proposed, notably as a quark-diquark bound state [20,34–36].
In the framework of the NJL model, Refs. [37–47] can
be considered as an overview of the baryon’s modeling.
Moreover, the NJL approach makes it possible to estimate
the cross sections of reactions involving the evoked particles.
So, quark-quark or quark-antiquark elastic scatterings were
studied [48,49]. In the same way, inelastic reactions, such
as mesonization processes q + q̄ → M + M, were modeled
in the NJL approach [32]. This work was followed by the
analysis of meson-meson elastic scattering; see Refs. [50,51]
or [52]. Then, some studies evoked the possibility to model
processes involving diquarks and baryons [44,53]. As a whole,
the NJL cross sections are estimated according to

√
s and the

temperature, as in Ref. [54]. However, the calculations can also
be done at finite baryonic densities [55] and in the T ,ρB plane,
i.e., at finite temperatures and densities in the same time [56].
Clearly, being aware of these qualities of the NJL approach,
this model is often considered as a valuable tool to describe
the hadronization of a quark-antiquark plasma.

In parallel, dynamical models were proposed in the frame-
work of nuclear and particle physics. As indicated in Ref. [57],
two types of approaches can be evoked: the macroscopic and
the microscopic ones. Concerning the macroscopic models,
one quotes the relativistic hydrodynamics [58–65] proposed
in 1953 by Landau. This approach considers the matter as
a continuous relativistic fluid. In an ideal fluid-dynamics
description, the local thermodynamic equilibrium should be
satisfied. As explained in Ref. [65], small departures from equi-
librium are treatable by viscous fluid-dynamics approaches. In
fact, experimental results, e.g., Ref. [66], go on the sense of a
rapid thermalization of the QGP, leading to local equilibrium of
the expanding fireball. Therefore, these observations validate
a hydrodynamic description of this phase. Concerning the
microscopic models, we notably have the ultrarelativistic
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quantum molecular dynamics (UrQMD) [57,67]. It considers
covariant transport equations and interactions between parti-
cles are described via cross-section calculations. In practice,
this model can be employed to describe the hadronic phase,
e.g., Refs. [68,69].

Recent approaches can also be quoted, such as the par-
ton hadron string dynamics (PHSD) [70–73] that solves a
Boltzmann equation, the Boltzmann approach for multiparton
scattering (BAMPS) [74], etc. Also, I mention works such as
Refs. [75–77] that consider coalescence models and quark
recombination to describe the formation of hadrons from
quarks and gluons. Furthermore, we have Ref. [78], which
uses a Boltzmann equation and studies the formation of
mesons by quark-antiquark interactions. All the evoked models
constitute a relevant starting point. Also, they can inspire
some ideas in the framework of a dynamical model using
NJL, such as the collision criterion evoked, e.g., in Ref. [67].
Some attempts were performed in this way [53,79,80] that
used a molecular dynamics approach. In fact, two methods
can be proposed. The first one studies the cooling of the
quark-antiquark system by the use of an external thermostat.
This one controls the progressive decrease in temperature
according to time. This method seems to be adapted to describe
the phase transition of systems considered as infinite. The
second method [80] considers the notion of local parameters.
The purpose is to study the mutual influence of the particles
and to be able to describe local effects. The use of local pa-
rameters makes it possible to study, for example, core-corona
interactions.

However, because of the absence of confinement in the
NJL model, a quark can appear as free outside of the required
conditions of the QGP. It can notably be true at the end of
a cooling modeled by a pure NJL model. Of course, such
an artifact appears as a strong limitation of the approach.
A pure NJL description is maybe not sufficient to correctly
describe the involved physics in such a work. To cure the
absence of confinement, it was recently proposed to couple
the quarks and antiquarks to a Polyakov loop [81–83]. It forms
the Polyakov Nambu–Jona-Lasinio model (PNJL) [84–93]. It
proposes a mechanism that simulates the confinement. This
improvement of the model appears to be a very promising
approach. I can mention, e.g., the behavior observed at low
temperatures: This one is enhanced compared to a pure NJL
model thanks to the suppression of the contribution of colored
states on the thermodynamics [87,89]. Also, the inclusion
of the Polyakov loop allows a more efficient restoration of
the chiral symmetry, as observed in Ref. [91], by a strong
decrease in the masses of the dressed quarks around the
critical temperature. This behavior is in agreement with LQCD
results, as noted in Ref. [88]. A good agreement between PNJL
results and LQCD data was also reported in Refs. [86,93].
Moreover, in previous publications [45,94], I studied the
possibility to adapt the modeling of the NJL particles in
the framework of the PNJL description. It concerned the
mesons, the diquarks, and the baryons. In the same way, I
compared the cross sections calculated with the NJL and the
PNJL models. I considered the processes quoted above, i.e.,
elastic reactions implying quarks/antiquarks, the mesonization
reactions, and inelastic processes allowing the formation

of diquarks or baryons. I found that the inclusion of the
Polyakov loop leads to a shifting of the found values toward
higher temperatures, compared to a pure NJL description.
This remark concerns the particles’ masses and the cross
sections. However, at finite densities and low temperatures,
it was reported in the literature the possible formation of a
particular state associated with the color superconductivity
phenomenon [95–100]. It needs a specific treatment, notably
by using the Nambu-Gorkov formalism [95,96]. This aspect
can be considered as a limitation of the domain of validity
of models not using this formalism. However, as explained in
Ref. [94], the temperature and density conditions required to
study the cooling of a q/q̄ plasma seem to be definitely outside
of the domain in which the color superconductivity is expected
to intervene. In contrast, cold and dense systems, such as the
cores of neutron stars [98], seem to be concerned by the color
superconductivity.

In fact, it could be interesting to investigate the influence
of the Polyakov loop on the results found in the framework of
a dynamical study. In other words, it could be studied how
the modifications observed with the masses and the cross
sections could affect the simulations. The amplitude of these
modifications should be evaluated. Also, the characteristics
of such an approach and its possible limitations should be
stated. More precisely, we want to know if the confinement
mechanism proposed by the PNJL model could be efficient
enough to avoid free quarks in the end of the simulations.
In addition, it seems to be well admitted that the cooling
of a quark-antiquark system is dominated by a colossal
mesonization. The strong cross sections of q + q̄ → M + M
[32,54,94] confirm this hypothesis. The baryonization seems
to be rather limited. Also, modest cross sections for processes
that create baryons were observed [94]. In this reference, a
scenario was proposed in which the baryonization should
start after the mesonization. This hypothesis was justified
while saying that the antiquarks must be consumed to form
mesons to not interfere in the formation of the baryons. Indeed,
the antiquarks can destroy the baryons via some inelastic
reactions described in Ref. [94]. Therefore, the inclusion of
the baryons in a dynamical evolution model could lead new
elements of information to confirm the scenario or show
its limitations. The role played by the diquarks is also to
be highlighted. Even if they are not expected to be present
in the end of the cooling, will they be produced in great
quantities? Do they really contribute to the formation of the
baryons? What are the dominant reactions that permit the
baryonization?

To try to answer the questions formulated in the previous
paragraph, I propose to organize the paper in the following
way. In Sec. II, I perform a rapid description of the (P)NJL
models. At this occasion, I recall some results associated with
the treated PNJL particles by a study of their masses according
to the temperature and/or the baryonic density. I also present
some cross-section results involving these particles. Then, in
Sec. III, I detail the algorithm devoted to the study, based, as
in Ref. [80], on a relativistic molecular dynamics description.
I propose there a comparison with other approaches, notably
with Ref. [80], to explain my choices concerning some aspects
of the implemented method. I indicate how one estimates the
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external parameters used in the work, i.e., the temperature
and the densities. Also, I describe the part of the algorithm
devoted to the treatment of the collisions. I establish a list of
all the included processes. About theoretical considerations,
I also insist particularly on the equations of motion and the
way to interpret and exploit them. In Sec. IV, some first
results are shown. The purpose is to see some properties
of the model and to underline relevant aspects. In this way,
trajectories of particles are plotted and analyzed. The results
obtained with complete simulations are gathered in Secs. V
and VI. Section V focuses on a comparison between results
found with the NJL approach and with the PNJL one. In
Sec. VI, the evolution of relevant observables is presented.
The objective is notably to understand the various phases of
the cooling. One also finds the dominant reactions in these
simulations.

TABLE I. NJL parameter sets. The masses and the cutoff are
expressed in MeV, G, and GDIQ are in MeV−2. K is in MeV−5.

Parameter set m0u m0d m0s Cutoff � G �2 K �5 GDIQ

P1 4.75 4.75 147.0 708.0 1.922 10.00 0.705 G

EB 4.00 6.00 120.0 708.0 1.922 10.00 0.705 G

II. THE POLYAKOV NAMBU–JONA-LASINIO MODEL

A. The NJL approach

A first application of the NJL modeling concerns the
calculations of the effective quark masses, starting from their
naked masses m0f . At finite temperature T and densities ρf ,
the system of equations to be solved to find the mass mf of
the f flavor quark is [17,20,32]

mf = m0f − 4G〈〈ψ̄f ψf 〉〉 + 2K〈〈ψ̄jψj 〉〉〈〈ψ̄kψk〉〉|f = u,d,s
f �= j and f �= k

(1)

ρf = 2Nc

∫
d3p

(2π )3
[f +(β(Ef − μf )) − f −(β(Ef + μf ))]

∣∣∣∣
f =u,d,s

.

The first line of Eq. (1) is the gap equation obtained while
applying the mean-field approximation. The quark condensate
of flavor f is written as [49]

〈〈ψ̄f ψf 〉〉 = mf Nc

4π2
A(mf ,μf ,β,�), (2)

where ψf refers to the field of flavor f quarks, Nc = 3 is the
number of colors, β = 1/T is the inverse of the temperature,
and μf is the chemical potential of the flavor f quark. In
Eq. (2), an A function is used, associated with a one-fermion
line integral. This function, extracted from Refs. [31,32] is
defined as

A(mf ,μf ,β,�) = 16π2

β

∑
n

∫
d3p

(2π )3

1

(iωn + μf )2 − E2
f

,

(3)

where iωn = (2n + 1) π/β are fermionic Matsubara frequen-
cies (uneven frequencies). I recall that bosonic Matsubara
frequencies are even numbers [29,31]. Ef =

√
�p2 + m2

f is
the energy of the quark. In the second line of Eq. (1),

f ±(β(Ef ∓ μf )) = 1

eβ (Ef ∓μf ) + 1
(4)

are the standard Fermi-Dirac distributions: f + concerns the
quarks and f − the antiquarks. The coefficients that appear
in Eq. (1) are listed in Table I. In this table, I mention
the GDIQ constant, which is used to model the diquarks.
The cutoff � corresponds to the upper bound of integrals,
in the numerical calculations. The P1 parameter set is inspired

from Refs. [44,53,54]. It uses the isospin symmetry: It implies
that mu = md ≡ mq and ρu = ρd ≡ ρq. This parameter set
was used in this paper to recall some results obtained in
Refs. [45,94]. They concern the masses of the quarks, mesons,
diquarks, and baryons [45] and the cross sections of reactions
involving these particles [94]. These data are reproduced in
Secs. II C and II D, in which the baryonic density is expressed
as ρB = 2/3ρq [21], with ρs = 0. In the NJL literature, the
parameter set proposed by Klevansky et al. [31,32,48] and
used, e.g., in Ref. [80] could also be evoked. Compared to this
one, P1 gives close results, notably with the light pseudoscalar
mesons. The fact that P1 handles slightly heavier dressed
quarks constitutes the main difference.

In Ref. [45], the parameter set named EB was introduced.
It does not consider the isospin symmetry. It is used in all my
dynamical simulations. Indeed, an objective of the approach
is to be able to work under conditions for which the isospin
symmetry is not necessarily verified. In heavy-ion collisions,
the excess of neutrons over protons can lead to ρd > ρu, even if
this asymmetry is negligible at top RHIC energies and at LHC.
In Ref. [45], it was shown that EB and P1 give comparable
results. However, the agreement between EB and experimental
data is sometimes better, notably in the case of pseudoscalar
and vectorial mesons.

B. Inclusion of a Polyakov loop: The PNJL model

First, the inclusion of the Polyakov loop affects the grand
potential expression [83,91], written as

�PNJL = U(T ,	,	̄) + 2G
∑

f =u,d,s

〈〈ψ̄f ψf 〉〉2 − 4K〈〈ψ̄uψu〉〉〈〈ψ̄dψd〉〉〈〈ψ̄sψs〉〉

− 2Nc

∑
f =u,d,s

∫ �

0

p2 dp

2π2

{
Ef + T

Nc

Trc ln[Z+
	(Ef )] + T

Nc

Trc ln[Z−
	(Ef )]

}
. (5)
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Compared to the pure NJL one, the effective potential U is added [83]. As in Refs. [85,88,91], I consider

U(T ,	,	̄)

T 4
= −a (T )

2
		̄ + b(T ) ln[1 − 6		̄ + 4(	3 + 	̄3) − 3(		̄)2], (6)

with

a (T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

and

b(T ) = b3

(
T0

T

)3

. (7)

The coefficients used in Eq. (7) are gathered in
Table II [88,91].

	 and 	̄ are, respectively, the expectation value of the
Polyakov field and its conjugate. They are defined by 	 (�x) =
Trc〈〈L(�x)〉〉

Nc
and 	̄(�x) = Trc〈〈L†(�x)〉〉

Nc
, where

L (�x) = P exp

[
i

∫ β

0
A4 (�x,τ ) dτ

]
(8)

designates the Polyakov line. Also, P is a path ordering
operator and A4 is the temporal component of the Euclidian
gauge field [83,87,89,91]. In the framework of the mean-field
approximation, 	 and 	̄ are real numbers. They are considered
as independent variables in the calculations [88]. Indeed, they
are not equal [8] in the general case.

Another consequence of the inclusion of the Polyakov
loop is the adaptation of the partition functions Z±(Ef ) =
1 + e−β (Ef ∓μf ) that become [83,87,92]

Z+
	(Ef ) = 1 + Le−β (Ef −μf ),

(9)
Z−

	(Ef ) = 1 + L†e−β (Ef +μf ).

