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Quasielastic electron-deuteron scattering in the weak-binding approximation
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We perform a global analysis of all available electron-deuteron (ed) quasielastic scattering data using
Q2-dependent smearing functions that describe inclusive inelastic ed scattering within the weak-binding
approximation. We study the dependence of the cross sections on the deuteron wave function and the off-shell
extrapolation of the elastic electron-nucleon cross sections, which show particular sensitivity at x � 1. The
excellent overall agreement with data over a large range of Q2 and x suggests a limited need for effects beyond
the impulse approximation, with the exception of the very high-x and very low-Q2 regions, where short-range
meson exchange and final state interaction effects become more relevant.
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I. INTRODUCTION

The deuteron has long been recognized as an ideal labo-
ratory for studying the dynamics of nucleon-nucleon (NN )
interactions. In particular, when the four-momentum transfer
squared, Q2, is of the order of the nucleon mass squared, M2,
or when the fraction of momentum x carried by the scattered
quarks in the deuteron is in the vicinity of x ∼ 1, the role of
short-distance effects in the deuteron wave function becomes
more prominent. This region makes it possible to explore the
structure of the simplest nuclear bound state directly from the
underlying theory of the strong interactions, QCD. Together
with the constraints on the long-range structure of the deuteron
derived from chiral effective theory, the ultimate goal, of
course, is to obtain a quantitative description of the deuteron’s
structure over all distance scales.

From a more practical perspective, experiments involving
electron (or other lepton) scattering from the deuteron targets
have provided the main source of information about the
structure of the neutron. The absence of free neutron targets has
meant that properties such as the neutron’s elastic form factors
or deep-inelastic structure functions are usually extracted
from measurements involving deuterons, using empirical
information about the corresponding proton observables and
knowledge of the NN interaction in the deuteron. Use of
heavier nuclei necessarily increases the size of the bound state
effects, exacerbating the uncertainties introduced through our
incomplete knowledge of the nuclear wave function and the
reaction mechanism.

A robust extraction of neutron information requires a
reliable baseline model which accounts for the standard
nuclear physics in the deuteron. This is usually embodied in
the nuclear impulse approximation, in which the probe scatters
incoherently from individual nucleons in the deuteron [1–3].
Corrections to this framework arise in the form of rescat-
tering or final state interactions between the struck nucleon
and the spectator recoil [4–8], as well as meson exchange
currents [9,10], nucleon off-shell corrections [11–13], and
possible non-nucleonic components of the deuteron wave
function. The unambiguous identification of these more exotic

effects is only feasible when the baseline calculations within
the impulse approximation can be performed with a sufficient
degree of precision.

A successful framework which has been used to describe
inclusive inelastic electron scattering from nuclei is the weak-
binding approximation (WBA), developed by Kulagin et al.
and applied to both unpolarized [14–17] and polarized [17–19]
scattering from the deuteron, as well as 3He [20,21] and
heavier nuclei [16]. It was also utilized in the extraction of the
free neutron structure function Fn

2 from inclusive deuterium
and proton data in the nucleon resonance region [22], and
the subsequent verification of quark-hadron duality in the
neutron [23,24].

Of course, any general approach that aspires to have
predictive power must be able to describe a wider set of
observables than just a limited class of reactions. Perhaps the
most direct window on the nuclear structure of the deuteron is
offered by the process of quasielastic (QE) scattering, where
the electron scatters elastically from a proton or neutron bound
in the deuteron. A large body of data has been accumulated
on QE electron-deuteron scattering over the past few decades,
covering a large range of Q2 (between Q2 ≈ 0.1 and 10 GeV2)
and energies E (between E ≈ 0.2 and 20 GeV), at forward and
backward scattering angles [25,26].

In the impulse approximation the QE cross section is
proportional to the light-cone momentum distributions of
nucleons in the deuteron, f N/d (also referred to as the
“smearing functions”). These are the same distributions that
are used to compute the deuteron structure functions in deep-
inelastic scattering [1,2,12–14,16], where they are convoluted
with the inelastic structure functions of the bound nucleons.
The resulting convolutions depend rather sensitively on the
precise structure of both the smearing functions and the
nucleon structure functions. For QE scattering, the deuteron
structure functions are directly given by f N/d , multiplied
by Q2-dependent elastic nucleon form factors. This makes
QE scattering the ideal testing ground for models of the
deuteron structure and the details of the nucleon momentum
distributions.
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Despite the extensive work that has been carried out on
computing the smearing functions for application to deep-
inelastic scattering, using realistic deuteron wave functions
and including finite-Q2 corrections, surprisingly there has
never been a direct test of the WBA formalism with QE
scattering data. In this paper we perform such an analysis,
confronting the calculated light-cone momentum distributions
with the entire set of available QE cross sections. The level of
agreement between the data and theory will reveal the limits
of validity of the WBA in the impulse approximation, and the
degree to which rescattering or more exotic effects need to be
incorporated for a complete description of electron-deuteron
scattering.

In Sec. II we review the formalism needed to describe
electron-deuteron scattering in the QE region and outline the
derivation of the unpolarized deuteron Fd

1 and Fd
2 structure

functions within the WBA. We examine the possible effects
of the modification of nucleon structure functions off the
mass shell, and estimate the uncertainty on this modification
using two different prescriptions for the electromagnetic
current commonly invoked in the literature. The calculated
QE cross sections are compared in Sec. III with all available
data on inclusive electron-deuteron scattering in the QE
region, for x � 1. We compare the predictions using the
same smearing functions as those utilized in deep-inelastic
scattering, including the kinematical, finite-Q2 corrections
to the smearing functions derived in the high-Q2 limit. We
further investigate the dependence of the cross sections on
the deuteron wave function for several models based on
high-precision NN potentials, as well as on the effects of the
nucleon off-shell corrections. A comprehensive comparison
with the data such as this allows us to clearly delineate the
regions where the impulse approximation is adequate for
understanding the essential features of the data, and to identify
where additional effects may be needed in future analyses
(x � 1). Finally, in Sec. IV we summarize our findings and
discuss their implications for future work.

