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We study within the IP-Glasma and two-component MC-Glauber models the effects of initial-state geometry
and fluctuations on multiplicities and eccentricities for several collision species at the Relativistic Heavy Ion
Collider (RHIC). These include copper-gold (Cu + Au), gold-gold (Au + Au), and uranium-uranium (U + U)
collisions. The multiplicity densities per participant pair are very similar in all systems studied. Ellipticities vary
strongly between collision systems, most significantly for central collisions, while fluctuation driven odd moments
vary little between systems. Event-by-event distributions of eccentricities in mid-central collisions are wider in
Cu + Au relative to Au + Au and U + U systems. An anticorrelation between multiplicity and eccentricity is
observed in ultracentral U + U collisions which is weaker in the IP-Glasma model than the two-component
MC-Glauber model. In ultracentral Au + Au collisions the two models predict opposite signs for the slope of
this correlation. Measurements of elliptic flow as a function of multiplicity in such central events can therefore
be used to discriminate between models with qualitatively different particle production mechanisms.

DOI: 10.1103/PhysRevC.89.064908 PACS number(s): 25.75.Gz, 25.75.Ld, 42.50.Lc

I. INTRODUCTION

Understanding how initial-state fluctuations influence bulk
observables is an important topic in the field of relativistic
heavy ion collisions. There are several sources of fluctuations
in the initial stages of heavy ion collisions. The dominant
ones are the geometric fluctuations of nucleon positions and
fluctuations of the impact parameter. In collisions of deformed
(nonspherical) nuclei the orientations of the nuclei, charac-
terized by four spherical angles, also fluctuate from event to
event. For each such configuration of the collision geometry,
additional subnucleonic fluctuations of color charges lead to
fluctuations in the produced gluon fields.

The combined effect of these fluctuations is reflected in the
distributions of global observables such as multiplicity and
anisotropic flow. A comparative study of systems with varying
initial geometry can provide a better understanding of the
relative roles of each source of fluctuations and the details of
the particle generation mechanism. This requires a framework
that incorporates all such sources of fluctuations and includes
an ab initio description of multiparticle production.

The IP-Glasma model, based on the color glass condensate
(CGC) approach [1], provides such a framework for multi-
particle production. This model was introduced in [2,3] and
combines the IP-Sat dipole model [4–6] of lumpy gluon dis-
tributions within incoming nuclei, with the classical dynamics
of Glasma gluon fields after the nuclear collision [7,8]. With
parameters of the initial lumpy distributions constrained by
inclusive and diffractive DIS data from e + p scattering at
HERA, the IP-Glasma model can consistently explain the
bulk features of global data for various systems like p + p,
p + A and A + A over a wide range of energies [9]. In this
paper, we shall employ the model to study a wide range of
heavy ion collision systems. In addition to Au + Au collisions
at 200 GeV, studied previously in our framework [3,9], we
study asymmetric Cu + Au collisions and collisions of highly
deformed 238U nuclei at 200 GeV and 193 GeV, respectively.

The study of collisions of deformed nuclei like 238U was
initially proposed [10,11] because they promise an additional
gain of initial energy density relative to collisions of spherical
nuclei. A significantly deformed initial geometry at very high
energy density for specific orientations of U + U collisions is
expected to have observable effects on elliptic flow, jet quench-
ing, J/ψ suppression, and other observables that characterize
the properties of the quark gluon plasma (QGP) [11,12]. The
interesting configurations with high energy density can be
selected in experiments by using a combined cut on the elliptic
flow value and the number of spectators for high multiplicity
events [13]. Central U + U collisions were further expected
to allow for separating signals of the “chiral magnetic effect
(CME)” from the flow induced background because, for certain
configurations, they generate elliptic flow in the absence of a
strong magnetic field, as opposed to peripheral collisions of
spherical nuclei [14,15].

Previous studies [16,17] of U + U collisions within the
CGC approach were performed using the Kharzeev-Levin-
Nardi (KLN) model [18,19]. The single inclusive particle
distribution in the KLN model is computed using a kT -
factorization approximation. In contrast, the single inclusive
particle distribution in the IP-Glasma model is obtained by
solving Yang-Mills equations which properly treat momentum
modes smaller than the saturation scale. In addition, the
IP-Glasma model includes fluctuations of color charges that
generate negative binomial n-particle distributions.