Z+
	 is associated with quarks and Z−

	 with antiquarks.
These modifications imply an update of the Fermi-Dirac
distributions [89,91], because there are calculated by

f ±
	 (β(Ef ∓ μf )) = ± 1

β

∂
[

1
Nc

Trc ln(Z±
	)

]
∂μf

, (10)

which leads to

f +
	 (β(Ef − μf ))

= (	 + 2	̄ e−β(Ef −μf ))e−β(Ef −μf ) + e−3β(Ef −μf )

1 + 3(	 + 	̄e−β(Ef −μf ))e−β(Ef −μf ) + e−3β(Ef −μf ) ,

f −
	 (β(Ef + μf ))

= f +
	 (β(Ef − μf ))|	↔	̄, μf ↔−μf

. (11)

As indicated in Ref. [89], in the PNJL calculations, this
update concerns all the equations in which Fermi-Dirac
distributions associated with quarks/antiquarks are employed,
as, e.g., Eq. (1).

TABLE II. PNJL parameters.

a0 a1 a2 b3 T0

3.51 –2.47 15.2 –1.75 270 MeV

Moreover, because of the inclusion of 	 and 	̄ in the grand
potential (5), two extra equations are added to the system to
be solved Eq. (1) [87,91]:

∂�PNJL

∂	
= 0,

∂�PNJL

∂	̄
= 0. (12)

The purpose of Eq. (12) is to minimize the grand potential
according to 	 and 	̄. In the framework of the PNJL model,
for a given temperature T and for densities ρf , the system of
Eqs. (1) and (12) makes it possible to estimate the masses of
the quarks mf , their associated chemical potentials μf , and
the values of the Polyakov fields 	 and 	̄.

C. Order parameters and particle masses in the (P)NJL models

The NJL model makes it possible to study the restoration
of the chiral symmetry, by means of the chiral condensate
introduced in Eq. (2), used as an order parameter. In the
framework of the mean-field approximation, the dressed
quarks result from a coupling of the naked quarks with the
chiral condensates, Eq. (1). With the PNJL model, the quarks
are also coupled to the Polyakov loop 	. This one is another
order parameter associated with the phase transition between
the “confined” phase and the “deconfined” one. I use quotation
marks because they correspond to pure gauge calculations, as
recalled in Ref. [89]. The denomination is conserved, however,
when quarks are added in the modeling.

The numerical solutions of Eqs. (1) and (12) make it
possible to estimate the values of these order parameters. The
evolution of the light quark condensate is presented in Fig. 1(a).
I normalized the results by the value of the condensate at null
temperature and null densities. With the P1 parameter set (solid
line), 〈〈ψ̄uψu〉〉 = 〈〈ψ̄dψd〉〉 ≡ 〈〈ψ̄qψq〉〉, whereas for EB
(dashed line), I plotted 1/2 (〈〈ψ̄uψu〉〉 + 〈〈ψ̄dψd〉〉). In agree-
ment with the (P)NJL literature, the restoration of the chiral
symmetry is performed by way of a crossover because m0f �= 0
(Table I). One also confirms that the inclusion of the Polyakov
loop leads to increase the value of the pseudocritical tempera-
ture Tc of this crossover [83]. One has Tc ≈ 230 MeV for a pure
NJL description, versus Tc ≈ 270 MeV in the PNJL one. These
results concern P1 and EB: The curves associated with these
parameter sets are very close. In Fig. 1(b), I plotted the values
of the Polyakov field 	 according to the temperature and the
baryonic density. 	 increases when the temperature is grow-
ing. According the PNJL literature, e.g., Ref. [91], it can be re-
called that 	 ≈ 	̄ → 0 corresponds to the “confined” regime,
whereas 	 ≈ 	̄ → 1 corresponds to the “deconfined” one.

Equations (1) and (12) also lead to the quark masses
published in Ref. [45] and reproduced in Fig. 2. This one
allows a comparison with the NJL quark masses presented in
Ref. [18]. The NJL and the PNJL models strictly coincide at
null temperature, whatever the densities. The results are also
comparable at high temperatures (T > 400 MeV). Moreover,
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FIG. 1. (a) Evolution of the light quark condensate according to the temperature; the solid line refers to P1 and the dashed line to EB.
(b) Evolution of the Polyakov loop 	 in the T ,ρB plane, extracted from Ref. [45].

the evolution of the light quark masses presents strong
similarities with the one of their chiral condensates, Fig. 1(a),
explainable with the gap equation (1).

About the modeling of composite particles built with
quarks and/or antiquarks, one only needs to adapt the
quark/antiquark Fermi-Dirac distributions with Eq. (11) to
take into account the inclusion of the Polyakov loop [89,91].
The modeling of mesons, diquarks, and baryons is performed
by solving equations whose structure is schematically similar.
For a composite particle at rest, we have [45]

det[1 − Z �(k0,�k)] = 0|k0=M,‖�k‖=0, (13)

where M is the mass of the studied particle.
Concerning the mesons, � is the irreducible polarization

function. It represents a quark-antiquark loop. � is defined
as [17,32]

− i �
q1q̄2

(iνm,�k) = NC

i

β

∑
n

∫
d3p

(2π )3
Tr[iSf1 (iωn, �p)

× iSf2 (iωn − iνm, �p − �k)], (14)

in which Sf is the flavor f quark propagator in momentum
space [88]:

Sf NJL(/p) = i

/p + γ0 μf − mf

and

(15)

Sf PNJL(/p) = i

/p + γ0(μf − iA4) − mf

.

With the pseudoscalar mesons,  = iγ5. Concerning the
scalar mesons, used as propagators in the cross-section
calculations,  is the 4 × 4 identity matrix 14. The Z term
in Eq. (13) is equal to 4K±

ii , where i depends on the treated
meson [17,32]. The plus sign refers to pseudoscalar mesons;
the minus is for scalar ones. For example, with π±,

K+
11 = G + 1

2NC K i Tr[S̃s(x,x)], (16)

where Tr[S̃f (x,x)] is the trace of the quark propagator
expressed in coordinate space [32]. In the framework of the
isospin symmetry, the pseudoscalar mesons η,η′ are coupled;
idem for the scalar mesons f0,f

′
0. In these cases, the procedure
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FIG. 2. Light quark mass according to the temperature and the baryonic density, with ρ0 ≈ 0.16 fm−3, in the (a) NJL and (b) PNJL models.
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is detailed in Ref. [32]. When the isospin symmetry is not
applied, π0 is coupled to η,η′. It requires an extension of the
applied method [45].

Concerning the diquark [44,45,53,101], the � function can
be expressed by

−i �
q1q2

(iνm,�k) = i

β

∑
n

∫
d3p

(2π )3
Tr[iSf1 (iωn − iνm, �p − �k)

× iSC
f2

(iωn, �p)], (17)

in which SC
f is the propagator of a charge conjugate quark,

obtained by reversing the sign of μf in Eq. (15). The � term
translates a loop formed by a quark and a charge conjugate
antiquark. This one mimics the behavior of a quark, to obtain
with Eqs. (13) and (17) the expected description of a diquark.
Because of the charge conjugation operator C = iγ0γ2 [18],
 = iγ5 for scalar diquarks, and  = 14 for pseudoscalar ones.
Here, Z = 2 GDIQ [45] (Table I).

About the baryons, I model these particles as the association
of a quark and a diquark [44,45,53]. By the use of the static
approximation [39,45,53], one comes back to the structure of
Eq. (13). In this case, the � function describes a loop formed
by a quark and a charge conjugate diquark, or a loop using a
diquark and a charge conjugate quark. It leads, e.g., to

−i �(iνm,�k) = i

β

∑
n

∫
d3p

(2π )3
Tr

[
iSq(iωn, �p)

× iSC
D(iωn − iνm, �p − �k)

]
, (18)

where, SC
D is the propagator of a charge conjugate diquark.

The Z term is written as

Z = g g′ F F ′
(

− i

m

)
, (19)

where m is the mass of the exchanged quark. The g are coupling
constants and the F gathers color and flavor factors [45]. With
baryons as �, several states are considered, i.e., [ud] + s,
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[us] + d, and [ds] + u. In these cases, Eq. (13) is still valid,
but � and Z are now matrices [44,45].

Some results extracted from Refs. [45,94] are reproduced in
Figs. 3–5. In my dynamical model, the considered composite
particles are the pseudoscalar mesons (but not η′), the scalar
diquarks [ud] , [us] , [ds] , and the octet baryons. In Fig. 3, I
also plotted the curves “2mq” and “mq + ms” associated with
the masses of the quarks/antiquarks that compose the mesons
and diquarks. The purpose is to see when these composite
particles are lighter or heavier than the quarks/antiquarks
that compose them. In the first case, the particle is stable.
In the second case, the particle can disintegrate into a q,q̄
pair (meson) or a quark pair (diquark). In Fig. 3(a), the
Mott temperature, or critical temperature, materializes the
frontier between these two regimes. The NJL and PNJL
values are indicated in Table III. In comparison with Fig. 1(a),
the Mott temperatures are roughly around the pseudocritical
temperature Tc.

D. (P)NJL cross sections calculations

1. General formulas

In this paper, I consider collisions involving two incoming
particles, labeled as 1 and 2, and two outgoing ones, labeled 3
and 4. The Eq. (20) is used to evaluate the cross sections as-
sociated with these collisions, in the center-of-mass reference
frame of the two incoming particles [32],

σ (
√

s,T ,ρf ) = [1 ± fF,B(β(E∗
3 ∓ μ3))]

× [1 ± fF,B(β(E∗
4 ∓ μ4))]

∫ t+

t−
dt

∂σ

∂t
, (20)

TABLE III. Mott temperatures, in MeV, of the mesons and
diquarks in the (P)NJL models, with P1.

Model Pion Kaon η [ud] [qs]

NJL 246 245 216 223 238
PNJL 292 292 267 272 284

where

∂σ

∂t
= 1

64π s ( �p∗
1)2

1

4N2
c

∑
s,c

|M|2 (21)

is the differential cross section according to the Mandelstam
variable t (Appendix B). In Eq. (21), M is a matrix element
obtained by a summation of the existing channels, i.e.,
s, s ′, t, u . . . Then, this term is summed upon the spins and
the colors s, c. In Eq. (20), the terms placed in front of the
integral translate the fact that particles 3 and 4 are produced
in a medium in which other identical particles are already
present. In the case of fermions, these terms are named Pauli
blocking factors [48,67] and take the form 1 − fF . More
precisely, fF is the Fermi-Dirac distribution, Eq. (4), updated
with Eq. (11) in the case of PNJL quarks/antiquarks [94]. In
the case of bosons [32], 1 + fB is considered, where fB is
the Bose-Einstein distribution. Moreover, Eq. (20) explicitly
mentions the dependence of σ according to

√
s, but also

according to T and ρf . Indeed, the masses of the involved
particles and the propagators depend on these parameters.
So, M and ∂σ

∂t
depend on them [94]. Moreover, the chemical

potentials μ that appear in the mentioned terms are solutions
of Eqs. (1) and (12), in which T and ρf are used as parameters.

Concerning the inelastic processes listed in Sec. III C 2,
each reaction type is included with its reverse process,
e.g., q + q̄ → M + M with M + M → q + q̄. In fact, the
matrix elements used in Eq. (20) are time-reversal invariant,
in agreement with the detailed balance principle [67]. So,
compared to a direct reaction, the estimation of a reverse
reaction only requires to change �p∗2

1 in Eq. (21) by �p∗2
3 and to

replace the blocking factors associated with particles 3 and 4
with the ones of particles 1 and 2, as explained in Ref. [94].
Thus, if one labels i → f a reaction and f → i its reverse
reaction, one arrives at the relation between their associated
cross sections,

σf →i = ( �p∗
i )2

( �p∗
f )2

Fi

Ff

σi→f , (22)

in which �p∗
i ≡ �p∗

1, �p∗
f ≡ �p∗

3 . Moreover, Fi ≡
[1 ± fF,B(β (E∗

1 ∓ μ1))] [1 ± fF,B(β (E∗
2 ∓ μ2))] and
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FIG. 6. Cross sections of u + ū → π+ + π− in the T ,
√

s plane, for ρB = 0, in the (a) NJL and (b) PNJL models.

Ff ≡ [1 ± fF,B(β (E∗
3 ∓ μ3))] [1 ± fF,B(β (E∗

4 ∓ μ4))].
Clearly, the Eq. (22) presents strong similarities with the one
presented in Refs. [57,67] when the application of the detailed
balance principle in the UrQMD collisions was discussed.

2. Overview of some (P)NJL results

The mesonization reactions q + q̄ → M + M were pro-
posed by Ref. [32] and considered, e.g., in Ref. [54]. (P)NJL
results, presented in Ref. [94], are reproduced in Fig. 6. As
noted in these references, the cross sections can be strong,
locally exceeding 100 mb at the level of the kinematic
threshold defined as

√
s threshold = max[(m1 + m2),(m3 + m4)], (23)

where mi are the masses of the incoming/outgoing particles.
More precisely, a divergence at the threshold is observed when
T � 230 MeV in the NJL model, versus T � 280 MeV in
the PNJL one. At these limit temperatures, the cross sections
have optimal values near the threshold. These temperatures are

comparable to Tc [Fig. 1(a)]. The Mott temperature of the pions
(Table III) is slightly stronger in the two models. On the graphs,
it corresponds to the temperature for which the “0.3 mb” curve
appears as a “V”. Before this temperature, u + ū → π+ + π−
is exothermic [32]; i.e., m1 + m2 > m3 + m4. It becomes
endothermic after this temperature and the divergence at the
threshold totally disappears.

Inelastic reactions using diquarks and/or baryons were
studied with the PNJL model [94]. It was reported that
the diquark production is expected to be weak. Indeed, the
reactions producing diquarks present weak cross sections. The
best candidate to allow this production seems to be q + q →
D + M, but under some conditions: moderate temperatures
and ρB higher than ρ0 (Fig. 7). At null density, the reaction
studied in this figure is exothermic until a temperature close
to 240 MeV in the PNJL model. The other reaction types that
can produce diquarks are endothermic [94].