II. QUASIELASTIC SCATTERING IN THE IMPULSE
APPROXIMATION

In this section we summarize the main results for inclusive
electron-deuteron scattering in the impulse approximation.
After reviewing the general results for the deuteron structure
functions within the framework of the WBA, we describe how
the results are applied to the case of elastic scattering from
the nucleon bound inside the deuteron. We present results for
the case where the bound nucleon structure is assumed to
be the same as that for a free nucleon, as well as for the more
general case where the off-shell structure of the bound nucleon
is explicitly taken into account.

A. Inclusive cross section and structure functions

The inclusive cross section for the scattering of an incident
electron (with four-momentum kμ) from a deuteron target (Pμ)
to a recoil electron (k′

μ) and unobserved hadronic state X,

ed → eX, is given in the target rest frame by

d2σ

d�dE′ = α2

Q4

E′

E

1

Md

Lμν Wμν, (1)

where α is the electromagnetic fine structure constant, E (E′) is
the incident (scattered) electron energy, and Md is the deuteron
mass. The invariant mass squared of the exchanged photon is
given by Q2 ≡ −q2 ≈ 4EE′ sin2(θ/2), where θ is the electron
scattering angle in the target rest frame, with qμ = kμ − k′

μ

the exchanged photon four-momentum. The leptonic tensor in
Eq. (1) is given by

Lμν = 2kμk′
ν + 2k′

μkν + q2gμν, (2)

while the deuteron hadronic tensor Wμν is parametrized by
the deuteron structure functions Fd

1 and Fd
2 ,

Wμν(P,q) =
(

−gμν + qμqν

q2

)
Fd

1

+
(

P μ − P · q

q2
qμ

) (
P ν − P · q

q2
qν

)
Fd

2

P · q
. (3)

In terms of the deuteron structure functions, which are usually
expressed as functions of Q2 and the Bjorken scaling variable
x = Q2/2Mν, where ν = E − E′ is the energy transfer, the
inclusive cross section can then be written as

d2σ

d�dE′ = σMott

(
2

Md

tan2 θ

2
Fd

1 (x,Q2) + 1

ν
F d

2 (x,Q2)

)
,

(4)

where σMott = (4α2E′2/Q4) cos2(θ/2) is the Mott cross sec-
tion for scattering from a point particle. Note that at forward
scattering angles (θ → 0◦) the cross section is given entirely
by the Fd

2 structure function, while at backward angles (θ →
180◦) the Fd

1 structure function is dominant.

B. Weak-binding approximation

To relate the deuteron cross section or structure functions to
those of the nucleon requires modeling of the distribution and
interaction of the bound nucleons in the deuterium nucleus.
Within a covariant framework the deuteron hadronic tensor
Wμν in Eq. (3) can be written as a product of the nucleon-
deuteron scattering amplitude Â and the truncated nucleon
hadronic tensor Ŵ μν

N describing the structure of the off-shell
nucleon [12],

Wμν(P,q) =
∫

d4p

(2π )4
Tr

[Â(P,p) Ŵ μν
N (p,q)

]
, (5)

where p is the four-momentum of the struck nucleon. Ex-
panding the nuclear amplitude Â to order p2/M2 in the bound
nucleon three-momentum and to order ε/M in the energy
ε ≡ p0 − M , the deuteron tensor simplifies to an integral
over the nonrelativistic deuteron spectral function P and the
nucleon hadronic tensor W

μν
N [16],

Wμν(P,q) =
∫

d4p

(2π )4

Md

M + ε
P(ε, p) W

μν
N (p,q)

+O(| p|3/M3). (6)
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The spectral function is written in terms of the deuteron wave
function ψd as

P(ε, p) = (4π3) δ

(
ε − εd + p2

2M

)
|ψd ( p)|2 , (7)

where the deuteron binding energy εd = Md − 2M and the
wave function is normalized according to

∫
d3 p |ψd ( p)|2 =

4π .
Evaluating explicitly the hadronic tensor in Eq. (6) with the

spectral function in Eq. (7), and equating the coefficients of
the tensor in Eq. (3), one can write the deuteron Fd

1 and Fd
2

structure functions in the WBA in terms of the deuteron wave
function ψd ( p) and the bound nucleon structure functions F̃ N

1
and F̃ N

2 [15–17,27],

xF d
1 (x,Q2) =

∑
N

∫
d3 p

(2π )3
|ψd ( p)|2

(
1 + γpz

M

)

×
[
C11

x

y
F̃ N

1

(
x

y
,Q2,p2

)

+ C12 F̃ N
2

(
x

y
,Q2,p2

) ]
, (8a)

Fd
2 (x,Q2) =

∑
N

∫
d3 p

(2π )3
|ψd ( p)|2

(
1 + γpz

M

)

× C22F̃
N
2

(
x

y
,Q2,p2

)
, (8b)

where γ 2 = 1 + 4M2x2/Q2 is a kinematical factor, and the
sum runs over N = p and n. The variable y is the light-cone
momentum fraction of the deuteron carried by the interacting
nucleon,

y = Md

M

p · q

P · q
= p0 + γpz

M
, (9)

and the coefficients Cij are given by

C11 = 1, (10a)

