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Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations
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We present a new generic framework which enables exact and efficient evaluation of all multiparticle azimuthal
correlations. The framework can be readily used along with a correction framework for systematic biases in
anisotropic flow analyses owing to various detector inefficiencies. A new recursive algorithm has been developed
for higher-order correlators for the cases where their direct implementation is not feasible. We propose and discuss
new azimuthal observables for anisotropic flow analyses which can be measured for the first time with our new
framework. The effect of finite detector granularity on multiparticle correlations is quantified and discussed in
detail. We point out the existence of a systematic bias in traditional differential flow analyses which stems solely
from the applied selection criteria on particles used in the analyses and is also present in the ideal case when
only flow correlations are present. Finally, we extend the applicability of our generic framework to the case of

differential multiparticle correlations.
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I. INTRODUCTION

In relativistic heavy-ion collisions the azimuthal anisotropy
of the produced particles as a function of transverse momentum
has emerged as the standard observable to study the collective
properties of nuclear matter [1]. Owing to the collision
geometry in noncentral heavy-ion collisions, the initial volume
containing the interacting nuclear matter is anisotropic in
coordinate space. Of particular interest is the scenario in which
the produced nuclear matter managed to thermalize in this
anisotropic volume, causing its initial anisotropy from the co-
ordinate space to be transferred via mutual interactions into the
resulting and observable anisotropy in momentum space. We
refer to this phenomenon in this work as collective anisotropic
flow, or just simply as flow. Clearly, collective anisotropic flow
is adirect probe of the degree of thermalization of the produced
matter and, correspondingly, an indirect probe of its transport
properties (e.g., viscosity).

Whatever its underlying cause is, the resulting anisotropic
distribution in momentum space can always be expanded into
Fourier series [2]:

flo) = % {1 + 2; v, cos[n(p — W)l ¢ . (1

The first few coefficients (harmonics) in the above series
have by now been thoroughly studied by experimentalists as
well as theorists: The first coefficient vy, is usually referred
to as directed flow, the second coefficient, v, is referred
to as elliptic flow, the third coefficient, vs is referred to as
triangular flow, etc. The symmetry plane of the harmonic
v, is denoted by W, (in general, different harmonics will
have different symmetry planes). The azimuthal angle of the
produced particle is denoted by ¢. For the case of an idealized
initial geometry in heavy-ion collisions, all symmetry planes
coincide and are equal to the reaction plane of the collision
(a plane spanned by the impact parameter and the beam axis).
Given the above Fourier series expansion, one can show, using
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just the orthogonality properties of trigonometric functions,
that

v, = (cos[n(p — ¥,)]), ()

where angular brackets denote an average over all particles
in an event. Owing to only mathematical steps involved in
its derivation, we stress that Eq. (2) per se has no physical
meaning. In particular, Eq. (2) can give rise to nonvanishing
flow harmonics v, irrespectively of whether the azimuthal
anisotropy in the momentum distribution has its origin in
collective anisotropic flow or in some other completely
unrelated physical process which can also yield event-by-event
anisotropies (e.g., minijets). We now attempt to attach a
more rigorous treatment to the concept of “collectivity” by
discussing which tools and observables we can utilize ex-
perimentally to disentangle it from processes which generally
involve only a small subset of the produced particles, generally
termed “nonflow.”

To make a statement on whether the harmonics v, in Eq. (1)
are dominated by contributions from collective anisotropic
flow or by some other processes which are noncollective in
nature, we can use correlation techniques involving two or
more particles. In this paper our main focus is on the latter,
to which we refer as multiparticle correlation techniques.
When only collective anisotropic flow is present, all produced
particles are independently emitted and are correlated only
to some common reference planes. This physical observation
translates into the following mathematical statement [3]:

f(fﬂl,--~,</>n)= f(p.((ol)"'f(p,,(wn)- (3)

The left-hand side of Eq. (3) is a joint multivariate probability
density function (p.d.f.) of n observables ¢, ...,¢,. The
right-hand side of Eq. (3) is the product of the normalized
marginalized p.d.f., f,,(¢;), where 1 < i < n. The functional
forms of all p.d.f.s f,, (¢;) are the same [4] and are given
by Eq. (1), but the set of parameters consisting of flow
harmonics v,, and symmetry planes W, is, in general, different
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(for instance, could depend on particle species). Therefore,
when all particles are emitted independently, as is the case for
collective anisotropic flow, the joint p.d.f. for any number of
particles will factorize as in Eq. (3). Based on this reasoning,
one can build up, in principle, infinitely many independent
azimuthal observables sensitive to various combinations of
flow harmonic moments and corresponding symmetry planes
by adding more and more particles to the observables. When
flow harmonics fluctuate event by event, different underlying
p.d.f.s of flow fluctuations will result in different values of
flow harmonic moments and corresponding symmetry planes.
This illustrates our main point: To determine the underlying
p.d.f. of flow fluctuations, one is necessarily led towards
multiparticle correlation techniques. We elaborate on this point
in detail and generalize it further in the main part of the paper.
For completeness, we now present the historical overview
of the utilization of multiparticle correlation techniques in
anisotropic flow analyses, together with all of the technical
limitations and issues inherent to them, which this paper
overcomes.

Multiparticle correlation techniques in anisotropic flow
analyses have been used for more than three decades. In
the theoretical studies of global event shapes [4] and in the
subsequent study presented in Ref. [1], the joint multivariate
p.d.f. of M particles for an event with multiplicity M was
utilized in flow analyses for the first time. However, the
very first experimental attempt to go beyond two-particle
azimuthal correlations [5] date back to Bevalac work published
in Ref. [6]. In that paper, a quantitative description of
collectivity was attempted by generalizing the observable for
two-particle correlations, namely, the smaller angle between
the transverse momenta of two produced particles, into the
geometric mean of n (n > 2) azimuthal separations within the
n-particle multiplet. However, it was realized immediately that
the net contribution of low-order few-particle correlations is
cumulative if one increases the number of particles in such
multiplets, which triggered the demand for more sophisticated
techniques that would instead suppress systematically such
contributions for increasingly large multiplets [6].

This was pursued further in a series of papers on mul-
tiparticle correlations and cumulants by Borghini et al. (for
a summary of the mathematical and statistical properties of
cumulants, we refer the reader to Ref. [7]). In the first paper of
the series [8], Borghini ef al. defined cumulants in the context
of flow analyses in terms of the moments of the distribution
of the Q-vector amplitude [1,2,9]. As a landmark of their
approach, the authors have introduced a formalism of gen-
erating functions accompanied with interpolation methods in
the complex plane as the simplest and fastest way to calculate
cumulants from experimental data. The formalism of generat-
ing functions is particularly robust against biases stemming
from nonuniform detector acceptance, which is frequently
the dominant systematic bias in anisotropic flow analyses.
However, there were some serious drawbacks, which were
recognized and discussed already by the authors in the original
paper. Most notably, both two and multiparticle cumulants
were plagued by trivial and non-negligible contributions from
autocorrelations, which caused an interference between the
various harmonics. This led the authors to propose an improved
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version of the generating function in Ref. [10], which by design
generated cumulants free from autocorrelations. In essence,
the way cumulants were defined conceptually has changed
between the two papers: In Ref. [10] cumulants were defined
directly in terms of multiparticle azimuthal correlations, which
are free from autocorrelations by definition, while in Ref. [8]
cumulants were defined in terms of the moments of the dis-
tribution of the Q-vector amplitude, which by definition have
contributions from autocorrelations. Both methods to calculate
cumulants were capable of estimating reference flow (i.e.,
average flow of particles in a wide phase space window) and
differential flow (i.e., flow of particles restricted to belong only
to a narrow phase space window of interest relative to a larger
phase space window). Further improvement, still relying on the
formalism of generating functions, came with the Lee-Yang
zero method [11,12], which isolates the genuine multiparticle
estimate for flow harmonics, corresponding to the asymptotic
behavior of the cumulant series. The formalism of generating
functions, however, has its own built-in systematic biases.
Most importantly, the proposed interpolating methods in the
complex plane to calculate cumulants are not numerically
stable for all values of flow harmonics and multiplicity; in
addition, one never exactly recovers the cumulants as they are
defined. Finally, the formalism as presented in these papers
is limited to the cases where all harmonics in multiparticle
correlators coincide. A notable alternative cumulant approach
in terms of implementation was used in Ref. [13], which, at
the expense of reducing statistics, removed autocorrelations
by explicitly constructing multiple subevents from the original
event.