In Ref. [94], I found that the cross sections associated
with baryonization reactions are definitely lower than the
ones of the mesonization process. Three dominant reaction
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FIG. 7. Cross sections of u + d → [ud] + π 0, according to (a) the temperature and (b) the baryonic density.
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FIG. 8. Cross sections of u + ū → u + ū in the (a) NJL and (b) PNJL models.

types were identified: D + D → B + q, q + D → M + B,
and q + q → B + q̄. In the reactions involving light particles,
q + D → M + B and q + q → B + q̄ can present cross
sections close to 1 mb, whereas D + D → B + q can exceed
4 mb near the kinematic threshold, at low temperatures and
densities. However, D + D → B + q requires an important
population of diquarks, at the opposite of q + q → B + q̄.
Also, q + D → M + B has the advantage to form observable
particles starting from nonobservable ones, e.g., during the
last phases of the cooling. Moreover, these three processes are
endothermic. It includes reactions involving nucleons. Indeed,
at null temperature and density, each of the momenta ‖ �p∗

1‖ and
‖ �p∗

2‖ of the incoming particles must be greater than 500 MeV
for u + u → p + d̄, 270 MeV for [ud] + [ud] → p + d, and
70 MeV for u + [ud] → π+ + n (p, proton; n, neutron). The
momenta of the particles are linked to the temperature. So,
reactions as u + u → p + d̄ are expected to intervene at higher
temperatures than the two other ones.

Among the elastic reactions, the ones involving quarks
and/or antiquarks appear to be the most important during
the evolution of the quark-antiquark plasma. Indeed, such
reactions play a great role in the thermalization of the
initial q/q̄ plasma. Furthermore, elastic reactions are often
concurrent of inelastic ones, notably q + q̄ → q + q̄ with
q + q̄ → M + M. However, the elastic process is expected
to occur at slightly higher temperatures than the inelastic one,
i.e., about 20 MeV above. This remark is true in the NJL
model [48,49] and in the PNJL one [94] (Fig. 8). In fact, as
noted in Ref. [48], the optimal temperature of u + ū → u + ū
is very close to the Mott temperature of the pion, used in this
reaction as propagator.

3. Extra calculations of some cross sections

In this paper, I added the elastic processes q + M → q +
M, q̄ + D → q̄ + D, q + D → q + D, q̄ + B → q̄ + B,
q + B → q + B and the ones that concern their associated
antiparticles: q̄ + M → q̄ + M, etc. Notably, I described
q + M → q + M by means of a t channel in which a

quark is exchanged. It leads to cross sections of a few
barns for the reaction u + π0 → u + π0. Concerning, e.g.,
q + B → q + B, I considered the t channel described in
Fig. 9 and Eq. (24), in which Dt is the (P)NJL propagator of
the exchanged diquark. The associated results are presented
in Fig. 10 for u + p → u + p. The found values are not
negligible. They exceed 10 mb at reduced temperature, lower
than 200 MeV, and at low densities, i.e., ρB < 0.5ρ0. About the
elastic processes involving two composite particles, I mention,
e.g., D + B → D + B, treated by a t channel involving an
exchanged quark. It leads to cross sections exceeding 7 mb
only at the level of the kinematic threshold, at moderate
temperatures, T ≈ 200 MeV, and ρB ≈ 2ρ0,

− iMt = ft ū(p4) u(p2)iDt (p3 − p1)ū(p3) u(p1). (24)

Other possibilities also concern M + D → M + D,
D + D → D + D, etc. These reactions types are treatable
with the method explained in Refs. [50,51]. It can also be
used for the modeling of M + M → M + M. However, to
describe this process, I considered the formulas established in
Ref. [57]. This remark is also valid for M + B → M + B or
B + B → B + B.

q

q

B

B

D

FIG. 9. t channel for q + B → q + B.

065204-9



ERIC BLANQUIER PHYSICAL REVIEW C 89, 065204 (2014)

PNJL model   T = 200 MeV

C
ro

ss
 s

ec
tio

n 
σ 

(m
b)

√
s (GeV)

ρ
B
 = 0

ρ
B
 = ρ

0

ρ
B
 = 0.5ρ

0

ρ
B
 = 1.5ρ

0

ρ
B
 = 2ρ

0

T = 200

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

PNJL model   ρ
B
 = 0

C
ro

ss
 s

ec
tio

n 
σ 

(m
b)

√
s (GeV)

T = 240

T = 200

T = 260

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14
T = 0 (a) (b)

FIG. 10. Cross sections of u + p → u + p, according to (a) the temperature and (b) the baryonic density.

III. DESCRIPTION OF THE ALGORITHM

A. The global algorithm

In the framework of the works presented in this paper, a
stand-alone computer program was developed. The program,
and by extension the algorithm, can be designated by the
software’s unofficial name, i.e., ARCHANGE. This name does
not correspond to an acronym. The global algorithm is not
really different compared to the ones described in the literature,
as, e.g., Refs. [53,80]. Indeed, I consider the following steps,
which are described in more detail in Secs. III B, III C, and
III D.

(i) System initialization. In this step, the initial particles
are created and added into the system, while defining
their positions and momenta. Then, the program
determines the environment of each particle. More
precisely, it calculates the values of the external
parameters (T ,ρf ) in the vicinity of each particle.
This procedure makes it possible to calculate the initial
mass of each of them.

(ii) Treatment of the collisions. In this step, one inves-
tigates all the possibility of collisions between each
possible couple of particles. The applied collisions
are determined by the program. This one treats then
the replacement of the particles in the system when
required.

(iii) Treatment of the movements. Here, one applies equa-
tions of motion to periodically update the position and
the momentum of each particle.

(iv) Return to point (ii) for the next time iteration until the
end of the simulation.

More precisely, for each quark/antiquark present in the
system, one determines the local external parameters T ,ρf felt
by the particle. These parameters are imposed to the particle
by the other ones present in its vicinity. In the NJL model, its
mass and its chemical potential are estimated when one solves
Eq. (1). In the PNJL model, Eqs. (1) and (12) also supply the

values of 	 and 	̄. As a consequence, the temporal evolution of
these values is ruled by the evolution of the external parameters
and therefore by the close environment of the studied particle.
This procedure is performed regularly for each quark/antiquark
to take into account the evolution of its environment, notably
in the framework of points (ii) and (iii). The method is
similar for the composite particles, i.e., mesons, diquarks, and
baryons. Indeed, Eqs. (1) and (12) are solved in the same way,
and then the found data (masses of the quarks . . . ) are used in
Eq. (13) associated with the studied composite particle.

Equations (1) and (12) were established in the framework
of the mean-field approximation. It wants to say that this
approach requires that the thermodynamic equilibrium is
established. The external parameters are estimated locally;
thus, we consider local thermodynamic equilibrium. It imposes
low variations of the measured temperatures and densities,
according to distance and time. It was checked in the
simulations described hereafter that these constraints were
verified. Furthermore, low variations of T ,ρ necessarily lead
to low variations of 	 [Fig. 1(b)]. Such a behavior is indeed
expected because 	 is the average of the Polyakov loop.

Moreover, as indicated in the Introduction, the thermal-
ization of the QGP phase is expected to be very rapid.
As a consequence, how a quark system evolves towards
kinetic and chemical equilibrium is an important question,
which is investigated, e.g., in Refs. [102–105]. Notably, the
papers [102,103] consider simulations in a box to study the
evolution of quark/gluon systems. It is particularly pointed
out the contributions of multiparticle reactions as 2 → 3 and
3 → 2. More precisely, Refs. [102,103] indicate that gluon
multiplication g + g → g + g + g leads to the chemical equi-
librium and to a rapid kinetic equilibration. In my description,
the gluons and these multiparticle reactions are not included.
However, we will see if the simulations can reach kinetic and
chemical equilibrium.

B. Determination of the external parameters

The external parameters T ,ρf are evaluated for each
particle in the laboratory frame of reference. One considers that
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FIG. 11. Chemical potential μq according to ρB and T , in the (a) NJL and (b) PNJL models.

this reference frame always coincides with the center-of-mass
reference frame of the whole system. Stricto sensu, it can be
noted in Eq. (13) that the particle’s momentum modulus k
should be treated as an external parameter for the composite
particles (external because k is evaluated in the laboratory
reference frame). However, the influence of k on the particle’s
mass is rather negligible, especially in the k domain used in
this work.

1. The densities

About the densities ρf , my choice to consider them is
different from the one of Ref. [80]. In fact, we observe in
Fig. 11, extracted from Ref. [45], that the relation between ρB

and μq (q ≡ u,d) is not obvious in the (P)NJL models. More
precisely, μq is a function of ρB but also of the temperature
T , especially at low temperatures. Clearly, this remark also
concerns the chemical potentials μf with the associated ρf

and T.
The density ρf felt by the i particle is determined by the

formula

(ρf )i = 1

V

∑
j �=i

w(i,j )[(nf )j − (nf̄ )j ], (25)

where V is the volume of a sphere centered on the studied
particle i. This fictitious sphere defines the vicinity of the
particle. The j summation in Eq. (25) is performed upon the
particles forming the system. Also, (nf )j and (nf̄ )j designate,
respectively, the number of flavor f quarks and antiflavor
f̄ antiquarks “contained” in particle j . For example, with a
proton, nu = 2, nū = 0, nd = 1, nd̄ = 0, ns = 0, and ns̄ = 0.
To take into account the distance dij between the i and j
particles, a coefficient is applied during the counting. This
coefficient is supplied by a weighting function. As in Ref. [80]
in which such a function was used, this one is defined here as

w (i,j ) = exp

(
− d2

ij

2D2

)
. (26)

D is linked to the sphere radius. In practice, I chose D =
1.75 fm in most of the numerical calculations.

2. The temperature

The determination of the temperature felt by each particle is
far from being trivial. In Ref. [80], a relation was established
between the densities and the temperature. In my approach,
temperature and densities are treated as independent parame-
ters, without correlation between them.

In statistical physics, the use of the equipartition theorem
is a relevant approach to estimate the temperature. In our
case, complications come to the adaptation of this theorem
to the relativistic regime and the necessity to work at thermal
equilibrium. About the relativistic treatment, some approaches
were proposed to introduce the notion of relativistic tempera-
ture [106–113]. Following the method proposed by Ref. [113],
one writes 〈

( �p)2

2E

〉
= 3

2
kB T , (27)

in which kB is the Boltzmann constant, set to 1 in my work. 〈〉 is
an averaging operator. In practice, this operation is performed
on the momentum �p and on the energy E of the particles
located in the vicinity of the studied particle i. As with
the densities, the weighting function Eq. (26) is included in
this calculation. The notion of local temperature is used in
the description. So, local thermal equilibrium is expected, as
explained in Sec. III A. Some extra explanations about the
establishment of Eq. (27) are proposed in Appendix A.

C. Treatment of the collisions

1. Description of the employed method

First, one considers a particle in particular, labeled with i
in the explanations. Then one establishes a list of the couples
that can be formed using this particle i and all the ones present
in its vicinity, labeled with j . Each couple (i,j ) represents
a possibility of incoming particles that can interact. The
particles’ momenta are expressed in the laboratory reference
frame in the data manipulated by the program. The (P)NJL
cross sections available in the literature, and by extension the
ones calculated in my description, are estimated in the center-
of-mass reference frame of the two incoming particles (i,j ).
As a consequence, a Lorentz boost is applied to these particles.
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TABLE IV. List of reactions when a u quark interacts with a ū antiquark.

Reaction type Detail on the possible reactions

q + q̄ → q + q̄ u + ū → u + ū u + ū → d + d̄ u + ū → s + s̄

u + ū → π 0 + π 0 u + ū → π 0 + η u + ū → η + η
q + q̄ → M + M

u + ū → π+ + π− u + ū → K+ + K−

q + q̄ → D + D̄ u + ū → [ud] + [ud] u + ū → [us] + [us]

For each couple (i,j ), the impact parameter b∗
i,j is estimated.

Some couples can be invalidated if the particles are moving
away or if the impact parameter is too high. Also, an
extrapolation of the trajectories is performed to validate the
couple (i,j ) only if the distance between i and j is minimal.
It follows the idea evoked in Ref. [80].

For each remaining couple (i,j ) , a sublist of the reaction
types that can occur between i and j is established. Collisions
involving two outgoing particles are considered. For each reac-
tion type, the algorithm foresees the possible outgoing particles
creatable by the reactions. Table IV proposes a list in the case
of a quark/antiquark couple (u, ū) . About q + q̄ → M + M,
reactions involving η′ are not considered. Indeed, they lead to
negligible cross sections in front of the mesonization reactions
that create light mesons, such as pions [32].

At this stage of the procedure, the cross sections of all the
listed reactions are estimated. For each couple (i,j ) and for
each reaction, labeled with k, the obtained cross section σi,j,k

is compared to the impact parameter b∗
i,j of the couple. More

precisely, the collision criterion mentioned in Refs. [57,67]
is applied. It stipulates that a reaction is possible if its cross
section satisfies the inequality

b∗
i,j �

√
σi,j,k/π. (28)

Among all the reactions that verify this criterion, the
program chooses the reaction k associated with the couple
(i,j ) that will be considered. This choice is determined in a
stochastic way, but the probability of each reaction (i,j,k) is
weighted by its cross section. In other words, the reaction that
has the strongest cross section at this moment is the one that
has the strongest chance to occur.

Once the reaction and the associated couple are determined,
i.e., it was found that particle j will react with particle i thanks
to the reaction k, the scattering angle and the momenta of the
outgoing particles are calculated. When the outgoing particles
are inserted into the system, their masses are beforehand
estimated in the conditions (T ,ρf ) felt by the incoming
particles (i,j ) before their replacement. The formulas used
to treat the collisions are relatively standard and are gathered
in Appendix C. Whatever reaction occurred, the new particles
will no longer be able to interact before the next iteration. This
is done to avoid that the same particles interact indefinitely
together during the same iteration. Finally, the program
considers then another particle i, and proceeds again as
explained in this Sec. III C1, until all the particles are reviewed.

2. Calculation of the cross sections

Table V gathers all the reaction types included in the
modeling. An important number of possible reactions is to

be considered, especially because my dynamical simulations
do not apply the isospin symmetry. The included particles are
the quarks q, the pseudoscalar mesons M , the scalar diquarks
D, the octet baryons B, and their associated antiparticles.
Furthermore, the cross sections depend on

√
s, the temperature

T , and the densities (Sec. II D). As a consequence, the use
of precalculated values is not the best solution, e.g., by
using a cross sections database as in Ref. [80]. Certainly,
this solution could be applied, but at the price of too-strong
approximations. Indeed, for example, with q + q̄ → M + M,
a strong mesonization is expected, but in some precise

√
s,

T , ρf conditions [94]. This aspect is crucial in the study
of the plasma’s cooling. So, in my description, the cross
sections are real time calculated: They are estimated when
the program requires them, taking into account

√
s and the

particles’ environment, via T and ρf .