The paper is organized as follows. In the next section
we briefly discuss the treatment of deformed nuclei in
the IP-Glasma model and a two-component MC-Glauber
model including negative binomial multiplicity fluctuations.
In Sec. III we present our results on multiplicity distributions
and average eccentricities for different collision systems. We
further discuss event-by-event distributions of the ellipticity
and its correlation with multiplicity. Our conclusions are
presented in Sec. IV.
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II. COLLISIONS OF DEFORMED NUCLEI

A. Collision geometry

Collisions of deformed nuclei demand a fully three-
dimensional treatment of the system prior to the collision.
In this section, we discuss how the shape and orientation of
deformed nuclei are taken into account for the generation of the
initial-state geometry. For a review of the theoretical treatment
of nuclear shapes, we refer the reader to Ref. [20].

One way to parametrize the densities of deformed nuclei is
to modify the Woods-Saxon distribution to read [21]

ρ(r,θ ) = ρ0

1 + exp ([r − R′(θ )]/a)
,

with R′(θ ) = R
[
1 + β2Y

0
2 (θ ) + β4Y

0
4 (θ )

]
,

where ρ0 denotes the nucleon density at the center of the
nucleus. The spherical harmonic functions Ym

l (θ ) and the para-
meters β2 and β4 account for the deformation from the
spherical shape. This form is by no means unique—such
parametrizations in terms of the nuclear density have well-
known limitations even for spherical nuclei [22]. However,
as argued in Ref. [20], the data are too few, and the theory
uncertainties too large, for a more quantitative and model-
independent extraction of the shape parameters of deformed
nuclei. The discussion in the rest of this paper must therefore
be understood to have a systematic uncertainty arising from
limitations in our quantitative understanding of the shapes of
deformed nuclei.

We tabulate in Table I parameters of the Woods-Saxon
distribution for different nuclei that will be used in this study.
We use the parameters for 238U quoted in [23] because they
are currently being investigated in MC-Glauber studies of the
STAR collaboration [24]. The AMPT calculations of Ref. [25]
and the MC-KLN model calculations from Ref. [17], to which
we will compare our predictions, also use the same parameters
for the deformation for 238U. For 197Au and 63Cu, we use the
parameters from Ref. [26] which include no deformation of
these nuclei. Moderate deformation in the case of 197Au is
implemented using the parameters from Ref. [27] as shown
in Table I. We emphasize again that because these numbers
are extracted from nuclear structure models with a large
number of parameters, there is considerable uncertainty in
the deformation parameters quoted, and the numbers quoted
in the table cannot be considered definitive. For instance, a
value of β2 = 0.215 for 238U is quoted in Ref. [27] which is
40% smaller than the value used in [23] although the same
β4 = 0.093 is mentioned in these two references. The value of
β2 used in [23] is consistent with results from the experimental

TABLE I. Parameters for the deformed Woods-Saxon distribution
for different nuclei.

Nucleus R (fm) a (fm) β2 β4

238U 6.81 0.55 0.28 0.093
197Au symmetric 6.37 0.535 0 0
197Au deformed 6.37 0.535 −0.13 −0.03
63Cu 4.163 0.606 0 0
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FIG. 1. The collision geometry of deformed nuclei. The collision
direction is chosen to be along the z axis and the impact parameter
direction is chosen along the x axis as per convention. The four angles
are defined with respect to the major axes of the two colliding nuclei.

measurements of Ref. [28] which does not quote the value of
β4. However, we find a variation of β4 in the range 0–0.093 to
have a negligible effect on the results of this work.

Nucleons are sampled according to a weight W (r,θ ) =
r2 sin(θ )ρ(r,θ ), which includes the Jacobian for the transfor-
mation from Cartesian to spherical coordinates. As illustrated
in Fig. 1 for collisions of two deformed nuclei, four angles
are used to characterize their orientation. The two polar angles
�1 and �2 denote the orientations of the major axes relative
to the collision direction (z axis) and the two azimuthal angles
�1 and �2 denote the orientations of the two nuclei in the
x-y plane. The impact parameter direction is chosen along
the x axis.

To simulate unpolarized collisions one needs to ran-
domly sample the polar angles according to the distribution
P (�1,�2) = sin(�1,�2)/2 between 0 and π and the az-
imuthal angles according to a uniform distribution. The impact
parameter b is sampled from a linear distribution and the
events with no wounded nucleons are rejected. For collisions of
uranium nuclei, several special configurations are of particular
interest. Configurations with �1 = �2 = 0 are called tip-tip,
those with �1 = �2 = π/2 and �1 =�2 =π/2 are called
side-side, and those with �1 =�2 =π/2 and �1 = �2 = 0
are called body-body1 collisions [25,29].