These limitations were removed partially with Q cumulants
(QCs) published recently in Ref. [14], which do not rely
on the formalism of generating functions, but instead utilize
Voloshin’s original idea of expressing multiparticle azimuthal
correlations analytically in terms of Q vectors evaluated (in
general) in different harmonics. Q cumulants, however, are
very tedious to calculate analytically, and such calculations
were accomplished only for a rather limited subset of multipar-
ticle azimuthal correlations which have been most frequently
used in anisotropic flow analyses to date.

The present paper surpasses completely all technical limi-
tations of these previous publications and provides a generic
framework allowing all multiparticle azimuthal correlations
to be evaluated analytically, with an efficient single pass
over the data, free from autocorrelations by definition, and
corrected for systematic biases owing to various detector
inefficiencies (e.g., nonuniform azimuthal acceptance, pr-
dependent reconstruction efficiency, finite detector granularity,
etc.). With this framework, a plethora of new multiparticle
azimuthal observables are now accessible experimentally. In
this paper we propose and discuss some new concrete examples
(so-called standard candles). We have paid special attention to
the development of algorithms, which can be used to calculate
recursively higher-order multiparticle azimuthal correlators in
terms of lower-order ones, for the cases when their stand-alone
generic formulas are too long and impractical for direct
use and implementation. Finally, we point out the existence
of a peculiar systematic bias in traditional differential flow
analyses, when all particles are divided into the two groups of
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reference particles (RPs) and particles of interest (POIs). This
systematic bias stems solely from the selection criteria for RPs
and POIs and is present also in the ideal case when all nonflow
correlations are absent.

The paper is organized as follows. In Sec. II, we introduce
two and multiparticle azimuthal correlations, motivate and
discuss their usage in anisotropic flow analyses, and point
out the technical issues which plagued their evaluation in
the past. In Sec. III, we outline our new generic framework
which enables exact and efficient evaluation of all multiparticle
azimuthal correlations and can also be used to correct for
systematic biases owing to various detector inefficiencies. In
Sec. IV we use two toy Monte Carlo studies to demonstrate
the framework’s ability to correct for biases owing to nonuni-
form azimuthal acceptance and nonuniform reconstruction
efficiency. We then use a realistic Monte Carlo to demonstrate
its usage in the measurement of some new flow observables
that we propose and discuss in detail. In Sec. V, we point
out how biases owing to finite granularity of the detector
must be considered and corrected for in the measurement
of multiparticle azimuthal correlations. Finally, in Sec. VI,
we discuss the systematic bias which is present in traditional
differential flow analyses even when all nonflow correlations
are absent, but arise from the selection criteria of particles used
for the differential flow analysis. In the Appendixes we present
all technical steps in detail.

II. TWO AND MULTIPARTICLE AZIMUTHAL
CORRELATIONS

We consider two and multiparticle azimuthal correlations
measured event by event as our basic observables whose
moments can be related to moments of the flow harmonics
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and the corresponding symmetry planes. This relation can
be illustrated with the simple example of the two-particle
azimuthal correlation of harmonics n and —n. For the dataset
consisting of M azimuthal angles ¢1,¢», . ..,@) we have

(e 7) = {cos n(pr — ¢2)

. M
= W=D Z cosn(g; — ¢;). 4)
ij=1

(2)n,—n

MM —
i#)
The constraint i = j removes contributions from autocorre-
lations in each sum by definition. Using the factorization
property in Eq. (3) for the case of joint two-particle p.d.f. and
using the orthogonality properties of trigonometric functions,
one can show that the first and second moments of (2), _, are
given as
2

K@y = Up> o)
1+v3
2 2n 2
= 2 1 n
e = gr -1 — T
M —2)(M —
—( X 3 vt — vt (6)
MM —1)

These are the analytic expressions for the mean and variance of
the two-particle azimuthal correlations, which are valid for the
general case when the Fourier-like p.d.f. (1) is parametrized
with all harmonics v,,.

Motivated by the previous simple example, we now intro-
duce our main observables, namely multiparticle azimuthal
correlations, in a generic way. The average m-particle corre-
lation in harmonics ny,ny, ...,n, is given by the following
generic definition:

M
Z Wk, Wk, * * * Wk, el(”ll@q F12@ky 1 Q)
kika, ..., kp =1
i ky Fky # - F ki
— [ i@k F2@iy +Fnnr, )\ —
<m>n1 T <e 19k T12¢k) @, ) = — @)
> Wiy Wk, - - - W,
kika, .. ky =1
ki #ky # - Fkn

In the above definition, M is the multiplicity of an event, ¢
labels the azimuthal angles of the produced particles, while w
labels particle weights whose physical meaning and usefulness
will be elaborated on. We have, in summation, enforced
the condition k; # ky # - - - # k,, to remove the trivial and
non-negligible contributions from all possible autocorrelations
(self-correlations) by definition in all summands. We stress that
we consider any correlation technique utilized in anisotropic
flow analyses to be unsound and unusable if it has any kind of
contribution stemming from autocorrelations.

Particle weights appearing in definition (7) can be used to
remove systematic biases originating from detector inefficien-
cies of various types. Well-known examples of particle weights
are so-called ¢ weights, w,, which deal with the systematic
bias owing to nonuniform acceptance in azimuth, and pr

(

weights, w,,, which deal with the nonuniform transverse
momentum reconstruction efficiency of produced particles.
In general, we allow the particle weight w to be the most
general function of the azimuthal angle, transverse momentum,
pseudorapidity, particle type, etc.:

w = w(y, pr,n,PID, ...). ®)

The new generic framework presented in this paper allows one
to use the above general particle weights for any multiparticle
azimuthal correlation. In subsequent sections in toy Monte
Carlo studies we provide two concrete examples.

We can straightforwardly relate various moments of the
observables defined in Eq. (7) to various moments of the
harmonics v, and the symmetry planes W,. In particular,
relying solely on factorization as in Eq. (3) and orthogonality
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properties of trigonometric functions, the following analytic
expression follows for the first moment:

L)y = <el(ﬂ1<m+-~+nm¢m)>

= Uy, - - oy, €A ) 9)
This result was first presented in Ref. [15]. When the averaging
is extended to all events, only the isotropic correlators, i.e., the
ones for which ny +n, + --- + n,, = 0, will have nonzero
values [15]. It is obvious from the expression (9) that the
trivial periodicity of each symmetry plane is automatically
accounted for. As already remarked in the Introduction, for
the case of an idealized initial geometry all symmetry planes
W, coincide and the imaginary part of Eq. (9) is identically
zero for isotropic correlators. However, we point out that,
in the more realistic case, the effects of flow fluctuations
can be independently quantified by measuring the imaginary
parts of isotropic correlators in mixed harmonics as well,
which a priori are nonvanishing. The importance of our new
generic framework is that it makes it possible for the first
time to measure the above observables (9) for any number of
particles m in the correlators, for any values of the harmonics
ni,ny, ...,ny, and for both the real and the imaginary parts.