D. Equations of motion

In a dynamical study involving quarks, relativistic effects
cannot be neglected. So, this aspect must appear explicitly
in the modeling, especially in the equations of motion. In
the description, I consider a relativistic molecular dynamics
description, whose equations of motion are similar to the ones
mentioned, e.g., in Ref. [80]:

d
(
r

μ
i

)
dτ

= p
μ
i

Ei

,

(29)
d

(
p

μ
i

)
dτ

= −
∑
j �=i

mj

Ej

∂mj

∂ri μ

.

In these equations, E is the energy of the concerned particle.
As mentioned in Ref. [80], the writing of the second equation
of Eq. (29) is justified by the fact that we do not have an explicit
potential in the NJL model. This remark can be extended
to the PNJL approach. However, the mass of each particle
depends on parameters such as temperature and densities. In
addition, we saw that these parameters are calculated for each
particle via its vicinity, i.e., the other particles. Therefore, it
is possible to consider that the potential is “hidden” in the
particles’ masses. The

∑
j �=i

mj

Ej

∂mj

∂ri μ
term is thus interpretable

as a remote interaction between the particles. According to
Ref. [80], the derivative ∂mj

∂ri μ
can be developed as

∂mj

∂ri μ

= ∂mj

∂Tj

∂Tj

∂ri μ

+
∑

f =u,d,s

∂mj

∂ρfj

∂ρfj

∂ri μ

. (30)

Nevertheless, I give another interpretation to this term. I say
that it represents the variations of the masses of the particles
j induced by the position variation of particle i. In fact, the

065204-12



HADRONIZATION WITHIN A NAMBU–JONA-LASINIO . . . PHYSICAL REVIEW C 89, 065204 (2014)

TABLE V. List of the reaction types included in the model.

Incoming particles Possible reaction types

q + q̄ q + q̄ → q + q̄ q + q̄ → M + M q + q̄ → D + D̄

q + q q + q → q + q q + q → M + D q + q → q̄ + B

q̄ + q̄ q̄ + q̄ → q̄ + q̄ q̄ + q̄ → M + D̄ q̄ + q̄ → q + B̄

q + M q + M → q + M q + M → q̄ + D

q̄ + M q̄ + M → q̄ + M q̄ + M → q + D̄

q̄ + D q̄ + D → q̄ + D q̄ + D → q + M q̄ + D → D̄ + B

q + D̄ q + D̄ → q + D̄ q + D̄ → q̄ + M q + D̄ → D + B̄

q + D q + D → q + D q + D → M + B

q̄ + D̄ q̄ + D̄ → q̄ + D̄ q̄ + D̄ → M + B̄

q̄ + B q̄ + B → q̄ + B q̄ + B → q + q q̄ + B → M + D

q + B̄ q + B̄ → q + B̄ q + B̄ → q̄ + q̄ q + B̄ → M + D̄

q + B q + B → q + B q + B → D + D

q̄ + B̄ q̄ + B̄ → q̄ + B̄ q̄ + B̄ → D̄ + D̄

M + M M + M → M + M M + M → q + q̄

M + D M + D → M + D M + D → q + q M + D → q̄ + B

M + D̄ M + D̄ → M + D̄ M + D̄ → q̄ + q̄ M + D̄ → q + B̄

M + B M + B → M + B M + B → q + D

M + B̄ M + B̄ → M + B̄ M + B̄ → q̄ + D̄

D + D̄ D + D̄ → D + D̄ D + D̄ → q + q̄

D + D D + D → D + D D + D → q + B

D̄ + D̄ D̄ + D̄ → D̄ + D̄ D̄ + D̄ → q̄ + B̄

D̄ + B D̄ + B → D̄ + B D̄ + B → q̄ + D

D + B̄ D + B̄ → D + B̄ D + B̄ → q + D̄

D + B D + B → D + B

D̄ + B̄ D̄ + B̄ → D̄ + B̄

B + B̄ B + B̄ → B + B̄

B + B B + B → B + B

B̄ + B̄ B̄ + B̄ → B̄ + B̄

displacement of a particle leads to perturbations in its vicinity.
First, the densities felt by the other particles are modified,
especially for the ones in its close neighborhood. Second, the
displacement also induces a modification of the local tempera-
ture felt by these particles. These two effects are explainable by
the method I use to estimate the densities and the temperature,
especially via the use of a weighting function, Eq. (26). More
precisely, every displacement induces a variation of the values
returned by this function. It leads to modifications in the
counting and thus it affects the T ,ρf values. The masses of
the particles are calculated while using the temperature and
the densities. Thus, it explains why the displacement of one
particle is able to modify the masses of the other particles.

About the temperature, this parameter depends on the
particles’ energies, i.e., the momenta, but also the masses.
The masses depend on the temperature. Therefore, there is
interdependence between mass and temperature. This aspect
is treated numerically by means of successive iterations until
reaching convergence. The conservation of total energy and
total momenta are two constraints imposed to the algorithm
during this procedure.

IV. SOME PRELIMINARY RESULTS

A. The (P)NJL remote interaction

I propose to numerically investigate the properties of
the previously described remote interaction. More precisely,

I performed simulations, with the NJL and PNJL models,
involving two u quarks. In each simulation, the initial
momenta were directed in opposite directions, but with ‖ �p‖ =
30 MeV for the two quarks. A “background temperature” T =
200 MeV is imposed to simulate the conditions of hot systems.
It implies that the temperature felt by the quarks is constant
and Eq. (27) is not used. This use of background temperatures
only concerns the results described in this Sec. IV A, but not
the other simulations treated in this paper. In the test, the
collision procedure is disabled. The obtained trajectories in
the laboratory reference frame are presented by the form of
chronograms in Fig. 12. Obviously, I remark that the notion
of trajectories concerns classical motions. It thus constitutes
a limitation of my description of the quark physics. The part
of each trajectory that has the darkest tone corresponds to
the more recent quark positions. It was verified that the total
energy, the total momentum, and the angular momentum are
conserved for each simulation time.

In Fig. 12, the obtained results show a remote interaction
between the quarks. This interaction is attractive. This behavior
is explained by the second equation of Eq. (29). A general
tendency is that a particle modifies its trajectory to tend to
minimize the masses of the particles located in its vicinity.
Therefore, the two quarks are mutually attracted. Indeed, for
a quark j , the approach of another quark i induces an increase
in the temperature and densities felt by j . Therefore, the mass
of the quark j decreases (Fig. 2). The same reasoning is valid
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FIG. 12. Comparison of the results found with the (a) NJL and (b) PNJL models, with T = 200 MeV.

for the quark i submitted to the action of the quark j in a
symmetric way. In the case of the simulations described in this
Sec. IV A, because of the use of a background temperature,
the evolution of the masses is only attributable to the density
variations induced by the quarks.

Through this example, one interprets the −∑
j �=i

mj

Ej

∂mj

∂ri μ

term in the second line of Eq. (29) as a force. The remote
interaction is clearly nonlinear: If one multiplies the number
of quarks, the attractive effect is not necessarily multiplied by
the same factor. It should be seen as an N -body interaction.
Furthermore, the observed interaction has a limited range, in
opposition with the QCD quark-quark potential. The (P)NJL
remote interaction is strongly linked to the T ,ρf variations
induced by the particles. As a consequence, the weighting
function Eq. (26) plays a great role in the behavior of this
interaction, especially in its range. The (P)NJL models appear
to be able to mimic short-range phenomena described by QCD,
but present limitations to modeling long-range ones. Moreover,

the masses of the quarks tend towards their naked values (m0f )
at high temperatures and densities (Fig. 2). In this case, the
mass of a quark is no longer influenced by T ,ρf , i.e., by
the environment. It coincides with the asymptotic freedom
phenomenon, treated by the perturbative QCD.

The graphs of Fig. 12 show that the PNJL remote interaction
is more intense than the NJL one in this test. Now I extend
the analysis to other conditions to see if this observation can
be generalized. The objective is to investigate the influence
of the background temperature and the initial momentum of
the quarks. In Fig. 13, one varies the applied temperature in
the (P)NJL models. In these graphs, the initial momenta are
fixed to ‖ �p‖ = 30 MeV. I plotted the distance between one
quark and the center of the system. The distance between the
two quarks is found by applying a factor of two, thanks to
the symmetry of the system. With the NJL model, Fig. 13(a)
shows that the quarks stay together, as in Fig. 12(b), until
a temperature close to 150 MeV. Indeed, in this regime, the
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FIG. 13. Evolution of the distance between one quark and the center of the system, according to time, for ‖ �p‖ = 30 MeV and at several
temperatures (in MeV), in the (a) NJL and (b) PNJL models.
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FIG. 14. Evolution of the distance between one quark and the center of the system, according to time, for several initial momenta (in MeV),
in the (a) NJL and (b) PNJL models.

observed motion is periodic. However, when the temperature is
growing, the amplitude of the motion increases, until this limit
temperature. After this one, the force is not intense enough:
The quarks are separated, as in Fig. 12(a). Concerning the
PNJL model [Fig. 13(b)], the amplitude of the motion stays
rather constant until T = 230 MeV. Then it strongly increases
for higher temperatures. The limit temperature is close to
235 MeV in this case: It is largely higher than the one found
with NJL.

This behavior is explainable by Fig. 2. In these tests,
we saw that the remote interaction is related to the mass
variations according to ρf (ρu more precisely). The quarks
evolve in a T ,ρf zone in which the densities are low. In this
zone, at modest temperatures, the derivative of the mass with
respect to the density is strong. As remarked in Ref. [45], the
effect of the Polyakov loop upon the quark masses is to shift
the observed values towards higher temperatures, applying a
distortion effect on the curves. At reduced densities, it implies
that the zone for which ∂m

∂ρf
is important is wider in the PNJL

model than in the NJL one. Indeed, one finds, respectively,
T < 220 MeV against T < 150 MeV in Fig. 2, in agreement
with the results of Fig. 13. Beyond these temperatures, the
reduction of ∂m

∂ρf
leads to the observed weakening of the force

owing to the density variations.
In fact, even if the simulations performed in this Sec. IV A

do not include the contribution of the temperature variations
on the force, the aspect of the graphs presented Fig. 2 suggests
that these variations do not strongly intervene at modest tem-
peratures, where ∂m

∂T
is weak. At the opposite, this contribution

could be more present just after the limit temperatures we saw
upstream. More precisely, it is expected to be greater in the
PNJL model than in the NJL one, because of the strong ∂m

∂T
values visible in Fig. 2(b) when 220 MeV < T < 280 MeV,
at low densities. As a consequence, the domain in which the
remote interaction is not negligible could be extended com-
pared to the results of Fig. 13, notably with PNJL. In the case
of this model, these speculations are verified in Sec. IV B, in
which simulations are performed at T ≈ 260 MeV, obviously

without the use of a background temperature. More precisely,
the remote interaction observed in Sec. IV B comes from the
temperature variations caused by the studied quarks. During
the cooling of a quark system, the found results showed that
the attractive effect can be more present, i.e., act for a wider
temperature range, thanks to the inclusion of the Polyakov
loop. They lead us to imagine a provisory collapse of the quark
system, which could optimize the hadronization processes,
especially in the PNJL description.

However, the data presented in Figs. 12 and 13 concern very
slow quarks: These results cannot be generalized. In Fig. 14,
the influence of the initial momentum is studied. I consider two
regimes. In Fig. 14(a), one works at rather low temperatures,
i.e., 50 MeV, with the NJL model. In fact, PNJL results are
very similar at this temperature. In Fig. 14(b), one considers
an intermediate temperature, 200 MeV, with the PNJL model.
The two figures show that the quarks stay together until a limit
value of the initial momentum: ‖ �p‖ = 84 MeV in Fig. 14(a)
and ‖ �p‖ = 73 MeV in Fig. 14(b), i.e., slow quarks in these two
configurations. A few MeV above these limit values, the quarks
are deviated by the force, but they do not stay together. As a
consequence, Figs. 13 and 14 seem to indicate the existence of
a “bound line” in the T ,p plane that marks the limit between the
“bound” and “unbound” states. Obviously, this line strongly
depends on the initial conditions of the modeled system, as,
e.g., the initial distance between the quarks.

B. Relativistic Brownian motion?

If we consider the remote interaction highlighted in
Sec. IV A and the collisions, it is interesting now to see if
there is a dominant behavior between them. In other words, if
the collisions largely rule the dynamics, the system can maybe
show a behavior close to the one of a relativistic Brownian
motion [112]. At the opposite, if the remote interaction is
strong enough, it might induce the collapse motion previously
evoked. To answer this question, I perform a PNJL simulation.
I gather 6 u quarks and 6 d quarks in a cube of size 2 fm, in the
conditions of a hot and dense system. Indeed, 12 light quarks
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FIG. 15. Evolution of (a) the mean mass and (b) the mean temperature of the quarks, according to time.

in a volume equal to 8 fm3 correspond to a baryonic density
close to 3ρ0. Moreover, the average momentum of each quark
is chosen to be close to 780 MeV; it leads to a temperature
slightly greater than 250 MeV. To simulate the behavior of an
infinite system, the cube’s walls are perfectly reflective for the
trapped quarks. The inelastic reactions are not included in this
test.

The results are presented in Figs. 15 to 19. First, one
studies the evolution of some relevant physical quantities: the
mean mass of the quarks, the mean temperature, and the mean
Polyakov field 	 felt by these particles. Concerning this one,
I observed in Ref. [45] that 	̄ ≈ 	 whatever the temperature
or the baryonic density. So, I only plot 	 in the graphs. The
studied quantities present fluctuations according to time. More
precisely, the mass oscillates around an average value close
to 220 MeV. The average temperature is near 260 MeV, as
expected. Furthermore, the variations of the masses and the
ones of the temperature seem to be reversed. This aspect
is explained by Fig. 2: For the observed temperatures, the
mass of a light quark q decreases almost linearly when the
temperature is growing. Concerning 	, it is often above 0.5.
Stricto sensu, the “deconfined” regime corresponds to 	 → 1.