In this paper, by ‘random U + U” we refer to unpolarized
U + U collisions (averaged over random � and � values) and
by “Au + Au” we refer to collisions of symmetric Au nuclei.
We will present results for both random and tip-tip U + U
collisions.

B. MC-Glauber model

A simple model for multiparticle production is the two-
component MC-Glauber model [30], wherein the multiplicity

1For body-body collisions the major axes of the two nuclei are
aligned with the impact parameter direction.
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is computed from the expression,

dN

dη
= npp

(
xNcoll + (1 − x)

Npart

2

)
, (1)

with npp denoting the average number of charged particles
per unit pseudorapidity in p + p collisions, x the “hardness”
scale, Ncoll the number of binary collisions, and Npart the
number of participating nucleons. When x = 0, one recovers
the expression for the multiplicity in the wounded nucleon
model [31]. The presence of Ncoll in this expression introduces
a correlation between the multiplicity and the initial shape of
the system in the transverse plane at a given Npart.

We implement here the MC-Glauber model described in
Ref. [23]. For a given impact parameter, a heavy ion collision
is assumed to form xNcoll + (1 − x)Npart

2 number of identical
sources, each of which produces particles following a negative-
binomial distribution of fixed mean n̄ and width ∼1/k:

P NB
n (n̄,k) = 
(k + n)


(k)
(n + 1)

n̄nkk

(n̄ + k)n+k
. (2)

The mean of the negative binomial distribution n̄ at a given
center-of-mass energy

√
sNN is obtained from the parametriza-

tion of pseudorapidity density of charged multiplicity in
nonsingle diffractive p̄p interactions of the form np̄p =
2.5 − 0.25 ln(sNN) + 0.023 ln2(sNN) [32]. Both x and k are
free parameters in the MC-Glauber model. The min-bias
multiplicity distribution in this model is obtained by sampling
impact parameters according to a linear distribution, sampling
nucleon positions, and estimating participants and binary
collisions using a geometric interpretation of the nucleon-
nucleon cross section to determine the number of sources.
One then finally samples n from Eq. (2) for each source and
adds up to get the total multiplicity.2

C. IP-Glasma model

A detailed description of the IP-Glasma model can be
found in [2,3,9]. Here we use the same model parameters
as in [9], where a detailed discussion of multiplicities and
multiplicity distributions from p + p to p/d + A to A + A
collisions is given. Because the IP-Glasma model is based
on the CGC framework, Ncoll and Npart do not enter explicitly.
For symmetric nuclear collisions, multiplicities are governed
by the combination Q2

s S⊥/αS , where Qs is the saturation scale
in one of the two identical nuclei, S⊥ the transverse overlap
area, and αS the QCD coupling constant. For symmetric nuclei,
the average saturation scale at the center of a nucleus behaves
as Q2

s ∝ A1/3. For deformed nuclei, A1/3 needs to be replaced
by the average number of nucleons along the beam direction,
which depends on the orientation.3 One therefore expects

2We sample the multiplicity from a single negative binomial
distribution for all the sources. The soft and the hard components
of the multiplicity distribution can be sampled from two different
negative binomial distributions [33].

3This effect is automatically included in the IP-Glasma model that
treats configurations on an event-by-event basis.

the saturation scale to be larger in tip-tip collisions relative
to body-body or side-side collisions. On the other hand, the
transverse overlap area is smaller in tip-tip collisions. For this
reason, it is not transparent how strongly the multiplicity is
correlated with the overlap geometry in the IP-Glasma model,
and explicit computations are necessary to determine this
correlation. The results of these computations will be given
in the next section.

III. RESULTS

A. Multiplicities

In the IP-Glasma model, Yang-Mills equations are solved
up to time τ = 0.4 fm/c, and the transverse Coulomb gauge
is fixed, to compute the gluon multiplicity per unit rapidity. A
multiplicative factor of 2/3 then converts the gluon multiplicity
to the charged particle multiplicity.

Experimental results for multiplicities are typically pre-
sented as a function of Npart, the number of participant
nucleons. In the IP-Glasma framework, Npart does not enter
in any of the computations. However, to make comparisons to
the experimental data plotted as a function of Npart, the value
of Npart is determined geometrically as follows. Two nucleons
have an inelastic collision whenever their geometric distance
is less than σNN = 42 mb, the nucleon-nucleon inelastic cross
section at the top energy of the Relativistic Heavy Ion Collider
(RHIC). We define the total number of nucleons that undergo
at least one such inelastic collision to be Npart. Note that we
neglect the small change of σNN when going from 200 to
193 GeV in our calculation.