One of the consequences of event-by-event flow fluctua-
tions is the fact that (vﬁ) # (v,)*, where flow moments (v,’j)
are defined as

vn) = f vk £ () v, (10)

Different underlying p.d.f.s, f(v,) of event-by-event flow
fluctuations will yield different values for the moments (vﬁ).
Looking at this statement from a different angle, we can
also conclude that two completely different p.d.f.s, reflecting
completely different physical mechanisms that drive flow
fluctuations, can have, accidentally, the very same first mo-
ment (v,). Thus, the traditional way of reporting results of
anisotropic flow analyses by estimating only the first moment
of the underlying p.d.f., namely, (v,), is, from our point of
view, rather incomplete. Instead, one should measure as many
moments (v¥) as possible of the underlying p.d.f., f(v,),
because each moment, by construction, carries independent
information. To finalize this discussion, we stress that a priori
it is not guaranteed that a p.d.f. is uniquely determined by its
moments. Necessary and sufficient conditions for the p.d.f. to
be uniquely determined in terms of its moments have been
worked out only recently and are known as the Krein-Lin
conditions [16]:

oo _ 2
K[f]z/ L()g)dx = K[f]l=o00, (1)
0

1+x
L(x) = —xj:;i);) = lim L(x) = 0. (12)

The generic framework presented in this paper enables one
to measure the flow moments (vﬁ ) for any k. Such results,
in combination with the Krein-Lin conditions outlined above,
can be used to experimentally constrain the nature of the p.d.f.
for flow fluctuations.
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III. GENERIC EQUATIONS
In this section, we present and discuss our main results. For

an event with multiplicity M we construct the two sets

azimuthal angles, oM}

warl, (13)

{p1,00, ...

weights, {w,wo, ..
where ¢ labels the azimuthal angles of particles, while w labels
particle weights introduced in Eq. (8). Given these two sets, we
calculate in each event weighted Q vectors [1,2,9] as complex
numbers defined by

M
Qup= ) wf e (14)
k=1

From the above definition, it immediately follows that

an,p = Q:,W (15)

which shall be used in the implementation of our final results
to reduce the amount of needed computations. We remark that
we need a single pass over the particles to calculate the Q
vectors for multiple values of indices n and p.

We first observe that the expressions in the numerator and
the denominator of Eq. (7) are trivially related. Namely, given
the result for the numerator which depends on harmonics
ni,na, ...,n,, the result for the denominator can be obtained
by using the result for the numerator and setting all harmonics
ny,ny, ...,n, to0. Therefore, in what follows we focus mostly
on the results for the numerator and introduce the following
shortcuts:

M
N, ns,...on, = Z Wiy Wy * * * W,
ki ko .ok =1
ki #ky # - F ki
x e (11ex +n2(/’k2+"'+"m(/’km)’ (16)
M

D(m)nl,nz,...w”m = Z

kiky, ... ky =1
ky # ko # - F ki

= N{m)o,....0- (18)

Wi, Wk, * + + Wk, (17)

The key experimental question in anisotropic flow analyses
relying on correlation techniques was how to enforce the
condition ky # k, # - - - # k;,, in the summations (16) and (17)
without using the brute-force approach of m nested loops. Such
an approach is not feasible even for 4-particle correlators and
events with a multiplicity of the order of 100 particles. It is
therefore unusable for events with multiplicities of the order of
1000 particles, characteristic of present-day relativistic heavy-
ion collisions. How this problem was resolved approximately
and for some specific correlators has been summarized in
Sec. I. Here we provide an exact and general answer.

‘We outline explicitly the results for the case of two-, three-,
and four-particle correlators expressed analytically in terms of
Q vectors defined in Eq. (14). For two-particle correlators it
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follows that

N<2)n|,n2 - Qm,lan,l - Qn|+n2,27
D(2)y,.m = N(2)0.0 = Q5 — Qoo (19)

Additionally, for three-particle correlators it follows that

N<3)n|,nz,n3 = in,l an,l Qn3,1 - Qn1+nz,2Qn3,l - an,l Qn1+113,2 - in,l Qn2+n3,2 + 2Qn|+nz+n3,37
D<3)"1J12J13 = N<3>O,O,O
= Q.1 —30Q0.20Q0.1 +2Q03. )

Finally, for four-particle correlators we have obtained

N<4>n1,n2,n3,n4 = in,l an,l Qng,l Qn4,l - Qn1+n2,2 Qng,l Qn4,l - an,l Qn1+n3,2Qn4,l
= 0011 Qnyn3.2Onit + 20n4ny403.3 it — Oyt Ons 1 Onyny 2
+ Onyin3.2O0nn0.2 = Oni1 Oyt Ongtna2 + Onyny 2 Onyng 2
+ 20031 Onitnytn3 — Oni1 Qa1 Onstng2 + Onytng 2 Qnsny 2
+ 200,100 4n3404.3 T 20011 Qnynsing3 — 000 4npinsing 40
D&y mnsng = N#)0,000 = 0p 1 — 605002 +305, +8Q0,1 Q03 — 6Q0,4. @1

The analogous results for higher-order correlators can be spelled out in a similar manner, but they are too long to fit in this paper.
Instead, we provide them calculated and implemented (in.cpp and.nb file formats) up to and including eight-particle correlators
on the project Web site [17] and as Supplemental Material [18] to the present article. As an alternative, we have developed
recursive algorithms which, at the expense of runtime performance, calculate analytically higher-order correlators in terms of
lower-order ones. The recursive algorithms are presented in detail in Sec. III.

As the number of particles in correlators increases, the above analytical stand-alone expressions for multiparticle correlators
quickly become impractical for direct use and implementation. For instance, the analogous analytic result for the eight-particle
correlator contains 4140 distinct terms, each of which is a product of up to eight distinct complex Q vectors. A closer look at the
structure of these analytic solutions revealed that the number of distinct terms per correlator form a well-known Bell sequence,

1,2,5,15,52,203,877,4140,21 147, . . ., (22)

which gives the number of different ways to partition a set with m elements. In our context, m is the number of particles in the
correlator, and “different way to partition” corresponds to different possible contributions from autocorrelations.

The above results can be straightforwardly extended to the case of differential multiparticle correlators, for which one particle
in the multiplet is restricted to belong only to the narrow differential bin of interest; the self-contained treatment of differential
multiparticle correlators is presented in Appendix D.

Algorithm

As already remarked, direct evaluation of expression (16) for higher-order correlators quickly becomes impractical owing to
the number of terms. For that reason, we have developed algorithms which recursively express all higher-order correlators in
terms of the lower-order ones. Observing that

N(D)n, = Qn,.1,
N2}y ny = N(D)uy Oyt = Onytmy 25
N3y nany = N(2)uyny Ongt — N(Duy Onyng.2 — Ny Onyns 2 + 200, 4ma4m3.3
N ny nynzng = NOBnyngns Qnat = N2y iy Onytng2 — N(2Vuy s Onyng.2 — N 2Dy ns Oy 2
+ 2N(1)n, Onyrnztng.3 + 2N n, Oy vy tna3 + 2Ny Oy by tng.3 — 6Oty by g 45
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it can be deduced that N(m),,
to calculate N(m),,

.....