However, because of the effective potential Eq. (6), such a
value is only reached at infinite temperature. In practice, it
was observed [45,91] that 	 ≈ 0.8 at high temperatures, i.e.,
T ≈ 400 MeV. Also, T0 ≈ 270 MeV, i.e., the critical decon-
finement temperature in a pure gauge theory [83] (Table II). As
a consequence, the T and 	 found in Figs. 15 and 16 suggest
that we are close to the “deconfinement transition.” Therefore,
this simulation corresponds to the description of a rather hot
system. It may be associated with the conditions for which the
hadronization is expected to occur.

In Fig. 16(b), I plot the evolution of the number of collisions
according to time. As with the previous graphs, the results seem
to oscillate around an average value. Concerning numerical
aspects, a deviation of the values would have been the sign
of a possible anomaly in the algorithms, or a badly chosen
iteration time. In this test and in the following ones, I consider
an iteration time �t = 5 × 10−2 fm/c, in agreement with
the reasoning of Ref. [80]. Concerning physical aspects, the
found collision rate is consistent with the one observed in this
reference, in close conditions.

Moreover, the fact that the values do not deviate is coherent
for an isolated and closed system. It suggests that one describes
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FIG. 16. Evolution of the (a) mean Polyakov field and (b) number of collisions, according to time.
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FIG. 17. Energy distribution of the quarks for several times: (a) in the beginning, (b) at t = 2 fm/c, (c) at t = 12 fm/c, and (d) in the end
of the simulation. In the four graphs, the dashed line corresponds to the analytical distribution plotted for a temperature T = 260 MeV. This
line starts for E = m.

a system at equilibrium. To validate this affirmation, I propose
to study whether the system reaches kinetic equilibrium. I
consider the Maxwell-Jüttner distribution fMJ [114,115]. For
one relativistic particle of mass m, its distribution according
to its energy E is written, at a temperature T , as

fMJ (E) = p E

m2 T K2 (m/T )
exp (−E/T ) , (31)

in which p is the modulus of the momentum and K2

is the modified Bessel function of the second kind.
Therefore, at the kinetic equilibrium, the distribution
dN/(N p E dE) of N identical particles should correspond
to [m2 T K2(m/T )]−1 exp(−E/T ); thus, it should be propor-
tional to exp(−E/T ). As a consequence, with a logarithmic

scale, this distribution should have a linear behavior according
to E, whose slope depends on T. This method can be compared
to the energy spectra visible in Refs. [67,116]. In addition, in
the ultrarelativistic limit, T � m, p � m, so that p ≈ E,
K2 (m/T ) ∼ 2 (T/m)2 , and the distribution becomes

dN

N p E dE
≡ dN

N E2 dE
= 1

2T 3
exp(−E/T ). (32)

In other words, one finds the Boltzmann statistics for
ultrarelativistic particles and one recovers the method evoked
in Ref. [102] for box calculations.

The results are gathered in Fig. 17. The initial conditions
are out of equilibrium: The found distribution is present in
a too-reduced energy range in Fig. 17(a), and it is largely
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FIG. 18. (a) Simulation of 12 light quarks in a cube and (b) detail on the momentum of one of these quarks.
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above the line representing the analytical distribution, Eq. (31).
However, rapidly, except for some statistical fluctuations, the
distributions become consistent with a kinetic equilibrium for
a temperature T = 260 MeV. This value corresponds to the
average temperature found in the simulation. This equilibrium
was reached rapidly thanks to the elastic collisions, which
occurred in this simulation from t ≈ 1.2 fm/c. Indeed, they
allowed the quarks to modify their momenta to obtain a
distribution compatible with Eq. (31).

We turn our attention now to Fig. 18(a), in which the trajec-
tories of the quarks are represented, in the first moments of the
simulation, i.e., 0 � t � 7.2 fm/c. The collisions between the
quarks are marked with stars. I highlighted the trajectory of
one of the quarks. In Fig. 18(b), the momentum of this quark
is plotted according to time. The solid line corresponds to the
simulation times really represented in Fig. 18(a). The dotted
line is associated with the ulterior moments of the simulation.

First, as a whole, the trajectories appear to be straight
lines. It suggests that the remote interaction does not seem
to intervene in this simulation in an important way. It can be
explained by several reasons. Notably, the particles’ momenta
are higher than in Fig. 12: This short-range interaction does not
have the time to really influence the quarks’ trajectories. Then,
another argument is the abundance of quarks in a reduced
volume, leading to a rather homogeneous environment inside
the box. Indeed, the remote interaction intervenes when the
parameters felt by the particles present enough variations.
Nevertheless, the underlined quark does not describe this
behavior: Its trajectory is strongly curved, especially in the
right part of the three-dimensional graph. This portion of
the trajectory corresponds to simulation times between 3 and
7.2 fm/c. The quark’s direction at this moment is indicated
by the black arrow. The deviation of the quark’s trajectory
was induced by the other quarks present in its vicinity. In
Fig. 18(b), for 3 < t < 7.2 fm/c, the quark’s momentum is
largely reduced compared to the mean momentum (780 MeV).

It confirms the previous observations: The remote interaction
between quarks can only act on slow quarks.

To analyze the importance of the remote interaction com-
pared to the collisions quantitatively, I plot the histograms of
the change in momentum per unit path ‖� �p‖ /L for the whole
simulation. The quarks’ rebounds on the walls are not included
in these statistics. I obtain Fig. 19, in which the contribution
of the collisions and the contribution of the remote interaction
are separated. The collisions lead to rather important values
of ‖� �p‖ /L between 5 and 45 GeV/fm, whereas the remote
interaction involves greatly reduced ones. Indeed, in Fig. 19(b),
values of ‖� �p‖ /L greater than 0.3 GeV/fm are very rare.
However, one has 39 collisions in the simulation, i.e., 78 events
in Fig. 19(a). It explains why this distribution is so irregular. In
contrast, the histogram associated with the remote interaction
concerns a total of 7794 events. The corresponding distribution
is more regular; it exhibits an evolution comparable to an
exponential decrease. Moreover, the mean contribution to the
remote interaction (70.69 MeV/fm) is negligible compared to
the contribution of the collisions (21.26 GeV/fm). However,
if one performs the summation of the contributions for the two
histograms, the sum associated with the remote interaction
(550.93 GeV/fm) is only three times lower than the one of the
collisions (1657.91 GeV/fm).

In the conditions of this simulation, i.e., involving high
temperatures, these results lead us to conclude that the
collisions seem to govern the quarks’ dynamics. They dom-
inate the effects of the remote interaction. The influence of
this one appears to be rather limited, but cannot be totally
neglected. Indeed, even if high temperatures involve rapid
quarks, slow quarks can also be found in the distribution at
kinetic equilibrium. The quark studied in Fig. 18(a) is an
example and cannot be considered as an exception. However,
these results cannot make it possible to predict the influence
of the remote interaction in complete simulations, notably on
the hadronization process.
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TABLE VI. Initial composition of the system.

Particle u ū d d̄

No. 30 20 36 25

V. ANALYSIS OF FIRST SIMULATIONS

A. Comparison between NJL and PNJL results

One considers a spherical system initially composed of light
quarks and antiquarks [Table VI and Fig. 20(a)]. The matter
dominates the antimatter: The quark/antiquark ratio is close
to 1.5. The distribution of the momenta is inhomogeneous
[Fig. 20(b)]. High momenta are synonymous with high
temperatures. Thus, one objective is to obtain a layer structure,
with a hot core and colder external layers, comparable to
the profile observed in Ref. [80]. Figure 23(a) shows that
the obtained temperature profiles are in agreement with this
description. However, in Ref. [80], for a fixed radius r , the
momentum distribution corresponds to one unique p value.
In the description, I propose an evolution of this distribution
by including a dispersion of the momenta. For each layer,
the purpose is to be consistent with a thermal distribution.
More precisely, in the case of massive particles, I consider the
Maxwell-Jüttner distribution [114], introduced in Sec. IV B. It
leads to a distribution as fMJ (‖ �p‖) ∝ p2 exp(−E/T ), thus to
an increase in the dispersion when the temperature goes up. As
observed in Fig. 23(a), the variations of the temperature appear
to be rather slow according to the radius r , in agreement with
the notion of local equilibrium evoked in Sec. III A. However,
the statistics are small near the center of the sphere. They lead
to the imperfect sampling visible in Fig. 20(b), notably when
r < 1 fm.

Then one proceeds to NJL and PNJL simulations, using
each time exactly these initial conditions. The system is open,
i.e., not confined in a box as in Sec. IV B. The results are
presented in Figs. 21 and 22 and in Table VII. The evolution
of the number of quarks/antiquarks according to time is shown
in Fig. 21, whereas Fig. 22 is devoted to mesons. These data
correspond to two simulations, but I checked that other tests

gave similar results. More precisely, in the collision algorithm
described in Sec. III C, one stage of the procedure uses
stochastic considerations. It leads to statistical fluctuations.
However, the variations concern few particles in these results,
typically less than 5 quarks/mesons. Moreover, being aware of
the relative fragility of composite antiparticles D̄ and B̄ in the
matter, these ones were not included in these simulations.

The results confirm the predictions formulated in Sec. IV B:
The quark remote interaction acts in a rather negligible way in
this simulation. As visible in Fig. 20, the quarks located in the
most external layers seem to be slow enough to undergo this
interaction. It leads to some modifications of the trajectories of
these quarks. However, the cross sections can be rather high,
especially with q + q̄ → M + M. Therefore, the deviations
of the trajectories are not strong enough to interfere with
the collisions. Furthermore, the quarks coming from the core
or from the hot layers are too rapid to undergo the remote
interaction. As a consequence, rectilinear trajectories were
found for them.

Concerning the quarks/antiquarks and mesons, their pop-
ulations do not seem to vary after t > 20 fm/c, with the
(P)NJL models. The simulations ended at t = 30 fm/c: This
simulation time corresponds to the “final state” of the system.
Table VII indicates its composition at this time. The production
of diquarks and baryons is strongly reduced. As a consequence,
the evolution of the system can be studied via Figs. 21 and 22.
As a whole, the production of the mesons is optimal in the
first moments of the simulation. It induces a diminution of
the quarks/antiquarks’ population in a symmetrical way. This
strong mesonization is explained by the high concentration
of quarks and antiquarks, leading to an important collision
rate. The attractive quark interaction does not intervene in a
notable way. Therefore, the system extends spatially. It leads
to a dilution of the particles and thus to a diminution of the
collision rate. When the expansion becomes too strong, the
particles no longer interact. It explains the stagnation when
t > 20 fm/c.

An important aspect of the results concerns the found
differences between the NJL and the PNJL models. The
mesons’ production is more rapid and more efficient in the
PNJL description than in a pure NJL one. Indeed, the number of
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FIG. 20. (a) Initial positions and (b) momenta of the quarks involved in the simulations.
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FIG. 21. Evolution of the quarks’ population according to time, with (a) NJL and (b) PNJL.

mesons stagnates with PNJL when t > 5 fm/c, versus 15 fm/c
with NJL. Furthermore, the production of mesons is equal to 50
with PNJL and 33 with NJL. Such a difference is explainable
thanks to Fig. 23. This one shows the initial temperatures felt
by the quarks/antiquarks and their initial masses. Even if the
initial positions and momenta were strictly equal in the (P)NJL
simulations (Fig. 20), the calculations of the quark masses,
Eqs. (1) and (12), and the temperatures Eq. (27) do not give
the same results in the two models. The initial temperatures
are slightly lower in the PNJL model than in the NJL one. In
contrast, the masses are stronger with PNJL than with NJL,
notably in the core, i.e., r < 1.5 fm. This mass difference could
intervene in the quarks’ dynamics, e.g., in the first equation
of Eq. (29) via the energy. However, the concerned quarks
are highly relativistic, so the masses are negligible in front of
the momenta. As a consequence, the mass difference between
NJL and PNJL does not lead to the observed discordances in
Figs. 21 and 22.

However, as explained in Ref. [94], the optimal temperature
(at null density) of the mesonization process, via u + ū →
π+ + π−, is close to 230 MeV for the NJL model [32,94]

and 280 MeV for the PNJL one (Fig. 6). These results can be
extrapolated to the other mesonization reactions of this kind,
involving light quarks and pions. In addition, u + ū → u + ū
is optimal for a temperature 20 MeV above the ones found for
the mesonization reactions in the (P)NJL models. Concerning
the NJL simulation (Fig. 23), a significant part of the system is
initially too hot to undergo the mesonization. In the core, the
quark/antiquark elastic reactions dominate the other reactions,
at least in the first instants of the expansion. It leads to a reduced
production of mesons, which mainly occurred in the external
layers in the beginning of the simulation. In contrast, in the
PNJL simulation, the initial temperatures are below 280 MeV
in all the system. Even if the mesonization is not optimal for
T < 280 MeV, the cross sections stay rather strong, especially
near the kinematic threshold [54,94]. As a consequence, in the
PNJL simulation, the mesonization can start in all the system,
since the beginning of the simulation. It leads to the observed
production of mesons.

However, the two models do not reach a com-
plete hadronization in these simulations. 68% of the
quarks/antiquarks are still free in the end of the simulation
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FIG. 22. Mesons’ production according to time, with (a) NJL and (b) PNJL.
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TABLE VII. Composition of the system at t = 30 fm/c.

Particle Quark Meson Diquark Baryon

NJL 76 33 1 1
PNJL 60 50 0 1

with the NJL model, and 54% are still free with PNJL.
It is conceivable to improve these results, notably at the
level of the initial system composition, geometry, momenta,
etc. However, the (P)NJL models alone do not seem to be
able to allow a full hadronization of such open systems. A
possible explanation of this phenomenon can be related to the
relative weakness of the cross sections associated with the
baryonization processes, notably compared to the ones found
for q + q̄ → M + M [94]. Thus, it seems realistic to reach
high hadronization yields with systems equitably composed of
quarks and antiquarks. In these systems, a total hadronization
is possible exclusively via the mesonization, i.e., without the
baryonization as in Ref. [80]. Moreover, we saw the possibility
to model a short-range interaction between quarks. However,
this one proved to be too limited in this configuration. As a
consequence, these results show the necessity of a long-range
interaction, as the one modeled by QCD. Its purpose is
to limit the velocity of the system expansion, at least for
the quarks/antiquarks, to allow the quarks to combine into
diquarks and then into baryons.