The centrality dependence of the mean produced multi-
plicity density per participant pair (2/Npart)dNch/dη at η = 0
for various systems is shown in Fig. 2. Computations of
multiplicities in the IP-Glasma model are compared to the
available Au + Au data at 200 GeV/nucleon and prelim-
inary results for U + U 193 GeV/nucleon collisions from
the PHENIX collaboration [34]. Figure 2 also presents the
result for Cu + Au collisions, for which no data are as yet

 2

 2.5

 3

 3.5

 4

 4.5

 0  100  200  300  400  500

(2
/N

pa
rt
) 

dN
ch

/d

Npart

 Au+Au 200 GeV
 U+U (Min-bias) 193 GeV
 U+U (Tip-Tip) 193 GeV
 Cu+Au 200 GeV

PHENIX U+U 193 GeV
PHENIX Au+Au 200 GeV

IP-Glasma

FIG. 2. (Color online) Centrality dependence of mean multiplic-
ity per participants for different systems. Plotted data points are from
Refs. [34,35].
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available.4 The results are very similar for different systems.
A weak system size dependence is observed showing that
the smaller sized systems Cu + Au and Au + Au produce
slightly higher multiplicities per participant compared to
U + U collisions. Tip-tip U + U collisions produce fewer
particles per participant than random collisions for most values
of Npart. Only for the most central events, does the tip-tip
configuration produce as many particles per participant as in
the random case.

In the context of the two-component model of multiparticle
production discussed above, tip-tip configurations should
produce higher multiplicities per participant pair because more
nucleons are aligned along the beam direction, corresponding
to a larger number of binary collisions for a given Npart.
This was indeed found in calculations shown in [13], as
well as in a computation in the AMPT model [25]. About
10%–15% variation of multiplicity was found among different
orientations of U + U collisions in such calculations. As shown
in Fig. 2, the IP-Glasma model does not show this behavior.
The difference in multiplicity between the random and tip-tip
U + U collisions is much smaller (1%–5%) over the entire
range of Npart. Likewise, the KLN model [18,19] yields smaller
differences in multiplicity between different orientations of the
uranium nuclei relative to computations in the two-component
MC-Glauber model [16].

For Cu + Au collisions we see an interesting centrality
dependence of multiplicity which is not seen in the case of
other systems. As shown in Fig. 2, the centrality dependence of
(2/Npart)dNch/dη for Cu + Au flattens out above Npart > 180.
One possible interpretation could be that the Cu nucleus is
completely surrounded by the Au nucleus for most central
Cu + Au collisions. In this case, the minimum saturation scale
among the two nuclei that controls the multiplicity does not
grow fast enough with further increase of Npart.

As noted, the IP-Glasma model naturally produces neg-
ative binomial multiplicity distributions for a fixed collision
geometry [3]. The multiplicity distribution in A + A collisions
is a convolution of NBDs from all initial configurations. To
compute the probability distribution of the multiplicity, we
sample collisions over a wide range of impact parameters
(that follow a linear distribution) and reject events that do
not produce any wounded nucleons. This approach leads to
results equivalent to weighting events with an eikonal weight
function [3]. The multiplicity distributions of charged particles
Nch at midrapidity (|η| < 0.5) for different systems are shown
in Fig. 3. We see an approximately 20% larger maximal mul-
tiplicity for U + U collisions compared to Au + Au collisions.
The difference in the maximal multiplicity between tip-tip and
random U + U collisions is small (�5%).

The shape of the multiplicity distribution for random U + U
collisions looks similar to the Glauber model prediction of
Ref. [13] and is slightly wider than the KLN model prediction
of [16]. It should be noted however that for these MC-Glauber

4For Cu + Au there will be a shift of the rapidity distribution in the
laboratory frame by about 0.07 units in the Cu going direction which
is negligible and ignored in our calculation.
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FIG. 3. (Color online) Probability distributions of charge particle
multiplicity for different systems.

and KLN computations Gaussian event-by-event fluctuations
(as opposed to negative binomial distributions) of multiplicity
were introduced by hand. The free parameters controlling the
widths of the Gaussian distributions were fixed using a fit to
Au + Au data.