.....

N(1),,: return Q,, |
N(m),,

Ny *

yeeey

fork < (m — 1), 1do

for each combination ¢ = {c, ..

q < Zjnolincnj

n,, 15 determined through ordered partitions of the numbers {n;, .
n,, for any m as outlined in pseudocode in Eq. (23):

PHYSICAL REVIEW C 89, 064904 (2014)

..,y }. We can use this property

. 7Ck} Of {nlv e anm—l} dO

(23)

C«—CH (1" m—k—1D!'xNk)e, oo X Qqm—i

end for each ¢
end for k
return C.

A different recursive relation can be developed by examining Eq. (16) itself. It can be seen that the innermost sum can be rewritten
without the constraint of not being equal to any other index in the following way:

M M m—1
_ i(ny@r, +no@p, +-4n,— i @k, TNy @ .
N({m)p, ns,.ny = E Wi, W, -+ + W, € 1P T2k 1961 E wy,, e m — E wy e | (24)
kika, ..., km—1 =1 km=1 Jj=1
ki #ky # o F kot

This can be expanded into the following recursive formula, where, however, one must be careful to set the power of the weights
equal to the number of summands (i.e., n; + n; would have a corresponding w? term, n; + n j + ni would have a corresponding

w3 term, etc.):

Ap—1 " N<m - 1>n1,n2 ..... Np—1+n, - (25)

An optimized version of this recursive formula, which ensures that unique terms are evaluated only once, is shown in pseudocode

in Eq. (26), where initially all ¢; = 1:

N(1)n,({c1}): return O,
N(m)nl,...,nm({cla o ,Cm}):
C « Qnm,c,,l X N<m - 1>n1
if ¢,, < 1 then
fori < 1,m —1do
C <« C—c¢ xN(m-—1),
end for i
end if
return C.

Am—1 ({Cl P

N4y, ...,Npy—1 ({Cl LI

.....

. vcmfl})

(26)
e+ 1, emo))

The available implementation on the project Web site [17] and in the Supplemental Material [18] provides both methods for

calculating N(m),,

.....

n,, from algorithms (23) and (26), as well as direct implementations of expansions of Eq. (16), like the ones

presented in Egs. (19)—(21), for all higher-order correlators up to and including m = 8. More details about the implementation

are available in Appendix A.

IV. MONTE CARLO STUDIES

In this section we illustrate with Monte Carlo studies how
the generic framework outlined in previous sections can be
used. Our exposition branches into two main directions. First,
in a toy Monte Carlo study we illustrate how our framework
can serve to correct for detector effects by working out two
concrete examples which are regularly encountered as sys-
tematic biases in the anisotropic flow analyses. The first one is
the systematic bias stemming from the nonuniform azimuthal
detector acceptance. The second one is the systematic bias
stemming from the nonuniform reconstruction efficiency as a

(

function of transverse momentum. To correct for such effects,
we construct and use ¢ weights and pr weights, respectively.
Second, in a realistic Monte Carlo study, we demonstrate
how our framework can be used in the measurement of some
new observables that we propose, and which were, with the
techniques available so far, experimentally inaccessible. We
conclude this section with estimates for these new observables
in heavy-ion collisions at both BNL Relativistic Heavy Ion
Collider (RHIC) and CERN Large Hadron Collider (LHC)
energies.

We start by introducing the p.d.f., f(¢), which is used to
sample the azimuthal angles of all particles. We consider f(¢)

064904-6



GENERIC FRAMEWORK FOR ANISOTROPIC FLOW ...

to be a normalized Fourier-like p.d.f. parametrized with six
harmonics v;,vs, ... ,vs, and the reaction plane Wgp. Written
explicitly,

f(@) = 3={1 +2v; cos(p — Wrp) + 2v; cos[2(¢ — Wgp)]
4+ 2v3 cos[3(¢p — Wrp)] + 2v4 cos[4(p — Wgrp)]
+ 2U5 COS[S(QO — \I’Rp)] + 21)6 COS[6(§0 — \IJRP)]}. (27)

For each event we randomly determine the reaction plane
Wrp by uniformly sampling its value from an interval [0,27).
Owing to this randomization, which was directly motivated by
random fluctuations in the direction of the impact parameter
vector in real heavy-ion collisions, only the isotropic multi-
particle correlators will have nonvanishing values once the
data sample has been extended from a single event to multiple
events [15]. In the above p.d.f. we assign to the flow harmonics
the input values

vy =0.044+1-001, n=12,....6, (28)

which are constant for all events. At first we set all six
harmonics to be independent of transverse momentum and
pseudorapidity, but we relax this setting in the second part of
this section, when we allow the harmonic v, to have a nontrivial
dependence on transverse momentum. Equation (27) then
governs the distribution of the azimuthal angles of all particles,
while the distribution of the other two kinematic variables,
namely, transverse momentum and pseudorapidity, are gov-
erned by the Boltzmann and uniform p.d.f.s, respectively. For
the Boltzmann p.d.f. we have used the parametrization

Jm?+ pi
f(pr) = Mprexp - | (29)

where m is the mass of the particle, T is the “temperature,”
and M is the multiplicity of the event. We have set m to be
the mass of the charged pions, i.e., m = 0.13957 GeV/c2.
By increasing the parameter 7, one shifts the mean of the
Boltzmann distribution towards higher pr values, and we
have used T = 0.44 GeV/c. In each event we have sampled
precisely 500 particles, so as to avoid potential systematic
biases owing to trivial multiplicity fluctuations. Finally, we
remark that in all separate toy MC studies we have set the
random seed to be the same to isolate genuine systematic
effects from trivial effects owing to statistical fluctuations.

We start with an example in which we illustrate how our
formalism can be used to correct for systematic biases owing
to nonuniform acceptance in the azimuthal angles, after which
we switch to an example that corrects for systematic biases
owing to nonuniform efficiency in particle reconstruction as a
function of transverse momentum.

A. ¢ weights

We select one example for each (two-, three-,..., and
eight-particle) isotropic correlator from Eq. (7) with randomly
chosen harmonics, and, for simplicity, we use in this section a
shorthand notation without subscripts for them. In particular,
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we have selected

(2) = (2) 20 =v3 =3.6x1077,

(3) = (3)—s,—1,6 = vivsvg = 4.5x107%,

(4) = (4) 3203 = vV} = 1.764x 107,

(5) = (5)_5._4333 = V3U405 = 2.4696x 1075,

(6) = (6) 221133 = vivjv; = 4.41x 1075,

(7) = (T)—6.-5.-1.1.2.3.6 = V2030505 = 9.45x 1077,

(8) = (8) 6,-6.-5.233.4.5 = VVIV4VIVE = 1.90512x 1077,

(30)

Numerical values on the right-hand side in the above equations
were obtained by calculating the theoretical values for each
correlator from the Eq. (9) and inserting input values for flow
harmonics from Eq. (28). We have rescaled observable (k) by
107* in all figures to plot all values on the same scale. When
double angular brackets are being used, that indicates that the
averaging from the definition in Eq. (7) has been extended to
all events.