C12 = (γ 2 − 1)
p2

⊥
4y2M2

, (10b)

C22 = 1

γ 2

[
1 + (γ 2 − 1)

2y2M2
(2p2 + 3 p2

⊥)

]
. (10c)

Because the struck nucleon is off its mass shell with virtuality
p2 = p2

0 − p2 < M2, where the interacting nucleon’s energy
is p0 = Md −

√
M2 + p2, the structure functions F̃ N

1 and
F̃ N

2 in Eqs. (8) can in principle also depend on p2, in
addition to x and Q2. In practice, since the binding energy
is a small (≈0.1%) fraction of the deuteron’s mass, and the
average nucleon momentum in the deuteron is | p| ∼ 130 MeV,
the typical nucleon virtuality (p2)1/2 is only ∼2% less
than the free nucleon mass. As a reasonable first ap-
proximation, therefore, one can take the bound nucleon
structure functions to be the same as their on-shell limits,
F̃ N

1,2(x,Q2,p2) ≈ F̃ N
1,2(x,Q2,M2) ≡ FN

1,2(x,Q2). In this case
the p2 (or p2

⊥) and y dependence in Eqs. (8) factorizes,
and the integration can be reduced to a one-dimensional

convolution in y [17],

xF d
1 (x,Q2) =

∑
N

∫ Md/M

x

dy

[
f

N/d
11 (y,γ )

x

y
FN

1

(
x

y
,Q2

)

+ f
N/d
12 (y,γ ) FN

2

(
x

y
,Q2

) ]
, (11a)

Fd
2 (x,Q2) =

∑
N

∫ Md/M

x

dy

[
f

N/d
22 (y,γ ) FN

2

(
x

y
,Q2

)]
,

(11b)

where the nucleon smearing functions in the deuteron
f

p/d
ij = f

n/d
ij ≡ fij (assuming isospin symmetry) are given by

[15–17,27]

fij (y,γ ) =
∫

d3 p
(2π )3

|ψd ( p)|2
(

1 + γpz

M

)

× Cij δ

(
y − 1 − ε + γpz

M

)
. (12)

In the γ → 1 limit the functions fij can be interpreted
as light-cone momentum distributions of nucleons in the
deuteron, giving the probability of finding a nucleon with
a light-cone momentum fraction y inside the deuteron. For
γ = 1 the smearing functions are therefore normalized as∫ Md/M

0
dy fii(y,1) = 1,

∫ Md/M

0
dy f12(y,1) = 0. (13)

In this limit the convolutions for Fd
1 and Fd

2 are thus diagonal
in the structure function type, since C12 → 0 as γ → 1. At
finite values of Q2 the normalizations (13) no longer hold,
and the distributions do not have a probabilistic interpretation.
However, in practical calculations it is nonetheless vital to
keep the full Q2 dependence of the smearing functions.

In Fig. 1 the smearing function f22(y,γ ) relevant for the
Fd

2 structure function is illustrated for different values of γ
and for different models of the deuteron wave function. In
the Q2 → ∞ limit, the function is strongly peaked around
y = 1, with a maximum value of ≈9, but becomes broader
with increasing γ , with the peak about half as large for γ = 2
and 1/4 as large for γ = 4 compared with that in the scaling
limit. Note that at x = 1 the value of γ is ≈4.3, 2.1, and 1.2
at Q2 = 0.2, 1, and 10 GeV2, respectively, which covers most
of the Q2 range of the available QE data. The behavior of
the f11(y,γ ) smearing function is qualitatively similar to that
in Fig. 1.

At y ≈ 1 the smearing function is determined mostly
by the long-distance part of the deuteron wave function,
which has relatively weak model dependence. The tails of the
distributions at |y − 1| � 0, however, exhibit strong deuteron
model dependence, with the WJC-1 wave function [28] giving
the hardest distribution (largest tails in f22), the CD-Bonn [29]
the softest distribution (smallest f22), and the Paris wave
function [30] intermediate between the two. These features
are directly reflected in the model dependence of the structure
function contributions to the QE cross sections in Sec. III.

Note that whereas some earlier analyses of QE and inelastic
electron-deuteron scattering made use of ad hoc prescriptions
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FIG. 1. (Color online) Nucleon smearing function in the deuteron f22(y,γ ) as a function of y for (a) different values of γ (γ = 1,2,4)
using the Paris [30] wave function, and (b) γ = 1 using the Paris, WJC-1 [28], and CD-Bonn [29] wave functions.

(see Ref. [12] for a discussion), the expressions in Eqs. (8) are
systematically expanded in the bound nucleon momentum and
are exact to order p2/M2 for all values of Q2. As discussed
above, the only assumption made in Eqs. (11) is that the bound
nucleon structure functions appearing in the convolutions are
not modified off-shell. The latter assumption constitutes one
of the largest sources of uncertainty in the calculation of
the deuteron structure functions. In Sec. II D we explore the
possible effects of the p2 dependence of the bound nucleon
structure function on the QE cross section. Before doing so,
however, we first consider the specific case of elastic scattering
from the nucleon.