B. A solution to obtain a complete hadronization

To solve the problem evoked in Sec. V A, several options are
available. The objective is to find a mechanism that can model
the long-range interaction. It may lead to modifications of the
(P)NJL models. However, in this paper, I propose to add a
sphere that will confine the quark-antiquark system described
in Fig. 20. Thus, it mimics the behavior of the long-range
springlike force. This sphere acts as the box in Sec. IV B;
i.e., its wall is perfectly reflective for the quarks, antiquarks,
and diquarks confined in this structure. These colored objects
form the “QGP phase” inside the sphere. In contrast, the
noncolored ones, i.e., mesons and baryons, can leave it freely.

This confining sphere can be seen as a bag model, with a null
potential inside the sphere and infinite potential outside for
the colored particles. Its purpose is to avoid that these ones
escape. The populations of quarks, antiquarks, and diquarks
decrease during their hadronization. To take this aspect into
account, the radius of the sphere is periodically updated. More
precisely, its volume is proportional to the total number of
quarks/antiquarks free or combined into diquarks. So the
sphere shrinks progressively during the hadronization, until
its disappearance when all the colored objects are combined
into hadrons. This evolution is, e.g., visible in Fig. 33. The
system is expected to keep a spherical symmetry during the
simulation. Thus, the center of the sphere coincides with the
center of the whole system.

I perform a PNJL simulation with this confining sphere.
The populations of each type of particles are studied in
Figs. 24 to 26. The inclusion of the sphere leads to a complete
hadronization: The number of quarks/antiquarks converges
towards zero, and there is no diquark in the end the simulation.
The hadronization is fully completed at t ≈ 86.6 fm/c. This
time is longer than the one expected in Refs. [70,80]. However,
the evolution of the number of quarks/antiquarks and mesons
observed in Figs. 24 and 25 recalls the one predicted in
Ref. [70]. More precisely, the mesons’ production is strong in
the first moments of the simulation, until t ≈ 8 fm/c, via q +
q̄ → M + M. Then, the production begins to be less rapid,
until t ≈ 25 fm/c. After that, the variations of the number of
mesons are slow, but rather regular. However, in this last phase,
the mesons are produced by reactions as q + D → M + B,
and not by q + q̄ → M + M. Even if the sphere avoids that
the quarks/antiquarks leave the QGP phase (inside the sphere),
the collision rate tends to decrease according to time. As
observed in Fig. 35 with another simulation, this diminution
cannot be associated with a modification of the conditions
in the QGP phase. Indeed, an indirect effect of the sphere is
to stabilize its temperature and its densities rapidly, and the
update of its radius makes it possible to keep these parameters
rather constant. More precisely, the temperature of the QGP
phase is close to 200 MeV during almost all the simulation
described in this Sec. V B. In fact, the reason for the diminution
is related to kinematic considerations. With reactions as
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q + q̄ → M + M, the cross sections reach maximum values
near the kinematic threshold. Therefore, the probability of
creating mesons is optimal if the momenta of the incoming
quark/antiquark are weak in the center-of-reference frame of
these two particles (Appendix B). In the beginning of the
simulation, the great number of q/q̄ makes highly probable the
satisfaction of this condition. However, as soon as the number
of quarks/antiquarks decreases, the probability also decreases.
In addition, rapid q/q̄ are not favored by this kinematic
condition. They may stay in the QGP phase for a long time
before their hadronization. However, elastic reactions make it
possible to decrease their momenta. Therefore, they lead these
particles to react more easily via inelastic processes.

Moreover, rapid quarks/antiquarks can also be good candi-
dates to react via reactions involving strange matter, as, e.g.,
u + ū → s + s̄, u + d̄ → K+ + K̄0, or u + ū → K− + K+.
These reactions have modest cross sections and their kinematic
thresholds are higher than the ones of reactions exclusively
involving light particles. However, they cannot be neglected for
moderate

√
s [32,48]. The inclusion of the sphere avoids that

the rapid quarks/antiquarks quit the system. In the same time,
this trick makes it possible to increase the number of collisions
during the simulation. As a consequence, Fig. 24 shows that
strange quarks and antiquarks are produced. Furthermore, a
production of kaons is observed (Fig. 25 and Table VIII). As

expected, this production is weak compared to the one of the
pions. In the same way, a �+ baryon is formed (Fig. 26).

Concerning the baryons, their production starts later in this
simulation, i.e., after 16 fm/c. We do not take into account
the nucleons formed before 10 fm/c, because they were
destroyed rapidly by inelastic processes. These observations
confirm the scenario formulated in Ref. [94] that imagined
that the mesonization would occur before the baryonization
to “consume” enough antiquarks and so to block processes
that can destroy baryons, as q̄ + B → q + q and q̄ + B →
M + D. Moreover, no free antiquark (not combined into
mesons) is found in the system first for t ≈ 33.6 fm/c and
then definitively from t ≈ 48.8 fm/c. Thus, the mesonization
is completed earlier than the baryonization.

C. Study of the kinetic and chemical equilibrium

To conclude this section, I recall that the initial temperature
is not uniform [Fig. 23(a)] because of the initial conditions.
Clearly, the system is initially out of an overall kinetic equi-
librium. The question is now to investigate if the equilibrium
is reached during the performed simulations, with or without
the confining sphere. As in Sec. IV B, I use the distribution
dN/ (N p E dE) to answer this question. Figure 27 gathers
the results related to the simulation described in Sec. V B,
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i.e., with the sphere, whereas Fig. 28 concerns the boxless
NJL/PNJL simulations of Sec. V A.

First, Fig. 27(a) confirms that the initial distribution of the
quarks/antiquarks does not correspond to an overall kinetic
equilibrium. However, this one seems to be reached when
t ≈ 10 fm/c. Indeed, except some imperfections, the found
distribution is consistent with the analytical one plotted for
a temperature T = 200 MeV. As mentioned in Sec. V B, the
QGP phase, located inside the sphere, stabilizes rapidly at this
temperature until its disappearance. Also, the maximal energy
of the q/q̄ evolves from 1.5 GeV towards approximately 2
GeV. If one integrates Eq. (31) according to the energy from
m until 2 GeV, one finds ≈0.996, i.e., very close to the ideal
value 1. This result confirms my conclusion.

The study that motivated Fig. 27(a) is similar to the
ones described in Fig. 17 or in Ref. [102], which consider
simulations in a box. However, the kinetic equilibrium can
also be studied for the hadrons present in the system at the end
of the simulation. Indeed, as soon as they are produced in the
sphere, they leave it, and then their momenta will no longer
be modified. In fact, the interactions between the hadrons
outside of the sphere are negligible. As a consequence, the
distributions of the hadrons plotted in Fig. 27(b) stay consistent
with the temperature that most of them felt when they still
were in the sphere, i.e., 200 MeV. This reasoning supposes
low variations of the masses between the temperature in the
sphere and the one measured when the distribution is plotted
(T close to zero, because of the dilution). This constraint is
verified with these hadrons. Moreover, as in Refs. [67,116], in
which similar energy spectra are established, the temperature
is identical for each studied species. It reveals that the overall
kinetic equilibrium is reached in this simulation. Neverthe-
less, differences compared to the analytical distributions are
found at high energies. They are explainable by statistical
fluctuations: They concern a reduced number of particles.

TABLE VIII. Final composition of the system.

Particle π− π 0 π+ K− K+ K0 K̄0 Neutron Proton �+

No. 30 22 33 6 3 7 3 4 2 1

Also, I recall that mesons are produced in the beginning of
the simulation, i.e., when the temperature is not uniform.
However, for these ones, I underline the contribution of the
elastic processes M + M → M + M, q + M → q + M, and
q̄ + M → q̄ + M, which drive these mesons towards the
kinetic equilibrium.

The reasoning done for the hadrons is also applicable to
the boxless simulations studied in Sec. V A (Fig. 28). In this
way, I represent the distributions of the pions, in the NJL
and PNJL simulations, respectively, in Figs. 28(a) and 28(b).
Also, in Figs. 28(c) and 28(d), I consider the distributions of
the quarks/antiquarks in the same simulations. In fact, even
if the system is initially out of the overall equilibrium, the
expansion of the central zone towards the cold layers allows
the particles to mix. Therefore, the temperature becomes more
homogeneous: It is close to 200 MeV when a part of the pions
is produced. The other part concerns the pions produced early,
before the mix. They were evoked in Sec. V A to explain
the difference between the NJL and PNJL results. As in the
previous paragraph, their thermalization is explainable by the
elastic processes that occur at this moment. More precisely, one
also quotes the pion-pion scattering and the elastic reactions
involving a pion and a quark/antiquark. As a consequence, the
pion distributions are consistent with the analytical distribution
plotted for T = 200 MeV. Thus, these distributions indicate
that the pions are close to kinetic equilibrium, notably with the
PNJL model. However, they are less regular than the one of
Fig. 27(b).

Moreover, the distributions of the quarks/antiquarks show
that these ones also evolve towards an equilibration. As in
Secs. IV B and V B, the evolution of the q/q̄ spectra is
attributable to the elastic collisions. When these ones cease
because of the dilution, the momenta of the quarks/antiquarks
are fixed. As a consequence, the found results correspond to a
“snapshot” of the q/q̄ phase just before the kinetic freeze-out.
According to the graphs, their temperature is comparable to
200 MeV at this moment. Obviously, the variations of the
quark masses constitute a limitation of this reasoning, notably
with NJL (Fig. 2). Moreover, the deviations observed for
E ≈ 1 GeV in Figs. 28(c) and 28(d) lead us to conclude that the
kinetic equilibrium is not complete for the q/q̄ phase. Because
of the absence of the sphere, an explanation is a lack of elastic
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collisions in these (P)NJL simulations. As a consequence, the
comparison of Figs. 27 and 28 makes it possible to see that the
system can evolve towards kinetic equilibrium even without
the sphere. However, this evolution is more efficient thanks to
this one, notably for the quarks: The sphere allows them to
reach the equilibrium.

Concerning the notion of chemical equilibrium, there is
a method that consists of comparing, for each species, the
found number N of particles with the theoretical one Neq

at equilibrium, estimated by a statistical calculation. For
example, Refs. [102,103] consider the fugacity λ = N/Neq.
Also, in Refs. [67,116], the yields for each hadron type are

studied. It enables a comparison with theoretical estimations,
performed in an ideal hadron gas modeling. For a system
considered as infinite, Neq is evaluated by

Neq = g V

2π2

∫ ∞

0
p2 fF,B (p) dp, (33)

where g is a degeneracy factor and V is the volume of
the box in which the simulation is performed. fF and fB

are, respectively, the Fermi-Dirac and Bose-Einstein statistics.
In the case of ultrarelativistic particles, Eq. (33) can be
simplified and calculated analytically, which leads to the
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TABLE IX. Number N of hadrons found in Sec. V B and
theoretical estimations Neq.

Particle Pion Kaon Nucleon �

N 85 19 6 1
Neq 74 38 8 4
Neq with Eq. (34) 53 29 7 3

relation Neq = g T 3 V/π2 mentioned in Ref. [102]. However,
in the framework of my simulations, this simplification cannot
be applied. Indeed, we are not in this regime, as seen in
Sec. IV B, maybe except for the pions.

One assimilates the simulation described in Sec. V B
to a box simulation, with T ≈ 200 MeV. It constitutes an
approximation performed to calculate Neq. The initial radius of
the sphere is R = 3.8 fm, which makes it possible to estimate
V . To take into account the finite size of this system, I follow
the reasoning of Ref. [117]; i.e., I multiply the integrand in
Eq. (33) by the correction factor

Fcorr = 1 − 3π

4p R
+ 1

(p R)2 . (34)

Table IX recalls the results found in Sec. V B and presents
the data found with Eq. (33), using or not Eq. (34). For each
species, N and Neq appear to be comparable. However, the
number of pions exceeds the ones found by the statistical
calculations. In contrast, the number of kaons seems to be too
reduced: One has λ ≈ 0.50 with Eq. (33) and λ ≈ 0.66 if one
uses Eq. (34). According to these calculations, the strangeness
production is not strong enough in this simulation. Indeed, even
if the formation of strange matter starting from q/q̄ is possible,
it remains weak compared to reactions exclusively involving
nonstrange particles. This strangeness deficit is discussed in
Sec. VI. Concerning the number of baryons, the values found in
the simulation are rather close to the theoretical ones, notably
for the nucleons. However, these small statistics cannot allow
these results to be significant.

TABLE X. Initial composition of the system.

Particle u ū d d̄

No. 86 43 100 50

VI. COMPLETE STUDY OF A SIMULATION

The simulations performed in the previous section used
a rather reduced number of particles. As a consequence, we
cannot be sure that the modest diquark production (Fig. 26)
can be considered as a general result. So, I proceed to a
new PNJL simulation, involving 279 particles. The initial
composition is presented in Table X. Compared to Table VI,
the asymmetry between matter and antimatter is enhanced:
One has two times more quarks than antiquarks. The initial
positions and momenta of the particles are represented in
Fig. 29. In the previous simulation, the initial radius was about
3.8 fm, versus 4.5 fm now. Moreover, the maximal momenta
exceed 1500 MeV, i.e., more than for the ones described in
Fig. 20.

These initial conditions lead to a hot and dense system
(Figs. 30 and 31). First, the initial temperature in the core
exceeds 300 MeV, i.e., more than the 280 MeV associated
with an optimal mesonization. The temperature decreases
progressively as the radius increases. In the most external
layers, the values exceed 180 MeV. Moreover, the masses of
the quarks/antiquarks are low in the core, but stay greater than
their naked masses. Indeed, in the PNJL model, the naked
values are reached for temperatures greater than or equal
to 400 MeV (Fig. 2). However, the values of the Polyakov
field 	 are close to 0.7 in the core. Thus, we can consider
that the quarks/antiquarks are there in a “deconfined” regime.
Moreover, the densities were not described in the previous
simulations. However, here, they have strong values (Fig. 31).
The profiles of the densities ρu and ρd are rather similar, even
if the ρd are slightly raised, because of the excess of d quarks
compared to u ones. With the relation ρB = 2/3 ρq [21] seen
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FIG. 30. (a) Initial masses and (b) initial temperatures.

in Sec. II A, one estimates that the baryonic density is close to
3ρ0 in the core.