Our toy MC procedure consists of three separate runs.
First, we run our simulation for the case of uniform azimuthal
acceptance to demonstrate that the generic equations which
we have derived reproduce correctly the input values for all
multiparticle observables. This can be seen by comparing solid
black points with open black markers in Fig. 3. Second, we
have rerun the simulation using the same seed for random
generation, but now have selected for analysis each particle
with a probability which depends on its azimuthal angle. In
particular, the particles which were sampled in the azimuthal
range 60° < ¢ < 120° have been reduced by 50% for this
analysis. In this way, we have simulated a nonuniform
azimuthal detector acceptance (see Fig. 1), and the corre-
sponding non-negligible systematic bias in anisotropic flow
analyses, which is depicted with red solid markers in Fig. 3. To
correct for this systematic bias, we have constructed ¢ weights,
w,, by inverting the histogram for nonuniform acceptance

10°

Ty oy s SR

—uniform acceptance

—non-uniform acceptance

OO
-
\S]
w
SN
[¢)]

FIG. 1. (Color online) Azimuthal acceptance [uniform (blue) and
nonuniform (red)] for a detector.
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FIG. 2. Resulting ¢ weights for the case of nonuniform azimuthal
acceptance shown in Fig. 1.

in Fig. 1. The resulting ¢ weights are shown in Fig. 2.
We remark that in our framework the weights do not have
to be normalized explicitly, because the analytic equations
we provide for multiparticle correlations are normalized by
definition [see Eq. (7)]. Finally, we rerun the simulation for
the third time with the same configuration as in the second
run, now utilizing the constructed ¢ weights from Fig. 2 when
we are filling Q vectors (14) in each event. As can be seen
from the blue open circles in Fig. 3, ¢ weights completely
suppress the systematic bias from nonuniform acceptance for
all multiparticle observables we have selected in this example.

Based on the previous example, we conclude that as far
as ¢ weights can be constructed for the measured azimuthal
distribution, our generic framework can be used to correct
for the systematic bias for the cases when that distribution
is nonuniform and it is applicable for any multiparticle
observable even when multiple harmonics are present in
the system. These two points improve and generalize the

X —
o T«
>=0.8— u
<>~ -
~x F
0.6
r .
04— [
r m
0.2
~
O*
0.2
F - input values
-0.4E o uniform acceptance
.0.6F ™ non-uniform acceptance "
"I o non-uniform acceptance + @-weights
-0.8F | | | | | |

(2 «4n «Bn «6n «n «@»

FIG. 3. (Color online) Multiparticle observables corrected for
nonuniform acceptance using ¢ weights compared to input values and
values for uniform acceptance (see the text for the precise explanation
of the ordinate).
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prescription outlined in Appendix B of Ref. [14]. In the next
example, we demonstrate the usage of pr weights.

B. pr weights

In this part of the study we use the same MC setup
established in the previous example for the ¢ weights with
one exception. In this example we introduce a pr dependence
of U2,

PT < Pcutoff» (31)

V2, max(PT/ Peutott)
1V =
2(pr) { PT 2 Peutofts

U2, max

and we have set the above parameters to peyorr = 2.0 GeV/c
and vy max = 0.3.

Again, we have randomly selected one example for
isotropic two-, three-, ..., and eight-particle correlations
(suppressing their subscripts for simplicity in the rest of this
section):

(2) = (2) 20 = v3,

(3) = (3)-5.-1.6 = v1VsVg,

(4) = (4)_5,-225 = Vyv5,

(5) = (5)-5.-4.-1.4.6 = V1V VsV,

(6) = (6) 222235 = V3V3Vs,

(7) = (T)—2,-2,-2,-1,2,2,3 = V1V5V3,
(8)

4,22
—5,-4,-2,-2,2,2,4,5 = Uy Uy Us. (32)

Some of the selected observables ((3) and (5)) do not have an
explicit dependence on v,, so we do not expect them to exhibit
any systematic bias in this example.

Analogously to the previous example, our toy MC pro-
cedure consists of three separate runs. First, we run our
simulation for the case of uniform reconstruction efficiency
to obtain the true pr yield; this result is illustrated with the
blue line in Fig. 4. Second, we have rerun the same simulation,
but now have selected for the analysis each particle with a
probability which depends on its transverse momentum. The

x10°

—
Q.
T 400

> —uniform efficiency
O350 . -
—non-uniform efficiency
300F
250 F

200

150
100

50

07111}111111111111111111111111

ol
0 0.5 1 15 2 2.5 3 3.5 4

pT
FIG. 4. (Color online) Transverse momentum yield, with
uniform (blue) and nonuniform (red) reconstruction efficiency.

064904-8



GENERIC FRAMEWORK FOR ANISOTROPIC FLOW ...

;“ 2.5
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0.5—
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0 0.5 1 1.5 2 2.5 3 3.5 4
pT

FIG. 5. Resulting pr weights corresponding to the nonuniform
efficiency shown in Fig. 4.

particles in the transverse momentum interval 0.4 < pr < 1.2
have been reduced by 60%. The resulting pr yield is depicted
by the red line in Fig. 4. The resulting systematic bias on
the selected multiparticle observables (32) can be seen by
inspecting the red solid markers in Fig. 6. As already remarked,
such a bias is absent in observables (3) and (5), because
they do not have the explicit dependence on the harmonic v,
[see Eq. (32)], which is the only harmonic in this study which
has a nontrivial pr dependence. To correct for reconstruction
efficiency, we have constructed pr weights, w,,, by taking the
ratio of the two histograms in Fig. 4. The result is shown in
Fig. 5. Finally, in the third run we use the same MC setup as in
the second run, only now we make use of the constructed
pr weights from Fig. 5 when filling the Q vectors (14).
The agreement between the results shown with black open
squares (uniform efficiency) and the ones shown with blue
open circles (nonuniform efficiency using the pr weights)
in Fig. 6 demonstrates clearly that the generic framework is

w

o uniform efficiency
[ m non-uniform efficiency

o non-uniform efficiency + pT-weights

n
)

{kHy10*

«2» «3» {4y {5y «6n (7 @

FIG. 6. (Color online) Results from a toy MC simulation for
multiparticle observables corrected for nonuniform efficiency using
pr weights.
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capable of suppressing the systematic bias from nonuniform
efficiency for all of the multiparticle observables in question.

With the previous two examples we have demonstrated
that, in a simple toy MC study, our generic framework can be
utilized to correct for various detector inefficiencies. Next, we
illustrate, in a study based on a realistic MC model, its use in
the measurement of some new physical observables which we
NOW propose.