In our implementation of the MC-Glauber model intro-
duced in Sec. II B, the parameter k that controls the width
of the negative binomial distribution and the parameter x
are extracted by fitting the min-bias multiplicity distribution
obtained from the IP-Glasma model. We find that k = 8 and
x = 0.135 provide approximate agreement with the IP-Glasma
min-bias multiplicity distribution for both Au + Au collisions
at 200 GeV and U + U collisions at 193 GeV. In the following
section, we use this tuned version of the MC-Glauber model for
further “apples-to-apples” comparisons to IP-Glasma model
predictions.

Studies of global observables in Cu + Au collisions were
previously performed using AMPT simulations [36,37] and
MC-Glauber+hydrodynamic simulations [38]. These refer-
ences do not discuss multiplicity fluctuations and only quote
the average multiplicity for selected centralities which are
consistent with our calculations shown in Fig. 2.

B. Initial energy distributions and collision geometry

Average initial energy density distributions from the IP-
Glasma model in the transverse plane for zero impact pa-
rameter (b = 0) in different systems are shown in Figs. 4
and 5. Averages are taken over 1000 events. The upper panel
of Fig. 4 shows the symmetric Au + Au collisions and the
side-side configuration of the deformed Au + Au collisions.
Comparing the lower and the upper panels of Fig. 4 one can
see that for Cu + Au collisions the system size is dominated
by the smaller size of the Cu nucleus.

Event averaged energy density distributions for different
configurations of U + U collisions are shown in Fig. 5. The tip-
tip configuration produces the smallest system, comparable
in size to central Au + Au collisions. The significant prolate
deformation of uranium nuclei is visible in the case of side-
side collisions. The event averaged size of unpolarized U + U
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FIG. 4. (Color online) Energy density (in arbitrary units, increas-
ing density from blue to red) distribution averaged over 1000
IP-Glasma events in the transverse plane at the initial time for
Au + Au (upper panel) and Cu + Au (lower panel) collisions at the
zero impact parameter.

collisions is shown for comparison, as is the spatial distribution
of energy density in a single event.

C. Eccentricities

The nth order spatial eccentricity that characterizes the
initial-state geometry is defined as

εn =
√

〈rn cos(nφ)〉2 + 〈rn sin(nφ)〉2

〈rn〉 . (3)

Here 〈·〉 is the energy density ε(r,φ,τ ) weighted average. To
eliminate noise in the computation of eccentricities, we only
include cells in which the energy density is greater than εmin =
�4

QCD, where �QCD is chosen to be 200 MeV. The effect of
the variation of εmin was previously studied in Ref. [39]. The
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FIG. 6. (Color online) Multiplicity (a) and Npart (b) dependence
of the initial ellipticity for different systems.

system size calculated was found to be sensitive to the choice
of εmin. However, we find that variation of εmin has only a
negligible effect on the εn we compute here, because they are
ratios of quantities proportional to the system size. We show
results for eccentricities evaluated at the initial time after the
collision.

The multiplicity and the centrality dependence of the initial
ellipticity ε2 are shown in Fig. 6. Results for ε2 as a function
of Npart show a very similar behavior to those presented as
a function of Nch for all systems. ε2 is larger for random
U + U collisions than tip-tip configurations because the former

FIG. 5. (Color online) Distribution of energy density (in arbitrary units, increasing density from blue to red) in the transverse plane at the
initial time averaged over 1000 IP-Glasma events for different configurations of U + U collisions at b = 0. From left to right distributions are
shown for tip-tip, side-side, and random configurations of U + U collisions. The rightmost panel shows a random single event distribution from
the IP-Glasma model.
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FIG. 7. (Color online) Comparison of ε2 for random U + U col-
lisions from different models. The MC-KLN result is from Ref. [17].

include side-side events that give rise to large values of ε2 (see
Fig. 5). For the highest multiplicity, this difference amounts to a
factor of approximately 1.5. The multiplicity and the centrality
dependence of ε2 is flatter for random U + U collisions than
tip-tip U + U collisions above Nch � 700. The shape of the
tip-tip U + U curve is very similar to that of the Au + Au
curve except for an overall shift because of the larger number
of nucleons in the uranium nucleus. The values of ε2 merge
for Au + Au and U + U collisions towards peripheral bins.

ε2 shows a significant difference in terms of both magnitude
and the trend with Nch in case of Cu + Au collisions. At low
Nch the value of ε2 in Cu + Au is comparable to other systems.
However, it falls off much faster with Nch.

In Fig. 7 we compare the ellipticity in random U + U
collisions from different models. The MC-Glauber result
is obtained using the model described in Sec. II B. Here,
the ellipticity is computed by averaging over all participant
nucleon positions defined by the nucleon centers. The MC-
KLN model calculation is taken from Ref. [17]. The MC-KLN
model produces the largest ε2 over a wide range of Npart. The
MC-Glauber ε2 increases rapidly at low Npart to reach the
limiting value of ε2 = 1 at Npart = 2.