C. Quasielastic structure functions

For electron scattering from a free nucleon, the matrix
element of the electromagnetic current operator Jμ for an
elastic final state [(p + q)2 = M2] is parametrized in terms of
the Dirac F1N and Pauli F2N form factors [not to be confused
with the inclusive structure functions FN

1,2(x,Q2), which are
always functions of two variables],

〈N (p + q)|Jμ|N (p)〉

= ū(p + q)

[
γ μ F1N (Q2) + iσμνqν

F2N (Q2)

2M

]
u(p),

(14)

with the form factors normalized such that F1p(0) = 1,
F1n(0) = 0, and F2N (0) = μN , where μN is the nucleon
anomalous magnetic moment. Using the Gordon identity for
on-shell states, one can eliminate the σμν term in Eq. (14)
to express the matrix element of the electromagnetic current
equivalently as

〈N (p + q)|Jμ|N (p)〉

= ū(p + q)

[
γ μ GMN (Q2) − (2pμ + qμ)

F2N (Q2)

2M

]
u(p),

(15)

where GMN here is the Sachs magnetic form factor. The Sachs
electric and magnetic form factors are related to the Dirac and

Pauli form factors by

F1N (Q2) = 1

1 + τ
[GEN (Q2) + τGMN (Q2)], (16a)

F2N (Q2) = 1

1 + τ
[GMN (Q2) − GEN (Q2)]. (16b)

As we see in Sec. II D below, the expressions in Eqs. (14)
and (15) are equivalent on-shell, but can differ when the initial
nucleon is off-shell. In terms of the Sachs electric and magnetic
form factors, the elastic contributions to the inclusive structure
functions of a free nucleon are given by

F
N(el)
1 (x,Q2) =

[
1

2
G2

MN (Q2)

]
Q2 δ((p + q)2 − M2),

(17a)

F
N(el)
2 (x,Q2) =

[
G2

EN (Q2) + τG2
MN (Q2)

1 + τ

]
× 2p · q δ((p + q)2 − M2), (17b)

where τ = Q2/4M2. Using the fact that for an on-shell
nucleon (p2 = M2) one has 2p · q = 4M2τ , and the δ
functions in Eqs. (17) can also be written in terms of
the x variable, Q2 δ((p + q)2 − M2) = 2p · q δ((p + q)2 −
M2) = δ(1 − x). Substituting the elastic structure functions
in Eqs. (11), the deuteron QE structure functions can then be
written as simple products of the nucleon smearing functions
fij and the elastic electromagnetic form factors,

xF
d(QE)
1 (x,Q2) =

∑
N

{
1

2
xf11(x,γ ) G2

MN (Q2) + xf12(x,γ )

×
[
G2

EN (Q2) + τG2
MN (Q2)

1 + τ

]}
, (18a)

F
d(QE)
2 (x,Q2) =

∑
N

xf22(x,γ )

[
G2

EN (Q2) + τG2
MN (Q2)

1 + τ

]
.

(18b)

The Q2 dependence of the QE structure functions arises from
both the Q2 dependence of the elastic form factors and the γ
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dependence of the smearing function. The latter, as we see in
Sec. III B, is in fact vital for describing the Q2 dependence of
QE cross section data.

D. Nucleon off-shell corrections

For the case where the struck nucleon is bound inside
the deuteron and is thus off its mass shell, p2 = M2, we
can generalize the elastic nucleon scattering contributions

to the structure functions by explicitly taking into account
the kinematical p2 dependence. From the on-shell condi-
tion of the final nucleon, one has the constraint 2p · q =
Q2 + M2 − p2 = Q2/(x/y), where y is defined in Eq. (9).
This enables the δ function in Eqs. (17) to be written
as δ((p + q)2 − M2) = [(x/y)/Q2] δ(1 − κ(p2)x/y), where
κ(p2) = 1 + (M2 − p2)/Q2. Making use of the definition of
the electromagnetic current in Eq. (14), the elastic structure
functions for the off-shell nucleon are then given by

F̃
N(el)
1

(
x

y
,Q2,p2

)
=

[
G2

MN

2
− (M2 − p2)

2Q2

(
G2

EN + τG2
MN

1 + τ
− (M2 − p2)

4M2

(GMN − GEN )2

(1 + τ )2

)]
x

y
δ

(
1 − κ(p2)

x

y

)
, (19a)

F̃
N(el)
2

(
x

y
,Q2,p2

)
=

[
G2

EN + τG2
MN

1 + τ

]
δ

(
1 − κ(p2)

x

y

)
. (19b)

This corresponds to what is known in the literature as the “cc2” prescription of De Forest [31].
If one instead uses the form of the electromagnetic current in Eq. (15), the elastic structure functions for the off-shell nucleon

are given by the alternative forms

F̃
N(el)
1

(
x

y
,Q2,p2

)
=

[
G2

MN

2

(
1 − M2 − p2

Q2

)]
x

y
δ

(
1 − κ(p2)

x

y

)
, (20a)

F̃
N(el)
2

(
x

y
,Q2,p2

)
=

[
G2

EN + τG2
MN

1 + τ
− (M2 − p2)

4M2

(GMN − GEN )2

(1 + τ )2

]
δ

(
1 − κ(p2)

x

y

)
. (20b)

This form corresponds to the “cc1” prescription of Ref. [31].

While the on-shell limits of the two sets of expressions for
the structure functions in Eqs. (19) and (20) are equivalent,
off-shell these give rise to numerically different results for the
QE cross sections. These differences are an indication of the
uncertainty in the calculation of the deuteron cross section due
to the off-shell extrapolation of the nucleon hadronic tensor,
which is discussed in the following section.

III. NUMERICAL RESULTS

Having derived the results for the contributions of the
inclusive deuteron structure functions to the QE cross section
within the framework of the WBA, we can now compare the
predictions with the available QE electron-deuteron scattering
data. In the following we first summarize the data sets used in
this analysis before proceeding with the model comparisons.