The evolution of the particles’ populations is represented
in Fig. 32. Concerning the quarks/antiquarks and the mesons,
their evolutions strongly recall the ones observed in Figs. 24
and 25. Roughly speaking, the population of quarks/antiquarks
is decreasing exponentially. However, concerning the diquarks
and the baryons, differences are observable compared to that
seen in Fig. 26. Here a massive production of diquarks occurs
in the first moments, until t ≈ 10 fm/c. During ≈15 fm/c,
the number of diquarks stagnates and then decreases expo-
nentially. About the baryons, their production really starts at
3.7 fm/c. At first, the number of baryons is rather modest,
until t ≈ 25 fm/c. Then the production becomes stronger. This
aspect is explained by the consumption of the diquarks to form
the baryons. More precisely, the diquarks perfectly play the
role of intermediate states. By their non-negligible production,
they allow a more efficient creation of baryons, notably
when 30 < t < 60 fm/c. In this simulation, this behavior is
explainable by the temperatures and densities obtained in some
layers of the system, allowing reactions as q + q → M + D.

Indeed, it was seen in Fig. 7 [94] that u + d → [ud] + π0

has optimal cross sections for densities close to 2 − 3ρ0 and
temperatures of about 200 MeV or more.

Figure 32 is completed by Table XI. This one describes the
final composition, once the hadronization is complete, i.e., for
t = 133.4 fm/c. As with Table VIII, the production of pions is
strong. They constitute about 79% of the particles found in the
end of the simulation. In addition, we observe the production of
26 nucleons. They represent slightly less than 10%. Moreover,
the formation of strange particles also occurred. One managed
to produce rare particles because one included more particles
and because one reached higher temperatures than in the
previous simulation. In fact, thanks to the conditions met in this
simulation, s,s̄ pairs have been produced by q + q̄ → s + s̄.
They allowed the formation of a [us] diquark. In the final
state, we have η mesons and the hyperons �−,�+, i.e.,
particles formed by reactions presenting very limited cross
sections.

We turn our attention now to Fig. 33, which shows the
evolution of the temperature according to the distance from the
center of the system (r) and according to time. In this graph,
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FIG. 32. Evolution of the particles’ populations according to time. P corresponds to protons, and N corresponds to neutrons.

I also plotted the radius of the sphere. The zone to the left of this
curve represents the phase formed by the quarks/antiquarks
and the diquarks, i.e., the QGP phase. Until t ≈ 20 fm/c, the
massive production of mesons leads to a strong consumption
of q/q̄. As a consequence, the decrease in the radius of the
sphere is strong at these moments. Then, between 20 and
110 fm/c, this decrease is more reduced and seems to be
almost linear. This behavior is explained by the diminution
of the q/q̄ consumption. After 110 fm/c, the radius stagnates
until the total hadronization, about 20 fm/c later. Moreover, the
temperature and the densities ρu,d of the QGP phase are rather
constant (Fig. 35). Its average temperature is close to 250 MeV,
even if variations are observable. At the opposite, the system’s
dynamics outside the sphere is completely different. This part
of the system is composed of the mesons and baryons that left
the QGP phase. The reactions q + q̄ → M + M involving
light particles are particularly exothermic [32]. Therefore, the
produced mesons, notably pions, can have strong velocities
[Fig. 36(b)]. Thus, the expansion of the phase constituted
by these particles is rapid. Because of this dilatation, the
hadrons gradually cool down when r and time increase. Thus,
the dilution leads to an exponential decrease in the mean
temperature and densities ρu,d of the system (Fig. 35).

Concerning the collisions, Figs. 33 and 34 and Table XII
make it possible to study them according to several aspects.

TABLE XI. Final composition of the system.

Particle π− π 0 π+ η K− K+ K0 K̄0 Neutron Proton �− �+

No. 84 64 72 3 3 9 6 7 9 17 2 3

In this simulation, we counted 559 collisions: ≈63% elastic
and ≈37% inelastic. According to Fig. 34, the collisions
preferentially occur in the first moments of the simulation, until
10 fm/c. There, the elastic collisions dominate the inelastic
ones because of the strong temperatures. Indeed, as noted
in Refs. [94], reactions as q + q̄ → q + q̄, q + q → q + q,
and q̄ + q̄ → q̄ + q̄ have stronger cross sections than q +
q̄ → M + M when T > 280 MeV. However, this inelastic
process is very present: It permits the massive mesonization
observed in Fig. 32(b). Between 10 and 80 fm/c, because
of the diminution of the population in the QGP phase, the
collision rate strongly decreases but stays rather constant.
As seen previously, the temperature of the QGP phase is
almost constant. Therefore, as with t < 10 fm/c, the elastic
reactions dominate the inelastic ones until 80 fm/c. After that,
the number of particles forming the QGP phase is low. This
leads to a strong reduction of the probability of interaction
between two particles in this phase, as with the simulation of
Sec. V B.

Figure 33 confirms these observations, with the spatial
distribution of the collisions. The inelastic collisions (black
dots) occur in the QGP phase, but near its surface. There the
temperature is lower than in the center: These conditions are
more favorable for q + q̄ → M + M. However, endothermic
reactions as q + q → q̄ + B are not concerned by this remark.
They correspond to the inelastic reactions visible in Fig. 33
near the center of the system. Moreover, the elastic collisions
occur in the whole QGP phase. It notably concerns the
elastic reactions between quarks and/or antiquarks. However,
elastic reactions are also observable outside of this phase:
First, they are processes as M + M → M + M, and second,
M + B → M + B and B + B → B + B (Table XII). The
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domination of M + M → M + M, compared to the two other
ones, is explained by the strong production of mesons. As a
consequence, the meeting between two mesons is highly more
probable than the M,B or the B,B meeting, independently of
the cross sections associated with these elastic processes.

Table XII presents the occurrence of all the processes
treated in the simulation. Among the 559 collisions, q + q̄ →
q + q̄ reactions represent more than a quarter. q + q̄ →
M + M corresponds to less than 20%. We observed in Sec. V B
that the mesonization ended early, but this observation is
not confirmed here. Indeed, antiquarks are found in the
system until the total hadronization. As a consequence, the
high temperatures met in this simulation affect the q + q̄ →
M + M process in a non-negligible way. Nevertheless, these
inelastic reactions were not disturbed by their reverse ones,

M + M → q + q̄, because they intervened only one time.
q + q̄ → M + M remains the privileged way to produce
mesons, significantly more than q + q → M + D. However,
this conclusion can depend on the initial ratio between quarks
and antiquarks. Moreover, the mesons mainly interact with
other particles by elastic reactions, via M + M → M + M,
q + M → q + M, or q̄ + M → q̄ + M, but rarely by inelas-
tic ones, as q + M → q̄ + D or M + D → q̄ + B. It explains
the constant growth of the mesons’ population [Fig. 32(b)].

Concerning the other reactions quoted in Table XII, even
if q + q̄ → q + q̄ strongly intervenes, q + q → q + q and
q̄ + q̄ → q̄ + q̄ are also present. Their occurrences are several
times lower than the one of the q/q̄ scattering, because their
cross sections are more reduced [48,94]. On one hand, the cross
sections of q + q → q + q and q̄ + q̄ → q̄ + q̄ are similar at
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FIG. 34. Number of elastic and inelastic collisions according to time.
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FIG. 35. (a) Mean temperatures and (b) mean densities in the whole system and in the QGP phase.

moderate densities. On the other hand, the initial ratio between
matter and antimatter is equal to two. It explains why the
occurrence of q + q → q + q is about twice the one of q̄ +
q̄ → q̄ + q̄.

We saw that the production of diquarks cannot be neglected
in this simulation. Among the inelastic processes studied in
Ref. [94], the reactions q + q → M + D are the ones that
produce diquarks in the more notable way (Table XII). This
remark is particularly true because the reverse reactions M +
D → q + q did not occur during the simulation. However,
the contribution of q + M → q̄ + D is weak, because of low
cross sections, notably compared to q̄ + D → q + M [94].

Concerning the baryonization, M + D → q̄ + B can also
be neglected for the same reason. As expected in Sec. II D,
the three dominant processes allowing the creation of baryons
are D + D → q + B, q + D → M + B, and q + q → q̄ +
B. In this simulation, they give similar contributions. The
baryons’ production via D + D → q + B was permitted by
the non-negligible population of diquarks, by interesting cross
sections [94] and by the relative high temperatures in the
QGP phase. Indeed, this endothermic process needs such

temperatures to intervene. This argument is also valid with
q + q → q̄ + B. However, one notes that q + B → D + D
is not negligible. Thus, it lowers the efficiency of the baryons’
production starting from two diquarks. Then, even if q̄ + B →
q + q can be neglected, it is not the case for q̄ + B → M + D.
This one leads to limitations of the baryonization via q + q →
q̄ + B. In contrast, q + D → M + B is not bothered by the
reverse reactions: M + B → q + D was not observed. Only
q + D → q + D can possibly slow down the production of
baryons via q + D → M + B.

We turn our attention now to Fig. 36. Its purpose is to check
the validity of the results. Figure 36(a) displays the evolution
of the total energy, according to time. The total energy is
expected to be strictly constant. However, some variations are
observable; they are attributable to numerical rounding. The
inclusion of the sphere does not have any direct incidence
on these fluctuations. Among the simulations described in this
paper, these values are the most unfavorable ones. However, the
variations are always lower than 0.8%. Furthermore, after some
oscillations until 40 fm/c, the values stabilize at 0.5%. Such
a value is acceptable; it is slightly higher than the variations
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065204-29



ERIC BLANQUIER PHYSICAL REVIEW C 89, 065204 (2014)

TABLE XII. Occurrence of each type of collision.

q + q̄ → q + q̄ 147 q + D → M + B 14 D + D → D + D 3
q + q̄ → M + M 106 q̄ + M → q̄ + M 14 M + B → M + B 3
q + q → q + q 59 q + B → D + D 10 B + B → B + B 2
q̄ + q̄ → q̄ + q̄ 36 q + M → q̄ + D 7 q̄ + B → q + q 1
q + D → q + D 31 q̄ + B → M + D 7 M + M → q + q̄ 1
M + M → M + M 24 q̄ + D → q + M 5 q̄ + D → q̄ + D 0
q + q → M + D 22 D + B → D + B 4 q̄ + B → q̄ + B 0
q + M → q + M 22 q + B → q + B 3 M + D → q + q 0
D + D → q + B 17 M + D → q̄ + B 3 M + B → q + D 0
q + q → q̄ + B 15 M + D → M + D 3

announced in Ref. [80]. They can be reduced if one increases
the precision of the numerical calculations, but at the price of
an extension of the calculation time.

Figure 36(b) displays the velocities of the particles, accord-
ing to the distance from the center of the system. The data are
established at t = 140 fm/c, i.e., in the end of the simulation.
The horizontal line, for which the velocity is equal to 1,
marks the speed of light. Because of strong initial momenta
and because of exothermic reactions, a significant part of
the particles have strong velocities, close to 1. Moreover, we
saw that the remote interaction between the particles can be
neglected, notably because of its limited range. In other words,
once the final particles (mesons and baryons) are produced,
their velocities are not expected to vary until the end of the
simulation. This leads us to consider them as free particles.
With this hypothesis, a diagonal line is traced in Fig. 36(b): It
materializes the limit of causality in the graph. The shifting of
this line according to the r axis takes into account the initial
radius of the system, about 4.5 fm. Particles on the right of this
line would be noncausal, because they would be too far from
the center of the system in comparison to their velocities. Such
unphysical behavior was not observed in the results. It would
have been the sign of failures of the algorithm.

Another test of the consistency of the results concerns
the notions of kinetic and chemical equilibrium (Fig. 37 and

Table XIII). In Fig. 37(a), I analyze the distribution of the
quarks/antiquarks and diquarks at t = 10 fm/c, i.e., when the
population of diquarks is maximal. In fact, the spectra give a
vision of the QGP phase. They indicate that the studied species
seem to have reached kinetic equilibrium for a temperature
T = 250 MeV. This temperature corresponds nicely to the
one of the QGP phase [Fig. 35(a)]. Table XII indicates that
the number of elastic reactions involving quarks/antiquarks
and diquarks is strong enough to realize the observed kinetic
equilibration of these particles.

Moreover, the reasoning done in Sec. V C about the hadrons
present in the final state is also applicable here. In that way,
I plot the associated distributions in Fig. 37(b). The aspect of
this figure recalls the energy spectra visible in Refs. [67,116].
The found results also show that the kinetic equilibration was
performed in the simulation. As in Sec. V C, a part of the
hadrons are produced in the sphere when the QGP phase is
at kinetic equilibrium [Fig. 37(a)]. The ones that are created
early, notably mesons, certainly undergo different conditions,
as the high temperatures visible in Fig. 30(b). However, I
also evoke their thermalization by means of the non-negligible
elastic reactions M + M → M + M, q + M → q + M, and
q̄ + M → q̄ + M (Table XII). However, some imperfections
are found at high energies. Concerning the pions, these
imperfections correspond to a deficit when E > 1.4 GeV. The
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FIG. 37. (a) Energy distributions of the quarks/antiquarks and diquarks at t = 10 fm/c and (b) energy distributions of the hadrons in the
final state.
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TABLE XIII. Number N of hadrons found in the simulation and
theoretical estimations Neq.

Particle Pion Kaon Nucleon �

N 220 25 26 5
Neq 252 167 51 28
Neq with Eq. (34) 200 140 45 24

limited number of pions at such energies constitutes a possible
explanation. This argument is also applicable to explain the
imperfections found for the baryons. However, for them, I
may evoke the lack of interactions with the QGP phase, which
is attested by the low number of elastic reactions involving
baryons (Table XII).