C. Example new observables: “Standard candles”

‘We now introduce a new type of observable for anisotropic
flow analyses, the so-called standard candles (SCs), which can
be measured with the generic framework we have presented
in the previous sections. This observable is particularly useful
for systems in which flow harmonics fluctuate in magnitude
event by event (the case we have in reality). We start with a
generic four-particle correlation,

{cos(me +ne; —mes — ney)), (33)

and we impose the constraint m # n. The isotropic part of
corresponding four-particle cumulant is given by

{cos(mey + ngy —mes — nes))).
= ((cos(mep; + ngy — mes — ne,))
— {(cos[m(p1 — @2)1) {(cos[n(pr — @2)1)

= (vnva) = (oa)va)

=0, (34)

where double angular brackets indicate again that the averag-
ing from definition (7) has been extended to all events. Owing
to the condition that m # n, a lot of terms that appear in the
general cumulant expansion, for instance, {(cos(mg; — ng,))),
are nonisotropic and, therefore, average to zero for a detector
with uniform acceptance when the averaging is extended to
all events. For fixed values of v,, and v, over all events,
the four-particle cumulant, as defined in Eq. (34), is zero by
definition. Any dependence on the symmetry planes W,, and
W, is also canceled by definition. We can get the result in
the last line of Eq. (34) not only when v,, and v, are fixed
for all events, but also when event-by-event fluctuations of
v, and v, are uncorrelated, because the expression (v2v?2)
can then be factorized. Taking all these statements into
account, the four-particle cumulant (34) is nonzero only if
the event-by-event fluctuations of v,, and v, are correlated.
Therefore, by measuring the observable (34) we can conclude
whether finding v,, larger than (v,,) in an event will enhance
or reduce the probability of finding v, larger than (v,) in
that event, which is not constrained by any measurement
performed yet. Because by definition everything cancels out
from the observable (34) except the last contribution, namely
the correlation of event-by-event fluctuations of v,, and v,,
we name it a “SC”. Recently, by using different observables
and methodology, these correlations between fluctuations of
various harmonics have been studied in Refs. [19,20].

In this study, the Monte Carlo event generator, A Mul-
tiPhase Transport (AMPT) [21], has been used. AMPT is
a hybrid model consisting of four main parts: the initial
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conditions, partonic interactions, hadronization, and hadronic
rescatterings. The initial conditions, which include the spatial
and momentum distributions of minijet partons and soft string
excitations, are obtained from Heavy Ion Jet Interaction
Generator (HIJING) [22]. The following stage which describes
the interactions between partons is modeled by Zhang’s Parton
Cascade (ZPC) [23], which presently includes only two-body
scatterings with cross sections obtained from pQCD with
screening masses. In AMPT with string melting [24], the
transition from partonic to hadronic matter is done through
a simple coalescence model, which combines two quarks
into mesons and three quarks into baryons [25]. To describe
the dynamics of the subsequent hadronic stage, a hadronic
cascade, which is based on the A Relativistic Transport (ART)
model [26], is used.

Several configurations of the AMPT model have been
investigated to better understand the results based on AMPT
simulations [27]. The partonic interactions can be tweaked by
changing the partonic cross section: For RHIC the default value
is 10 mb, while using 3 mb generates weaker partonic interac-
tions in ZPC. We can also change the hadronic interactions by
controlling the termination time in ART. Setting NTMAX = 3,
where NTMAX is a parameter which controls the number of
time steps in ZPC (rescattering time), will effectively turn
off the hadronic interactions [27]. Good agreement has been
observed recently between anisotropic flow measurements
and the AMPT [28]. Therefore, we calculate multiparticle
azimuthal correlations using AMPT simulations with the input
parameters suggested in Ref. [28] at the LHC energy. For
RHIC energies we followed the parameters in Ref. [25] while
different configurations have also been used in this study.

In Fig. 7 we see a clear nonzero value for both SCy4 5 _4 2
(red markers) and SC3, _3_» (black markers) at the LHC
energy. The positive results of SC42 _4 _» suggest a positive
correlation between the event-by-event fluctuations of v, and
v4, which indicates that finding v, larger than (v,) in an event
enhances the probability of finding v4 larger than (v4) in that
event. On the other hand, the negative results of SC32 3 _»

x10°

= 3F
32_5 E- AMPT 2.76 TeV
o 2é'SC4,2,-4.-2:<Vi VBV () +
Q 2t
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FIG. 7. (Color online) The centrality dependence of SCs2 4 2
(red markers) and SC5, 3 _» (black markers) at \/syy = 2.76 TeV
Pb-Pb collisions with AMPT-StringMelting.
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FIG. 8. (Color online) The centrality dependence of SCs2 4.2
(solid markers) and SC3, _3 _» (open markers) at ,/syy = 200 GeV
Au-Au collisions with AMPT-StringMelting. Different scenarios—
(a) 3 mb (green circles); (b) 10 mb (red squares); and (c) 10 mb, no
rescattering (azure stars)—are presented.

predict that finding v, larger than (v,) enhances the probability
of finding v smaller than (v3).

A similar centrality dependence of SC4, _4_» and
SC3, 32 is also found at the RHIC energy; see Fig. 8.
In addition, we compare the SC45 42 and SC32 32
calculations for three different scenarios: (a) 3 mb; (b)
10 mb; (¢) 10 mb, no rescattering. It was shown [29] that
the relative flow fluctuations of v, do not depend on the
partonic interactions and only relate to the initial eccentricity
fluctuations. Therefore, the expectation is that SC4 5 _4 _» and
SC37. 3> do not depend on the magnitudes of v, or vy
(which depend on both partonic interactions and hadronic
interactions), but depend only on the initial correlations of
event-by-event fluctuations of ¢, and &4. Thus,both SC4 5 _4 >
and SC3 _3 _, remain the same for different configurations,
because the initial state was kept the same each time. However,
we find that when the partonic cross section is decreasing from
10 mb (lower shear viscosity; see [28]) to 3 mb (higher shear
viscosity), the strength of SCy 2 _4,_» decreases. Additionally,
the “10-mb, no rescattering” setup seems to give slightly
smaller magnitudes of SC4 2 4> and SC3 2 _3 _».

Considering that the AMPT model can quantitatively
describe flow measurements at the LHC [28], our AMPT
calculations for these new observables provide predictions
for the correlations of event-by-event fluctuations of v, and
v4 and of v, and vz for the measurements at the LHC. Such
measurements have the potential to shed new light on the
underlying physical mechanisms behind flow fluctuations.

V. DETECTORS WITH FINITE GRANULARITY

The previous results and examples are applicable only
directly to detectors that have infinite resolution. Finite
resolution will both bias measurements and cause interference
between harmonics. To study this, we define a detector with
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N equal-size adjacent azimuthal sectors where the edge of the first sector is shifted from 0 by ¢A. Then the low and high edges

of the ith sector are defined as follows:

27 . 2 .
<PL,-=1W+§0A, §0Hi:(l+l)ﬁ+(pA, 0<i<N-L (35)

By integrating Eq. (1) between ¢, and ¢y (derivation is shown in Appendix B), the probability, P;, for a particle to be detected

in the ith sector is found to be

1 > sin 2% 1\ 2
P[:N<1+;2vn MN cos{n[(i—i—E)Wﬂ—i-(pA—\I’n“)- (36)

N

The expectation value for an observable for a single particle, 8, can then be evaluated from P; using the formula

N-1

E[0]1=) 6P, 37

where 6; is the value of observable evaluated at the center of the sector. It follows that the expectation value of ¢ (see derivation

in Appendix B) is given by

(—D)Feines

E[e[”“’] = sin(j— %) o _iliN— ) i
Y e VN (— D e HUN=mWv-n=iNest  for % ¢ 7,

where Z is the set of all integers. It is evident from this formula
that it is not possible to measure any harmonic which is a
multiple of the number of sectors. If 0 <n < N/2 and the
harmonics above N /2 can be neglected, Eq. (38) becomes

sin 7

n

N

E[e"?] & v,e™" 39)

In this case, the multiparticle azimuthal correlations defined
in Eq. (7) become [under the assumption (3) of a factorizable
p.d.f.]

. sin 27T
~ 1—[ W, N
E[(m)m ..... n,,,] ~ vnkemk K Tk . (40)
N7

In this way, the term (§;7)/sin(§7) is a correction factor
for a bias from finite granularity that must be applied for
each harmonic that the multiparticle correlator is composed of
owing to an overall reduction in the measured value.