The triangularity ε3 for different collision systems is shown
as a function of Nch in Fig. 8. ε3 values for all systems coincide
over the entire range of Nch which is a striking reflection of the
fact that ε3 is sensitive only to fluctuations, not to the details
of the average geometries. A similar behavior of ε3 was also
seen in the AMPT model calculations of [25,37].

Higher order moments of eccentricities as functions of Nch

are shown in Fig. 9. ε4 for U + U and Au + Au nearly coincide
over the entire range of Nch. For Cu + Au ε4 is slightly lower.
The system size and shape dependence of ε4 in different
systems was also compared in Ref. [40]. As for ε3, the Nch

dependence of ε5 is very similar in all systems.

D. Event-by-event fluctuations of ellipticities

Event-by-event fluctuations of ellipticities are sensitive to
the details of initial-state fluctuations and provide a good
estimate of v2 fluctuations [41,42]. Our computations in
Refs. [43,44] demonstrated that the distributions of scaled
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FIG. 8. (Color online) Variation of the initial triangularity with
produced charged particle multiplicity for different collision systems.

eccentricities εn/〈εn〉 using the IP-Glasma model provide a
very good description of the experimental vn/〈vn〉 distributions
measured by the ATLAS collaboration [45]. In [41] we
extended the calculations to 10 centrality bins in the range
of 0%–50% and obtained good agreement with ATLAS data
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FIG. 9. (Color online) Higher order of eccentricities ε4 (upper
panel) and ε5 (lower panel) for different systems plotted as a function
of produced charged particle multiplicity.
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for all centralities. Deviations from the experimental data
are only found in the large εn (vn) tails of the distributions
where nonlinear effects of the hydrodynamic evolution become
important [44].

The ATLAS collaboration has demonstrated that both MC-
Glauber and MC-KLN models are unable to explain the data
across the full range of centrality [46]. These results indicate
that event-by-event distributions of vn can be very powerful
observables to discriminate between different models of initial
conditions.

Thus far, no measurements of the full vn distributions
at RHIC have been reported. The mean and the variance
of vn distributions have been measured by the STAR and
the PHOBOS collaborations [47–50]. However, this is not
sufficient to constrain the complete distribution of vn because
the exact form of the vn distributions is not known a priori.

Measurements of vn distributions at RHIC are important
to verify the applicability of different initial-state models at
lower energies. The lower multiplicities at RHIC compared to
the LHC make the experimental extraction of vn distributions
more challenging (see [45]). However, the analysis should
be feasible at RHIC for centralities (central or semicentral
U + U or Au + Au collisions) in which the multiplicities are
comparable to midcentral or peripheral Pb + Pb collisions
at LHC.

As done in Ref. [41] for Pb + Pb collisions at LHC
energies, we compute the event-by-event distributions of the
scaled ellipticity (ε2/〈ε2〉) for different systems at the highest
RHIC energy. Such distributions contain information about
all ε2 cumulants. These predictions can be compared with the
experimental distributions of scaled v2/〈v2〉.
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FIG. 10. (Color online) Probability distributions of scaled initial
ellipticity for different systems. Distributions are shown for two
centrality classes 0%–10% and 20%–30%.

TABLE II. Cumulants of ellipticity distribution for 0%–10% and
20%–30% for different systems from the IP-Glasma model.

System 0%–10% 20%–30%

〈ε2〉 σε2 〈ε2〉 σε2

U + U (Random) 0.17 0.087 0.32 0.12
Au + Au 0.14 0.074 0.34 0.11
Cu + Au 0.16 0.084 0.30 0.13

Results for two centrality classes 0%–10% and 20%–30%
are shown in Fig. 10. The centrality selection for different
systems was done using the corresponding multiplicity dis-
tributions shown in Fig. 3. For more peripheral bins, the
ε2/〈ε2〉 distribution may not provide a good prediction of
the corresponding v2/〈v2〉 distribution as discussed above. The
computation of v2/〈v2〉 distributions at RHIC in our framework
combined with viscous hydrodynamic simulations is left for
future work.

As shown in Fig. 10 the scaled ε2 distributions for 0%–10%
events are very similar for different systems. This indicates
that the widths of the ellipticity distributions are proportional
to the corresponding mean values of ellipticity for central
events. In the 20%–30% centrality bin differences between
different collision systems are more prominent. In particular
Cu + Au collisions have a noticeably wider distribution. The
first two cumulants of the ε2 distributions for different systems
are summarized in Table II.