A. Electron-deuteron QE data sets

QE electron-deuteron scattering cross sections have been
measured in a number of experiments at several facilities,
including SLAC, MIT-Bates, and Jefferson Lab, over a large
range of energies and scattering angles. Most of these are
summarized in the Quasielastic Electron Nucleus Scattering
Archive [25], which includes published data that have been
radiatively corrected and are not known to contain any
pathologies.

The earliest data set was obtained by Schutz et al. [32]
from SLAC in the late 1970s, containing forward scattering
QE cross sections at θ = 8◦ for incident energies between
E ≈ 6 and 18 GeV, and extending to very large values of
x � 2. Backward angle data were obtained by Parker et al. [33]

at very low energies (E ≈ 0.2 GeV) from MIT-Bates, and by
Arnold et al. [34] at higher energies (E ≈ 1 GeV) from SLAC.
More extensive data sets from SLAC were collected in the
early 1990s by Lung [35] around the QE peak for a range of
scattering angles θ ≈ 15◦–90◦ at energies E ≈ 1.5–5.5 GeV,
and by Rock et al. [36] at forward angles (θ = 10◦) at higher
energies, E ≈ 10–20 GeV. The latter offered access to the
highest available Q2 values, reaching Q2 = 10 GeV2. SLAC
data with Q2 between 1 and 7 GeV2 were also collected in
the NE18 experiment [37] at x ≈ 1. High precision data from
Jefferson Lab were measured by Arrington et al. [38] at θ ≈
15◦–50◦ for energies between E ≈ 2 and 5 GeV, and most
recently by Fomin et al. [39] in the vicinity of x = 1 using the
6-GeV CEBAF electron beam at angles between θ ≈ 18◦ and
50◦.

The complete QE data set amounts to over 2000 data
points covering a range of Q2 between 0.1 and 10 GeV2 for
energies between E ≈ 0.2 and 20 GeV, from x � 1 to x ≈ 2. In
particular, the angular dependence of the cross sections allows
the effects of the Fd

1 and Fd
2 structure function contributions to

be studied independently. Fitting these constitutes a significant
test of any model of the deuteron.

B. Phenomenological analysis

Typical deuteron QE spectra are illustrated in Figs. 2
and 3, where the cross sections are calculated in the WBA
model and compared with SLAC data from Lung [35]. The
calculations were performed using several different deuteron
wave functions, based on the Paris [30], WJC-1 [28], and
CD-Bonn [29] nucleon-nucleon potentials, and elastic nucleon
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FIG. 2. (Color online) Inclusive electron-deuteron scattering
cross section dσ/dE′d� (in units of nb/sr GeV) in the QE region.
The SLAC data from Lung [35] (solid circles) are compared with
the WBA model predictions using the Paris [30] (green solid curves),
WJC-1 [28] (blue dashed curves), and CD-Bonn (red dot-dashed
curves) [29] deuteron wave functions. The results using the smearing
functions computed in the large-Q2 limit (black dotted curves) are
also shown (scaled by a factor of 1/2 for clarity). In this and
subsequent figures, the energy E (in GeV) and scattering angle θ

(in degrees) are indicated on each panel; Q2
0 (in GeV2) is the value

of the four-momentum transfer squared at x = 1, which ranges here
from Q2

0 ≈ 1.75 to 2.5 GeV2.

form factors from the parametrizations of Arrington et al. [40]
for the proton and Bosted [41] for the neutron. Overall the
agreement between the calculated cross sections and the data
is excellent. This conclusion is independent of the choice
of input nucleon elastic form factors, with the results using
the parametrization of Kelly [42] differing from those in
Figs. 2 and 3 by �2% for all kinematics. Furthermore, in
the x range spanned by these data, x � 1.2, the QE cross
sections display very mild dependence on the deuteron wave
function.

In particular, the correct shape and magnitude of the QE
peak is well reproduced with the y- and γ -dependent smearing
functions of Eq. (12). In contrast, using the smearing functions
computed in the high-Q2 (γ → 1) limit, as appropriate for
deep-inelastic scattering applications, the peak in the QE cross
section would be a factor of ≈2 too large in the Q2 range
(∼2 GeV2) covered by the data in Figs. 2 and 3. At significantly
higher Q2 (�10 GeV2) the differences between the full, finite-
Q2 results and the high-Q2 approximation are reduced, but
at values relevant to most of the existing data the correct Q2

dependence of the smearing functions is vital to take into
account.
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FIG. 3. (Color online) As in Fig. 2 but for Q2
0 between 2.5 and

4 GeV2.

The excellent agreement between the WBA model predic-
tions and the data holds over an even greater region of Q2 than
that shown in Figs. 2 and 3. Data from the SLAC NE18 [37] and
Jefferson Lab E89-008 [38] experiments spanning the range
Q2 ≈ 1–7 GeV2 are also well reproduced by the WBA model,
as Fig. 4 demonstrates. The larger Q2 coverage allows one to
study the relative importance of inelastic contributions at x ∼ 1
compared with the QE contribution. While the cross sections
are dominated by QE scattering at x � 1 for Q2 � 3 GeV2,
at higher Q2 and lower x [or larger W 2 = (p + q)2] the role
of inelastic scattering from the nucleon becomes increasingly
more prominent. To reproduce the full strength of the inclusive
cross section data in this region one must therefore add the
inelastic contribution to the QE contribution.