The chemical equilibrium is studied through Table XIII,
as in Sec. V C. First, the number of created pions corresponds
well to the theoretical predictions. Then, the number of baryons
appears to be rather weak. It can be explained by the initial
conditions and more precisely by the initial matter/antimatter
ratio (Table X). In fact, the populations of the treated species,
except the pions, seem to be underestimated. It constitutes a
sign that the approach involving 2 → 2 reactions should be
completed by multiparticle reactions, making it possible to
modify (to increase in this case) the total number of particles.
It should notably concern 2 → 3 reactions. Moreover, the
number of kaons is strongly lower than the Neq predictions,
approximately by a factor of 6. This observation can be
extended to the � baryons. Thus, it confirms the results
of Sec. V C, in which the strangeness production was also
too weak compared to statistical estimations. In the present
simulation, higher temperatures were considered, but they do
not lead to the expected production. Clearly, the strangeness
creation is possible, but it only concerns a few reactions.
Indeed, the kinematic threshold sometimes prevents such
a production. In addition, when this criterion is satisfied,
the reactions that can form s/s̄, kaons, or hyperons remain
dominated by processes creating light particles. One can
imagine two ways to reach the required number of strange
particles: higher temperatures or inclusion of strange matter
in the initial composition. In fact, these solutions indicate that
the chemical equilibration of the strange particles is strongly
related to the initial conditions. These results lead us to
quote the observation done in Ref. [104], in the framework
of quark/gluon simulations. It is indicated that the chemical
equilibration depends on the initial conditions, whereas kinetic
equilibration appears to be almost independent of them, as
observed in my work.

VII. CONCLUSIONS

In this paper, I presented a dynamical model devoted to
studying the cooling of a quark-antiquark plasma. To reach this
objective, the NJL model was used, completed by the inclusion
of a Polyakov loop, forming the PNJL model. I recalled some
notions about these models and presented some results as the
modeling of quarks, mesons, diquarks, and baryons [45] and
the cross-section calculations [32,44,94]. Then, I detailed the

algorithm. I described how the external parameters felt by
each particle are estimated. More precisely, I considered the
temperature and the densities ρf treated as local parameters.
I explained the collision algorithm, in which 60 types of
reactions were referenced, involving quarks, mesons, diquarks,
baryons, and their antiparticles. In my approach, the cross
sections were evaluated according to

√
s,T ,ρf , being aware

of the interest to take into account fully the contributions of
these parameters in the cross-section calculations.

I also presented the equations of motion, based on a
relativistic molecular dynamics description, and I interpreted
them in the framework of the (P)NJL models. I discovered
a remote interaction between the particles. I investigated the
properties of this interaction between quarks numerically. An
attractive force was found, whose effects mainly concern slow
quarks, at low and moderate temperatures. The inclusion of the
Polyakov loop makes it possible to increase the temperature
range in which this force can intervene in a notable way.
However, this interaction has a limited influence in hot
systems, involving rapid particles. Also, it has a reduced
range, i.e., a few femtometers in my description. However,
it should be interesting to investigate this remote interaction
in the framework of future simulations involving different
conditions.

Moreover, I compared NJL and PNJL complete simula-
tions. The PNJL model made it possible to obtain better
results, i.e., a more efficient hadronization. This observation
was explained by the shifting of the temperatures caused
by the inclusion of the Polyakov loop. This one affects the
value of the pseudocritical temperature Tc and also the Mott
temperatures of the composite particles. Thus, it leads to an
extension of the domain of stability of these particles towards
higher temperatures. Also, it indirectly concerns the cross
sections: The optimal temperature of the mesonization reaction
that creates pions is shifted from 230 MeV in a pure NJL
description towards 280 MeV in the PNJL one. It induces a
better mesonization of the q/q̄ system under the conditions
of the performed simulations. Indeed, in the PNJL model, the
mesonization was possible even in hot zones (T � 280 MeV),
whereas it was not the case for NJL.

However, the hadronization was not complete in these tests,
even with the PNJL model. The relative weakness of the
baryonization reactions was evoked to explain this limitation.
On this occasion, the necessity of a long-range interaction
between quarks was underlined. I showed the possibility to
mimic such an interaction by the inclusion of a sphere, whose
role was to confine the quarks/antiquarks and the diquarks until
their hadronization. Even if box calculations are particularly
interesting in the frameworks of such works [73,102,103], I
concede that the sphere should be considered as a first step. The
description of long-range interactions should be developed in
the (P)NJL models.

Then, with this confining sphere, I described the evolution
of two simulations, until their complete hadronization. The
first simulation involved moderate temperatures, whereas the
second one considered more particles and initial tempera-
tures exceeding 300 MeV. The two simulations confirmed
the scenario proposed in Ref. [94]. At high temperatures,
elastic reactions between q/q̄ dominate. When T � 280 MeV,
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q + q̄ → M + M allows a massive mesonization, producing
a great number of pions in a short amount of time. This
mesonization consumes enough antiquarks to permit the
formation of baryons. In the second simulation, the high
temperatures and densities allowed a notable production of
diquarks, by reactions as q + q → M + D. These particles
acted as intermediate states to facilitate the baryonization. I
noted that the baryons were preferentially created by D +
D → q + B, q + q → q̄ + B, and q + D → M + B, with
an advantage for the last one.

We saw that one effect of the sphere was to stabilize the
temperature and the density of the QGP phase. Furthermore,
the sphere allowed the systems to evolve towards kinetic
equilibration in a more efficient way than in the sphereless
simulations. More precisely, the simulations that used the
sphere reached the kinetic equilibrium. Moreover, in these
simulations, we observed the production of strange particles
starting from light quarks/antiquarks. However, this produc-
tion was insufficient in comparison to statistical calculations.
Also, for the two simulations in which the hadronization was
complete, the required time was found to be higher than
expected in the literature [118].

A possible way to correct these two limitations could be
the inclusion of multiparticle reactions as 2 → 3, 3 → 2, and
3 → 3 in my work. Indeed, concerning the time scales for
the hadronization, these reactions could make it possible to
increase the collision rate, notably in the beginning of the
simulation. More precisely, the initial conditions correspond
to high concentrations of particles, so reactions involving
three incoming particles should intervene in a non-negligible
way at this moment. Moreover, concerning the chemical
equilibration, the influence of the multiparticle reactions on
the equilibration of quark/gluon systems was shown, e.g., in
Refs. [102,103]. This observation could be extrapolated to my
simulations. Furthermore, I can also explain the insufficient
strangeness production by the absence of gluons (as dynamical
particles) in my modeling. Indeed, they are expected to play an
important role in the creation of strange matter, via reactions
as g + g → s + s̄ [119,120].

Concerning the possible evolutions of this work, apart
from the ones already mentioned above, I may suggest the
inclusion of heavy mesons as vectorial ones. In the same
way, it could be interesting to take into account decuplet
baryons [45]. Obviously, such a work requires an extension
of the cross-section calculations performed in Ref. [94],
and a treatment of the decays of the instable particles, as
the one initiated in Ref. [80] for the pseudoscalar mesons.
Other possibilities concern the inclusion of antiparticles as
antidiquarks and antibaryons in the simulations to investigate
their contribution, especially at moderate densities.

APPENDIX A: DETERMINATION OF THE
TEMPERATURE

In a nonrelativistic regime, the temperature of an ideal gas
is obtained, at the thermal equilibrium, by the equipartition
theorem,

〈EK〉n.r. = 3
2 kB T , (A1)

where 〈EK〉n.r. is the mean value of the nonrelativistic kinetic
energy. A general formulation of this theorem explains that for
each degree of freedom φi (quadratic variable in the writing
of the energy) the following relation is satisfied [106]:〈

φi

∂E

∂φi

〉
= kB T . (A2)

In a relativistic formulation, 〈E〉 =
〈
√

p2
x + p2

y + p2
z + m2〉. One considers then three

configurations:

(i) Nonrelativistic regime, i.e., ( �p)2 � m2, leading to the
well-known approximation

〈E〉 ≈
〈

p2
x + p2

y + p2
z

2m
+ m

〉
≡ 〈EK〉n.r. + 〈m〉 .

(A3)

According to Eqs. (A2) and (A3), 〈pi
∂E
∂pi

〉 = 〈p2
i

m
〉 =

kB T , where i = x,y,z; it makes it possible to find
Eq. (A1) again.

(ii) Ultrarelativistic regime [113], where ( �p)2 � m2. In
this case

〈E〉 ≈ 〈√
p2

x + p2
y + p2

z

〉 ≡ 〈EK〉u.r.. (A4)

In the same way, one finds 〈pi
∂E
∂pi

〉 = 〈 p2
i√

p2
x+p2

y+p2
z

〉 =
kB T . Thus, one obtains

〈EK〉u.r. =
〈

p2
x + p2

y + p2
z√

p2
x + p2

y + p2
z

〉
=

∑
i=x,y,z

〈
pi

∂E

∂pi

〉
,

and thus 〈EK〉u.r. = 3 kB T . (A5)

(iii) General case. Using the same method as in
the previous cases, one considers again 〈E〉 =
〈
√

p2
x + p2

y + p2
z + m2〉. Thus, one writes

〈
pi

∂E

∂pi

〉
=

〈
p2

i√
p2

x + p2
y + p2

z + m2

〉
= kB T .

(A6)

One performs the summation of the contributions
of the three components x,y,z, and one obtains
Eq. (27) [106,112,113]〈

( �p)2

E

〉
= 3kB T . (A7)

APPENDIX B: ELEMENTS OF KINEMATICS

The collisions between the two incoming particles 1, 2 and
the two outgoing ones 3, 4, are schematized in Fig. 38 [94].

pi is the four-momentum of the concerned particle. Ei =√
( �pi)2 + m2

i is its associated energy, i.e., the 0th component of
this four-vector. I use the symbol * hereafter to specify that the
variables are expressed in the center-of-mass reference frame
of the incoming particles. The relations between the energies,
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p
1

p
2

p
3

p
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FIG. 38. Schematization of a 2 → 2 collision.

the momenta and the Mandelstam variable s are then written
as [121]

E∗
1 = s + m2

1 − m2
2

2
√

s
,

‖ �p∗
1‖ =

√
[s − (m1 + m2)2][s − (m1 − m2)2]

2
√

s
,

E∗
2 = s − m2

1 + m2
2

2
√

s
,

�p∗
2 = − �p∗

1,
(B1)

E∗
3 = s + m2

3 − m2
4

2
√

s
,

∥∥ �p∗
3

∥∥ =
√

[s − (m3 + m4)2][s − (m3 − m4)2]

2
√

s
,

E∗
4 = s − m2

3 + m2
4

2
√

s
,

�p∗
4 = − �p∗

3,

where the Mandelstam variables s, t, u are defined as

s = (p1 + p2)2 = (p3 + p4)2,

t = (p3 − p1)2 = (p4 − p2)2, (B2)

u = (p4 − p1)2 = (p3 − p2)2.

The bounds of the integral Eq. (20) are associated with the
Mandelstam variable t , with

t± = m2
1 + m2

3 − 2 E∗
1 E∗

3 ± 2‖ �p∗
1‖ ‖ �p∗

3‖. (B3)

APPENDIX C: GEOMETRICAL CALCULATIONS
DEVOTED TO THE COLLISIONS

1. Impact parameter

The momenta of the incoming particles are initially ex-
pressed in the laboratory frame. Therefore, the first step in
estimating the impact parameter b∗ is to apply a Lorentz boost
on these momenta to work in the center-of-mass reference
frame of these two particles,

�p∗
1 = �p1 + �vc.m.

[
( − 1)

�p1 · �vc.m.

‖�vc.m.‖2 − E1

]
,

(C1)
E∗

1 = (E1 − �p1 · �vc.m.),

where �vc.m. is the velocity of the center of mass in the laboratory
frame,

�vc.m. = �p1 + �p2

E1 + E2
, (C2)

α*

r *

p
1
*

p
2
*

b*

1

2

FIG. 39. Determination of the impact parameter b∗.

and the Lorentz factor is written as

 = 1√
1 − (vc.m./c)2

, (C3)

in which the speed of light c is set equal to 1. Then Eq. (C1)
is adapted for the momentum of the incoming particle 2. The
same procedure is applied to the positions of these particles 1
and 2 to express them in their center-of-mass reference frame.
One obtains then �r∗

1 and �r∗
2 , respectively. Now, one defines

�r∗ = �r∗
1 − �r∗

2 and �p∗ = �p∗
2 − �p∗

1 . Because �p∗
1 + �p∗

2 = �0, the
choice �p∗ = �p∗

2 gives the same results in the calculation
performed hereafter.

With Fig. 39, Eq. (C4) are found by geometrical consider-
ations:

cos(α∗) = �r∗ · �p∗

‖�r∗‖ ‖ �p∗‖ , sin(α∗) = b∗

‖�r∗‖ . (C4)

Using the formula sin[cos−1 (x)] = √
1 − x2, the impact

parameter b∗ is expressed, as in Ref. [67], by the relation

b∗ =
√

‖�r∗‖2 −
( �r∗ · �p∗

‖ �p∗‖
)2

. (C5)

The first equation of Eq. (C4) indicates if the particles are
approaching [cos(α∗) � 0] or are moving away [cos(α∗) < 0].
This information cannot be supplied by Eq. (C5). If cos(α∗) <
0, the collision procedure is aborted for these two particles.

2. Scattering angle and momenta of the outgoing particles

Figure 40 illustrates the applied method to calculate the
scattering angle θ∗, in which σ is the cross section of the
reaction 1 + 2 → 3 + 4. In the figure, �r∗ is a vector connecting
the two particles 1 and 2 at the precise instant of their
interaction. This one is supposed to be spatially and temporally
punctual. �p∗

3 and �p∗
4 are, respectively, the momenta of the

outgoing particles 3 and 4. Their modulus is found with
Eq. (B1).

The approach considers the hard sphere model as a starting
point. But, here, the sum of the radii of particles 1 and 2
is replaced by

√
σ/π. Then, particle 1 becomes particle 3

after a rebound on the sphere visible in Fig. 40, according to
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p
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p
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p
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*

σ
π

u

v

u’

v’

r*

FIG. 40. Method to estimate the scattering angle θ∗.

Snell-Descartes’ law of reflection, whereas particle 2 becomes
particle 4. Geometrical considerations make it possible to find
the expression of the scattering angle θ∗ :

θ∗ = π − 2 sin−1(b
√

π/σ ). (C6)

The coordinates of the vectors �p∗
3 and �p∗

4 are then fully
determinable with this angle: The vector �p∗

3 is projected in the
(�u, �v) basis, where one defines

�u = �p∗
1∥∥ �p∗
1

∥∥ , �v = �r∗ − (�r∗ · �u) �u
‖�r∗ − (�r∗ · �u) �u‖ . (C7)

The procedure is similar for �p∗
4 , or one uses �p∗

4 = − �p∗
3 (B1).

Finally, a Lorentz boost is applied to these momenta to express
them in the laboratory frame.
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