Figure 9 shows the result obtained by calculating (2), _»
and (4),, _», _, for detectors with various segmentations and
when the toy Fourier-like p.d.f. was parametrized only with
the single harmonic v,. The simulated values lie on the dashed
line suppressed by two or four factors of sin(%n) / (%n) [see
Eq. (40)]. In this case (if N > 2), the values can be corrected
to reproduce the input values of v or v5. The “blip” at N = 4
is a special case where multiple factors proportional to v, in
Eq. (38) contribute making the measured value 2 times bigger
for (2),,_, and 6 times bigger for (4), » _» _» than the expected
suppressed value (the black dashed line) when averaging over
all events.

If harmonics above N /2 are significant, Eq. (38) shows that
finite segmentation will introduce an interference from other
harmonics (in fact, from an infinite number of harmonics).
If one, for example, considers the case where the first N
harmonics are nonzero, there will be a contribution from two
terms in Eq. (38). As an example, we once again consider

for % eZ,
(38)

(

the case of the p.d.f. in Eq. (27) where the values of the
first six harmonics are as in Eq. (28). In general, if one
considers the case where the first N harmonics are nonzero,
then Eq. (38) produces the following relationship for (2), _,
when a factorizable p.d.f. (3) exists and one averages over
many events:

P, S s [eR)
n,—n n (%)2 N—n [(”_1\’]")”]2
= E[<2)N—n,n—N]~ (41)

The harmonic vy _,, therefore, contaminates the measurement
of v,, although the harmonic below N /2 is dominant (i.e.,
is suppressed less). For low segmentation, this can cause
significant interference from other harmonics. If one tries
to compute v, with eight sectors, for instance, then vy_j,
corresponds to vg, which contaminates the v, calculation.
Equation (41) also explains the origin of the blipatn = N/2in
Fig. 9, where both terms are proportional to the same harmonic.
Figure 10 shows this interference for a detector with 8, 12,
and 20 azimuthal sectors. For 8 sectors, only (2)4 _4 can be
corrected for. All other harmonics are contaminated and it
is easily seen that (2); _; = (2)7,_7, (2)2.-2 = (2)6.—6, and
(2)3._3 = (2)5,—5 for the measured values. These cases cannot
be corrected for. However, unless the high harmonics are larger
than the lower ones, the measured value will be closest to
the lowest harmonic [in the example, v; could be corrected
exactly only because v; was 0 in our toy MC study (28)]. For
12 sectors, all of the existing harmonics can be calculated (and
corrected for finite granularity). However, v% is still calculated
incorrectly because it is actually measuring vlz. For the case
of 20 sectors, all contaminations have disappeared and one
can accurately determine the harmonics. In general, one can
only measure up to vy,» and one should have a reasonable
estimate of the size of the other harmonics to determine
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if the contamination from harmonics with n > N /2 will be
significant.

VI. SYSTEMATIC BIAS OWING TO PARTICLE
SELECTION CRITERIA

In this section we discuss our final topic, which concerns
the results based on multiparticle correlation techniques. In
particular, we point out the existence of a systematic bias in
traditional differential flow analyses with two and multiparticle
cumulants, which stems solely from the selection criteria
applied on RPs and on POIs, and which is present also in
the ideal case when all nonflow correlations are absent. We
need two separate groups of particles, RPs and POls, in
the traditional differential flow analyses to get a statistically
stable result in the cases where there exists a small number
of POIs in a narrow differential bin of interest. The direct
evaluation of the multiparticle correlators in Eq. (7) using
only POIs would result in statistically unstable results. To
circumvent this, Borghini et al. proposed in Refs. [§,10]
to use RPs for all particles except the first in two and
multiparticle correlators, where RPs are selected from some
large statistical sample of particles in an event (e.g., from
all charged particles). Any dependence of the differential
flow of POIs on RPs would then be eliminated by separately
evaluating multiparticle correlators by using only RPs and then
by explicitly dividing out their corresponding contribution to
differential multiparticle correlators, in which only the first
particle was restricted to be a POI. For a detailed description
of traditional differential flow analyses, we refer the reader to
Refs. [8,10]; now we quantify the systematic bias which stems
solely from the applied selection criteria on RPs and POIs.

It has previously been shown (for a detailed derivation,
see Appendix A in Ref. [30]) that the reference two-particle
cumulant is enhanced by flow fluctuations, while the reference
four-particle cumulant is suppressed by flow fluctuations.
One can obtain the reference two- and four-particle cumulant
estimates, v{2} and v{4}, as

1 o2
— 2\1/2 ~ ~ v
v{2} = (v7) (v) + 2y (42)
4 2\211/4 1 sz
v{d} = (=) +200°)H) M & (v) — S, 43)
2 (v)

where (v) is the mean value of the flow moment of interest
and o2 is the variance of that flow moment. However, in
the more generally applied case, where the reference flow is
used to obtain a differential flow, the situation becomes more
complicated.

A. v'{2)

The differential two-particle cumulant estimate, v'{2}, is
obtained as [10]

v'{2} = (44)

Using (v'v) = (v'){v) + p oy0,, where p is the correlation
coefficient between the reference flow and the differential flow

PHYSICAL REVIEW C 89, 064904 (2014)

and is defined in the range [—1,1], where specifically p = 1
when v and v’ are perfectly correlated, p = O when they are
uncorrelated, and p = —1 when they are anticorrelated, one
can find a relation assuming o2/ (v)? < 1,

oot _ 1% ) 45)
Wi~ 2w

from which it is seen that v'{2} can be suppressed by flow
fluctuations.

V{2 & (V) (1 +p

B. v'{4}
The differential four-particle cumulant estimate, v'{4}, is
obtained as [10]
—(V'V3) + 2(v"v) (v?)
(v{4})}

Using Eq. (43) and var[ f(x)] ~ (f'(E[x]))*var[x] one can
obtain

V'{4) =

(46)

Oy Oy 1 63

. 47
W) 2 <v>2> @7

This is very similar to Eq. (45). Once again it is clear that the
bias to the differential flow may not be the same as for the
reference flow; an enhancement or a suppression is possible.
Three cases are explored in more detail below, while details of
the calculations are provided in Appendix C.

v{4) ~ (V) (1 —p

C. Specific cases

v' and v are perfectly correlated (p = 1) and oy JV' =0, /v.
For this case, RPs and POIs can have a full overlap, but it is
not required. Equation (45) can be written as

(i G 1@\ 1a
o }N“’)( +<zﬂ>2_5<v’>2>_<”)( +§<v’>2)‘

(48)

This case reduces to the regular case where QC{2} is
systematically enhanced by flow fluctuations, just as for the
reference flow. Because v'{4} simply has opposite signs on the
fluctuation terms, it follows that in this case it is suppressed,
once again the same as the reference flow.

v’ and v are uncorrelated (p = 0). In reality, this covers
a case where the RPs or POIs are chosen from two groups
of particles that do not overlap and do not contain the same
underlying correlations. For this case, p =0, so Eq. (45)
trivially turns into

o~ (1- 12 (49)
v ~ (v - = .
2 (v)?