The inelastic cross sections can be computed within the
WBA framework using the same smearing functions as those
in Eq. (12), convoluted with appropriate inelastic free nucleon
structure functions as in Eqs. (11). A number of studies of
inelastic deuteron structure functions have previously been
performed in the literature [14–17,27], and the smearing
functions have been used to extract information on the free neu-
tron structure function [23,43,44] and on parton distribution
functions at large x in global QCD analyses [45–49]. Rather
than repeat these analyses, for the purposes of the present
study it is sufficient to simply employ the inelastic contribution
in the Fd

1 and Fd
2 structure functions as parametrized in

the phenomenological analysis of Christy and Bosted [50].
As evident from Fig. 4, the inelastic contributions become
relevant at x � 1 for Q2 � 4 GeV2, although for x � 1 or
Q2 � 2–3 GeV2 the cross sections are still dominated by the
QE component alone.
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FIG. 4. (Color online) Inclusive electron-deuteron QE scattering
cross sections in the WBA model using the Paris [30] (green
solid curves), WJC-1 [28] (blue dashed curves), and CD-Bonn (red
dot-dashed curves) [29] deuteron wave functions, compared with
Arrington et al. data from (b, e, i, j) the SLAC NE18 experiment [37]
and (a, c, d, f–h) the Jefferson Lab E89-008 experiment [38] at
E = 4.045 GeV, for which Q2

0 ranges between ≈1 and 7 GeV2.
The contributions from the QE scattering alone (black dotted curves)
are shown for comparison.

Yet higher Q2 values were reached in the earlier SLAC
experiment [36] at small scattering angles (θ = 10◦), where
energies between E ≈ 10 and 20 GeV allowed for Q2 values
up to 10 GeV2. As Fig. 5 illustrates, once again the agreement
is generally good at x > 1, although curiously there appears
a mismatch in the position of the QE peak at x ∼ 1, which is
most evident at the lower Q2 values, Q2 ≈ 2–4 GeV2. This
discrepancy appears difficult to reconcile with the otherwise
excellent agreement between the WBA model and data from
other experiments at SLAC [35,37] and Jefferson Lab [38] at
similar kinematics, as evident in Figs. 2–4 (see also Fig. 11
below). Note also that for the highest-Q2 panel the theoretical
curves extend only to x ≈ 1.1, corresponding to the maximum
Q2 values up to which the elastic form factors parametrizations
are given [40–42].

At very high values of x (x � 1), QE scattering from the
deuteron probes the tails of the smearing functions fij (y)
at y � 1. As evident from Eq. (9), large-y kinematics is
sensitive to large nucleon momenta p or, equivalently, to the
short-range part of the NN interaction (see Fig. 1). Unlike the
long-distance component of the NN potential, which is well
constrained by pp and pn scattering data, the short-distance
(or large-momentum) part of the deuteron wave function has
relatively large uncertainties. This translates into a larger
spread in the theoretical calculation of the deuteron structure
functions when various models for the wave function are used.
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FIG. 5. (Color online) As in Fig. 4 but compared with the forward
angle SLAC data from Rock et al. [36] at θ = 10◦, with Q2

0 between
≈2.5 and 10 GeV2.

This is indeed observed in Fig. 6, where data from SLAC [32]
at near-forward scattering angles are compared with the QE
cross sections computed using the Paris [30], WJC-1 [28], and
CD-Bonn [29] wave functions. As evident from the light-cone
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FIG. 6. (Color online) As in Fig. 4 but for the SLAC data from
Schutz et al. [32] at small scattering angles, for Q2

0 ranging from
≈0.8 to ≈5.5 GeV2.
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FIG. 7. (Color online) Comparison of the WBA model predic-
tions for the QE electron-deuteron scattering at large x, using on-shell
nucleon form factors (green solid curves) and the two off-shell model
extrapolations in Eqs. (19) (off-shell cc2, blue dashed curves) and (20)
(off-shell cc1, red dot-dashed curves). The Paris [30] deuteron wave
function is used in all cases, and the data are as in Fig. 6.

momentum distributions in Fig. 1, generally the CD-Bonn
model gives rise to the softest distribution, while the WJC-
1 potential has the hardest distribution, with the Paris wave
function intermediate between these. At the lower Q2 values
the data tend to prefer the harder distributions, while softer
wave functions are favored at increasingly larger Q2.

In the same high-x region where the uncertainties in the
short-range structure of the deuteron yield greater model
dependence of the QE cross sections, the effects of the possible
off-shell dependence of the nucleon elastic cross section are
also expected to become more important. In Fig. 7 the WBA
predictions for the cross sections using on-shell nucleon form
factors as in Eqs. (18) are compared with calculations using
the off-shell structure functions from Eqs. (19) and (20) in
the generalized convolution of Eqs. (8). For a meaningful
comparison, the Paris deuteron wave function is used for all
cases. The off-shell results with either the cc1 or cc2 models
generally soften the distributions relative to the on-shell cross
sections at high x, with the effects more pronounced with
increasing Q2. The off-shell corrections with the cc1 model
are slightly larger in magnitude than those with the cc2 model,
although the difference between these is significantly smaller
than the difference between the on-shell and off-shell results.