In Fig. 11 we compare the IP-Glasma model results with the
εn distributions from the two-component MC-Glauber model
for Au + Au and U + U collisions. The centrality selections
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FIG. 11. (Color online) Probability distributions of the scaled
initial ellipticity for symmetric Au + Au collisions and random U + U
collisions for 20%–30%. Distributions are compared to MC-Glauber
results.
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FIG. 12. (Color online) Variation of initial ellipticity with scaled
multiplicity for different systems. Results are shown for the top 0.1%
central events. The black lines are linear fits to IP-Glasma points.

in the MC-Glauber model is done using the corresponding
min-bias multiplicity distribution that was tuned to fit the IP-
Glasma multiplicity distribution for both systems. As shown,
the widths of the εn distributions are larger in the case of
the MC-Glauber model for 20%–30% central collisions. The
difference is more prominent in the case of Au + Au collisions.
For 0%–10% central collisions we find this difference to be
negligible.

E. Correlation of ellipticity and multiplicity
in ultracentral events

To analyze the correlation between the multiplicity and
the overlap geometry, we determine ε2 as a function of
the scaled multiplicity in ultracentral events. These events
are determined by using strong cuts on the distribution of
the spectator nucleons, as was suggested in [13]. We make
predictions for the 0%–0.1% and 0%–1% most central events.
These events were selected using the same cuts on the number
of spectator neutrons as used by the STAR collaboration in
Ref. [51]. This way our calculations can be directly compared
to the STAR measurements.5 For U + U collisions specifically,
these ultracentral events are either (almost) full overlap tip-tip,
side-side, or body-body collisions.

Similar to the STAR collaboration [51], we show IP-Glasma
model results for the eccentricity ε2 as a function of the
multiplicity (scaled by the average multiplicity in the 0%–
0.1% and 0%–1% bin, respectively) in Figs. 12 and 13. In

5For Au + Au collisions 0%–0.1% and 0%–1% events correspond
to a total of maximally eight and 16 spectator neutrons, respectively.
For U + U the same centrality bins correspond to 12 and 24
spectator neutrons, respectively. These cuts are obtained using MC-
Glauber simulations combined with the response of the zero degree
calorimeter (ZDC) by the STAR collaboration [51]. The number of
neutrons among all spectator nucleons is sampled from a binomial
distribution with probability (1-Z/A), where Z and A are atomic and
mass numbers of the nucleus.
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FIG. 13. (Color online) Variation of initial ellipticity with the
scaled multiplicity in the case of deformed U + U and deformed
Au + Au collisions. Results are shown for the top 0%–0.1% and
0%–1% central events. We further show linear fits to the IP-Glasma
results.

Fig. 12, we compare results for U + U collisions, deformed
(oblate) Au + Au collisions, and Au + Au collisions with the
deformation parameters set to zero in the 0%–0.1% centrality
bin. The results shown are extracted from simulations of
20 000 events. For U + U collisions, we notice a distinct
anticorrelation between eccentricity and multiplicity. The
slopes of both deformed and spherical Au + Au collisions are
consistent with zero within the statistical uncertainties.

In Fig. 13, we compare the IP-Glasma model results
with those from the two-component MC-Glauber model.
The top and bottom panel of Fig. 13 show the 0%–0.1%
and 0%–1% centrality bins, respectively. As mentioned in
Sec. II B, to allow for an “apples-to-apples” comparison,
the parameters of the Glauber model are adjusted to ensure
that the corresponding min-bias multiplicity distribution is
in approximate agreement with the IP-Glasma multiplicity
distribution shown in Fig. 3. The comparison shows that
there is a much stronger anticorrelation between eccentricity
and multiplicity for U + U collisions in the MC-Glauber
model relative to the IP-Glasma model. For (oblate) deformed
Au + Au collisions, the two models give qualitatively different
results.

In the 0%–1% centrality bin, the IP-Glasma model yields a
slope of −0.03 ± 0.01, while the MC-Glauber model gives a
correlation between eccentricity and multiplicity with positive
slope (∼0.03 ± 0.001).
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The opposite signs of the slopes in deformed U + U and
Au + Au collisions in the two-component MC-Glauber model
are a consequence of the Ncoll dependence of the multiplicity
and the opposite deformation of the U (prolate) and Au (oblate)
nucleus. The anticorrelation between the ellipticity and the
multiplicity in U + U collisions occurs because tip-tip config-
urations have large Ncoll and small ε2, while side-side configu-
rations have small Ncoll and large ε2. In Au + Au collisions, the
oblate deformation leads to a correlation between Ncoll and ε2.
We note that the qualitatively different MC-Glauber results
in ultracentral collisions for the prolate U + U and oblate
Au + Au geometries were also seen in earlier studies of these
systems [14].