Compared with the high-x Schutz et al. data from
SLAC [32], at the lower Q2 values (Q2 ≈ 1–2 GeV2) the
off-shell corrections with the Paris wave function make the
agreement slightly worse, confirming the findings in Fig. 6 that
these data prefer harder deuteron wave functions. In this region
the WJC-1 wave function with minimal off-shell corrections
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FIG. 8. (Color online) QE contributions to the deuteron (a, b) F d
1 and (c, d) F d

2 structure functions at Q2 = 0.1 GeV2 and Q2 = 2 GeV2.
The on-shell approximation (black dotted curves) is compared with the off-shell calculation using the cc1(red solid curves) and cc2 (blue
dashed curves) prescriptions, with the Paris wave function used in all cases.
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FIG. 9. (Color online) Deuteron wave function and nucleon off-
shell model dependence of the QE cross sections at backward angles
for Q2

0 between ≈1 and 2 GeV2. The on-shell results for the Paris
(green solid curves), WJC-1 (blue dashed curves), and CD-Bonn (red
dot-dashed curves) wave functions, and the cc2 off-shell model with
the Paris wave function (black dot-dashed curves), are compared with
the SLAC data from Arnold et al. [34]. The left-hand panels illustrate
the data in the vicinity of x = 1 on a linear scale, while the right-hand
panels show the tails of the cross sections at larger x on a logarithmic
scale.

provides the best description of the data. At higher Q2 values
(Q2 ≈2–6 GeV2), using the hardest, WJC-1 wave function
would require significantly larger off-shell corrections to
reduce the excess of the calculated cross section relative to the
data. The best agreement with data here is obtained with the
softer Paris wave function, together with the off-shell nucleon
form factors in Fig. 7. However, the softest wave function,
with the CD-Bonn potential, would underestimate the cross
sections with the addition of the off-shell nucleon corrections
over all the kinematics in Fig. 7.

The behavior of the cross sections in Fig. 7 can be
understood from the effects of the off-shell corrections on the
F1 and F2 structure functions in Eqs. (19) and (20). In Fig. 8
the QE contributions to the deuteron Fd

1 and Fd
2 structure

functions with and without off-shell corrections are shown at
Q2 = 0.1 and 2 GeV2 for the cc1 and cc2 models. Overall, the
off-shell effects on the structure functions are relatively small
and weakly dependent on the choice of off-shell prescription.
At low Q2 (Q2 = 0.1 GeV2) the off-shell corrections are
noticeable only at x � 1, where they increase the magnitude
of the Fd

1 and Fd
2 structure functions by ∼10–20%. At higher

Q2 values (Q2 = 2 GeV2), the off-shell effects reduce the
magnitude of the structure functions at high x (x � 1.4), with
a slightly larger correction appearing for Fd

2 than for Fd
1 ,

particularly for the cc1 model. This explains the suppression
observed in the QE cross sections at high x and Q2 in
Fig. 7, where the forward angle data are dominated by the
Fd

2 contribution [see Eq. (4)].
At extreme backward angles (θ = 180◦) the dominance

of magnetic scattering means that the cross section is given
entirely by the Fd

1 structure function. Backward angle data
from SLAC at Q2 ∼ 1–2 GeV2 [34] are compared in Fig. 9
with WBA calculations over the range 0.9 � x � 1.8, in-
cluding both deuteron wave function and nucleon off-shell
effects. The overall agreement is very good, with the model
dependence in the region of the QE peak, 0.9 � x � 1.1,
essentially negligible. (The results using the cc1 off-shell
prescription are almost indistinguishable from those of the
cc2 model shown in Fig. 9.) At larger x values the wave
function dependence becomes more prominent, with the data
at x � 1.5 better described using the WJC-1 model, while
the Paris wave function gives better agreement at higher x.
The softer CD-Bonn wave function tends to underestimate the
data at the highest x, as observed for the forward scattering
angle data in Fig. 6. The off-shell corrections give a slight
enhancement of the cross section at x � 1, which is consistent
with the behavior of Fd

1 around the QE peak in Fig. 8, but is
otherwise negligible at these kinematics.

While a small, few percent enhancement of the backward
angle QE cross section at x � 1 due to off-shell effects is
expected from Fig. 8 at Q2 ≈ 1–2 GeV2, since the off-shell
corrections in Eqs. (19) and (20) scale with (M2 − p2)/Q2,
the effects should be somewhat larger at lower Q2 values.
This is indeed observed in Fig. 10, where low-energy data
from MIT-Bates [33] at Q2 ∼ 0.1–0.2 GeV2 indicate an
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FIG. 10. (Color online) As in Fig. 9, but for the lower-Q2

backward angle MIT-Bates data from Parker et al. [33], for Q2
0 ∼

0.1–0.2 GeV2.
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≈10–20% enhancement at x ≈ 0.9 compared with the on-shell
cross section. The cross sections with the cc2 off-shell model
are displayed in Fig. 10 (the results with the cc1 model
are again almost indistinguishable), and the behavior follows
directly from the off-shell correction to Fd

1 at low Q2 illustrated
in Fig. 8.

At the low-Q2 values of the backward angle MIT-Bates
data from Parker et al. in Fig. 10, the dependence on the
deuteron wave function is very weak, even at large values of
x. All models appear to slightly overestimate the data in the
x ∼ 1 region, possibly suggesting a role for meson exchange
currents at these kinematics. Interactions between the virtual
photon and a meson exchanged between the two nucleons
in the deuteron are known to affect the F1 structure function
more so than the F2 structure function in QE electron-deuteron
scattering [51]. The agreement between the calculations and
data at x � 1 is very good, although at larger x (x � 1.3)
the calculation using the Paris wave function somewhat
underestimates the data. As observed for the forward angle data
in Fig. 6, here the harder momentum distribution associated
with the WJC-1 deuteron wave function would produce better
agreement. As for the higher Q2 backward angle data in Fig. 9,
the off-shell corrections play a minor role in this region. For
even higher x, the data exhibit a significant rise as x → 2,
especially at lower Q2, which is likely due to the elastic
electron-deuteron scattering contribution, which drops rapidly
with increasing Q2.
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FIG. 11. (Color online) Inclusive electron-deuteron QE scatter-
ing cross sections in the WBA model using the Paris [30] (green
solid curves), WJC-1 [28] (blue dashed curves), and CD-Bonn (red
dot-dashed curves) [29] deuteron wave functions, compared with data
from the E02-019 experiment in Hall C at Jefferson Lab. The incident
energy is E = 5.766 GeV, with the scattering angles ranging from
θ = 18◦ to 50◦, and Q2

0 values from 2.5 to 7.4 GeV2.

Finally, the very latest and precise data on QE electron-
deuteron scattering from the Hall C experiment E02-019 at
Jefferson Lab [39] are shown in Fig. 11, spanning a range
of Q2 between ≈2 and 8 GeV2 and scattering angles between
θ ≈ 18◦ and 50◦. The agreement between the WBA model and
the data is clearly excellent over the complete x range (x �
1.25) covered, with very mild dependence on the deuteron
wave function. The effects of nucleon off-shell corrections are
also negligible at these kinematics. This close correspondence
between the theory and experiment provides further indication
of the general success of the WBA approach to describing
inclusive electron-deuteron scattering.

IV. CONCLUSIONS

We performed a comprehensive analysis of QE electron-
deuteron scattering data within the framework of the weak-
binding approximation. Using the same smearing functions
for the bound nucleons in the deuteron as those previously
derived for deep-inelastic scattering at finite Q2, we explored
the limits of applicability of the impulse approximation in
the WBA. Overall, we find excellent agreement between the
model calculations and the world’s available data over a large
range of kinematics, covering Q2 values between ∼0.1 and
10 GeV2, and x values from below the QE peak to x ≈ 2. It is
vital, however, that the correct kinematical Q2 dependence in
the smearing function is taken into account in order to describe
the cross section data, in contrast to the high-Q2 approximation
that can usually be assumed for deep-inelastic scattering.

The results are relatively independent of the details of the
deuteron wave function, except at very high values of x (x �
1.3) and Q2 � 1 GeV2, where there is greater sensitivity to the
high-momentum tails of the nucleon momentum distributions
in the deuteron. For Q2 ∼ 1 GeV2 the wave function based
on the WJC-1 nucleon-nucleon potential [28], which has the
hardest momentum distribution, provides the best agreement
with the QE data, while for Q2 � 2 GeV2 the Paris wave
function [30] gives the best fit. The CD-Bonn potential [29],
with the softest momentum distribution, tends to underestimate
the data at the highest x and Q2 values. This suggests that
QE data at these kinematics could be used to constrain the
short-distance part of the NN interaction, as reflected in the
high-momentum behavior of the smearing functions.

At high x and low Q2 corrections from nucleon off-shell
effects are also expected to play a role. We considered two
models for extrapolating the nucleon electromagnetic current
off-shell, corresponding to the cc1 and cc2 prescriptions com-
monly used in the literature [31]. Uncertainties in the off-shell
corrections to structure functions of nucleons in the deuteron is
one of the main impediments to the unambiguous extraction of
the free neutron structure and the determination of the u and d
parton distribution functions at large x [12,13,44–48]. Studies
of QE scattering can therefore provide additional information
on the off-shell corrections which could better constrain the
parton distribution function analyses. In practice, we find
relatively small off-shell corrections for most kinematics, with
the exception of very low Q2 (Q2 ∼ 0.1–0.2 GeV2) at x � 1,
where the off-shell effects increase the on-shell cross sections,
and at very high x (x � 1.4) for Q2 ∼ 1 GeV2, where the
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cross sections are slightly reduced by the off-shell effects. The
dependence on the off-shell prescription (cc1 or cc2) appears
insignificant at the kinematics where data currently exist.

In certain kinematic regions there are discrepancies be-
tween the calculations and some of the data sets, such as
at very low Q2 values around the QE peak [33], where all
calculations slightly overestimate the data. This may indicate
a problem with the data, or perhaps the need for additional
corrections not taken into account in this analysis. Since the
data in question [33] are at extreme backward angles, where
Fd

1 dominates, this suggests that meson exchange currents may
play a role, as these are known to be more important for the
transverse response functions than for the longitudinal [51].

In general, however, the WBA model provides a re-
markably good description of the QE data in all but the
most extreme kinematics (x � 1 and Q2 → 0), which gives
additional confidence in the use of the finite-Q2 smearing
functions to compute nuclear effects in other processes, such
as inclusive deep-inelastic scattering [46–48]. In particular,
the availability of QE data at both forward and backward
scattering angles allows the effects on the Fd

1 and Fd
2 structure

function contributions to be studied independently, and over
a substantial range of x and Q2. This poses a serious test of
the model of the deuteron and provides clearer indications of
the limits of applicability of the WBA approach. Recently, a
phenomenological analysis of QE contributions to the Lamb
shift in muonic deuterium was performed [52] including Fermi
smearing and final state interaction effects. Parametrizing the

latter by simple functional forms, the impulse approximation
was also found to give a good description of the data up to
Q2 = 3 GeV2, similar to the findings in our analysis.

As far as the implications for future work, additional data at
high x (x � 1.5) and high Q2, at forward and backward angles,
would be very helpful in constraining the model dependence
of the deuteron wave function, and possibly teasing out the
off-shell dependence of the nucleon structure functions. On
the theoretical front, inclusion of the QE deuteron data in
studies of NN scattering could allow for a more reliable
determination of the large-momentum components of the
deuteron wave function. For precision fits to the QE data, it
will be necessary to explore quantitatively in addition meson
exchange currents, rescattering (or final state interaction)
effects, and the relativistic motion of nucleons in the deuteron.
The present study should provide an important baseline for
these additional contributions.
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