In the IP-Glasma model, there is no simple proportionality
between the produced particle number and the number of
binary collisions. As noted in Sec. II A, the multiplicity
depends on Q2

s , the transverse overlap area S⊥, and the strong
coupling constant αs . The relevant Qs for particle production is
the smaller of the two from each nucleus at every position in the
transverse overlap area. The (small x) coherence implicit in the
model leads to a weaker “thickness” dependence of the multi-
plicity unlike the two-component MC-Glauber model in which
the thickness enters through Ncoll. This leads to a weaker anti-
correlation between the multiplicity and the eccentricity in the
IP-Glasma model relative to the two-component MC-Glauber
model.

Preliminary experimental results on the v2 of charged
particles as a function of the scaled multiplicity have been
compared to MC-Glauber predictions in Ref. [51] by the
STAR collaboration. The MC-Glauber results were found to
produce a much steeper slope for U + U collisions and the
opposite slope for Au + Au collisions. Based on results shown
in Fig. 13, it is evident that IP-Glasma predictions are more
compatible with the experimental data.6

IV. SUMMARY AND CONCLUSIONS

We studied in this paper Cu + Au, U + U, and Au + Au
collisions at RHIC in the IP-Glasma framework. We presented
results for single inclusive multiplicities and multiplicity
distributions as well as eccentricities εn, and the event-by-event
fluctuations of ε2.

We do not see a large difference between the multiplicities
per participant pair for central random and tip-tip configura-
tions of U + U collisions in the IP-Glasma model, in contrast
to the two-component MC-Glauber model. This indicates that
the effect of a larger Qs in tip-tip configurations is largely
compensated by a smaller overlap area.

The centrality and multiplicity dependence of the ellipticity
ε2 show significant sensitivity to the collision systems. In
Cu + Au collisions ε2 drops faster, because an average round
shape is reached at a lower Nch (or Npart) than in the heavier
systems. Because of the prolate deformation, ellipticities are

6A direct comparison of our predictions to the experimental results
can be done in the future once the published data points from the
STAR collaboration become available.

generally smaller in tip-tip U + U collisions compared to
random orientations, especially in the most central collisions.
The fluctuation-driven moments of eccentricities, particularly
ε3 and ε5 are found to be very similar for different sys-
tems, while ε4 shows a weak sensitivity to the colliding
nuclei.

We presented a comparison of the event-by-event dis-
tributions of ellipticities and the corresponding cumulants
for different systems in the IP-Glasma model. In the 20%–
30% central bin studied, Cu + Au collisions were found to
produce a wider distribution of ε2 than the larger collision
systems. In this centrality bin, the IP-Glasma model yields
a narrower distribution than the MC-Glauber model for
Au + Au and U + U collisions. For very central collisions
(0%–10%), this difference is negligible. As previously shown
for event-by-event distributions of anisotropic flow coeffi-
cients at the LHC, similar measurements at RHIC energies
can distinguish between models with different multiparticle
production mechanisms. Our results suggest that extraction
of event-by-event distributions for the collision systems
studied here will help further in discriminating between
models.

Finally, we presented results exploring the correlation
between ellipticity and multiplicity for ultracentral events
(events with a small number of spectator neutrons). IP-
Glasma model computations show a much weaker anti-
correlation between ellipticity and centrality than the two-
component MC-Glauber model for U + U collisions. This
striking difference follows from the different mechanisms
of particle production in the two models. In particular,
the explicit Ncoll dependence of multiplicities in the two-
component MC-Glauber model, which is absent in the IP-
Glasma model, leads to very strong anticorrelations for prolate
nuclei. A qualitative difference between the two models is
seen for 0%–1% Au + Au collisions. A positive correlation
between ellipticity and multiplicity is seen in the MC-Glauber
model. In contrast, the IP-Glasma yields a weak yet distinct
anticorrelation.

Experimental measurements of correlations between el-
lipticities and multiplicities in ultracentral collisions, that
are most significant for deformed nuclei, can therefore
clearly distinguish between different models of multiparticle
production. These will provide much needed constraints on
the theoretical description of the initial state in heavy-ion
collisions.
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