This means the differential two-particle cumulant is sys-
tematically suppressed by the flow fluctuations in the refer-
ence flow, and that the four-particle differential cumulant is
systematically enhanced. Fluctuations from the POIs do not
play any role.
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FIG. 11. 10° events with 10 000 RPs and 1000 POIs. Input flow
is v, = 0.1; reference flow fluctuations have o,, = 0.01. Depending
on the choice of particles for differential flow and the differential flow
fluctuations, it is possible to get very different biases to the two- and
four-particle cumulants.

v/ and v are correlated, but the relative fluctuations are
different. Once again the RPs and POIs may have a full overlap,
but it is not required. In this case it is assumed that p ~ 1,
leading to

oo, 1 o; ) (50)
W)  2@?2)’

and the observed bias for the two-particle (four-particle)
differential cumulant is an enhancement (suppression) as
long as 2(:;—”,’)) > (%). In general, the bias observed in the
differential flow is influenced by the fluctuations in the
reference flow.

To illustrate the different cases a simulation of 10° events
with 10 000 RPs and 1000 POIs has been made. The results are
shown in Fig. 11 with input values, v, = 0.1 and o, = 0.01.
In the figure, Gaussian fluctuations are assumed, but other
fluctuations, e.g., uniform fluctuations, would yield similar
results. The shaded bands indicate the reference flow of v{2}
and v{4}, calculated with Egs. (42) and (43), respectively,
showing the usual enhancement or suppression. The first
two points are from a simulation illustrating the first case
above, where the POIs and RPs are perfectly correlated and
share the same relative fluctuations and have a full overlap.
The dotted lines are calculated using Eq. (48) for QC{2} and
the corresponding equation for QC{4}. For the next two points
the POIs and RPs are chosen with independent fluctuations
and no overlap. In this case v'{2} and v'{4} are swapped, as
expected from Eq. (49). The last points show cases where
the relative fluctuations in the POIs differ from those in the
RPs; this can cause the usual enhancement and suppression to
be larger, swapped, or even removed completely, depending
on how the relative fluctuations are chosen. In the example
simulations shown here, RPs and POIs do not overlap. For the
case where o, = 0.250, Eq. (50) yields

V(2) & (V) (1 +

o2

1
V{3l = ) (1 5 (v';2> . (51
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In the above equation we have introduced notations {i} on the

left-hand side and F on the right-hand side, indicating that the
equality applies for both top and bottom values, if they are
taken respectively. For o, = 0.50, Eq. (50) yields

2} = ), (52)

and finally for o, = 20,,

3
V2 = W) (1 +3 (’“2). (53)

(v

It is tempting to use Eqs. (42) and (43) to estimate the
magnitude of the flow fluctuations. However, when doing
differential flow analysis with cumulants it is clear from
Egs. (45) and (47) that it may not be feasible. In fact, any
analysis using differential flow should be very careful to
describe the choice of RPs and POIs in great detail, such that
comparison between different experiments and theories is not
biased by mixing two or more of the cases shown in Fig. 11
and described above.

VII. SUMMARY

We have presented the new generic framework within
which all multiparticle azimuthal correlations can be evaluated
analytically, with an efficient single pass over the particles,
free from autocorrelations by definition, and corrected for
systematic biases owing to the various detector inefficiencies.
For higher-order correlators the direct implementation of
analytic solutions is not feasible owing to their size; this
issue was resolved with the development of new recursive
algorithms. We have proposed new multiparticle observables
to be used in anisotropic flow analyses (SCs) which can be
measured for the first time within our generic framework.
The systematic biases owing to finite granularity of detector
on multiparticle correlators have been quantified. We have
pointed out the existence of a systematic bias characteristic
for traditional differential flow analyses when all particles are
divided into two groups of RPs and POIs, which originates
solely from the selection criteria for RPs and POIs and which
is present also in the ideal case when all nonflow correlations
are absent. Finally, we have straightforwardly generalized our
generic framework to the case of differential multiparticle
correlators.
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APPENDIX A: RECURSIVE ALGORITHM

As mentioned in Sec. III, we provide implementations on
the project Web site [17] and as Supplemental Material [18]
to the present article for calculating N(m),, ., defined in
Eq. (16) for

fully expanded, expressions from (19)—(21) for m = 2,

.....

recurrence, expression from algorithm (23) for any m;
recursive, expression from algorithm (26) for any m.

i dp 1
P = ——dy =
PL; d(p

/‘ﬂy
bL;

i
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The largest feasible m for the two latter methods above is,
of course, limited by computing time, resources and machine
precision. However, there is no inherent limitation on m in the
implementations.

The implementation is done in plain callable C++4- with no
external dependencies. It can be integrated into any existing
framework, including ROOT-based ones [31], by simple inclu-
sion of the appropriate headers. Examples of stand-alone and
ROOT applications are provided in the code. The code itself is
further heavily documented in Ref. [17].

The choice of method, using either expanded, recurrence,
or recursive expression, is left to the user. However, it should
be noted that using the truly general recurrence or recursive
expressions does incur a performance penalty, as can be seen
from Fig. 12.

APPENDIX B: FINITE GRANULARITY

In this appendix, the equations used in Sec. V to evaluate
the effects of finite granularity are derived. We start by defining
a detector with N equal-size adjacent azimuthal sectors with
sectors being labeled by an integer i, where 0 <i < N — 1.
Furthermore, the low edge of the first sector is shifted from 0
by ¢a. The edges of sector i are then defined by

2

. 2
oL —lw‘l-%, PH; :(l‘f‘l)ﬁ'f‘(PA- B1)
The p.d.f. for any particle is taken to be
ap 1
1 2v, v B2
20 =5 { + Zl v, cos[n(p — )]} (B2)

The probability of a particle going into sector i is then found
by integrating over the limits of the sector:

PH;
do + Z 20, / cos[n(y — ‘Ifn)]dw}

1 |27 &, sinln(pr, — Wa)] — sin[n(pn, — V)]
= —1{—+ 2v,
27 | N ~ n
R e Z 2sin [n((p”—;w')] cos [n(% -]
" 2r | N o n
L], o, sin[ned] on + oL
=5 1+22vn = cos|:n< ’2 —\Il,,)j|
1 =\ sin%F . 1\ 2n
:N(1—}—"2_;21),1?005{n[<t+§)ﬁ+¢m—\bnj|}). (B3)
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The expected value of ¢™¢ must then be evaluated as follows:

N—1
E[eim(ﬁ] — Z eim[(jJr%)%Jr‘”A]Pj

j=0

1 N-1
. Z eim[(j+%)%1+¢A]
N <

PHYSICAL REVIEW C 89, 064904 (2014)

nr[ N-1 N-1
Zv" M =i Zei(m+n)[<j+%)%’+m] 4 el Zei(mfn)[u%)%wd . (B4)
=0 j=0

Equation (B4) has terms of the form ZN ! oikl(i+2)% +0a] where k is an integer, that must be evaluated. We can first evaluate

the following:

N-1

Lo 1N 27k .k -k
Ze’(ﬁi)v =N L3N ...
Jj=0

If k/N € Z, where Z is the set of all integers, then

Ze'(” bzt NS
eZ

= N(=D)¥. (B6)
If k/N ¢ Z, then the sum can be evaluated as

( DV {1+1+-+1+1)

z|=~

k
( — N) % Zel(H— DEENES iR (1 — e2miky
——
n0l01fk§£Z Osincek € Z
which yields
k
2tk W Z
Z UV M, (B7)

Therefore, the following is true:

N—1 I3 k
Zeik(j+%)% _ |NGEDy for y €Z, (B8)
— 0 for £ ¢7Z.
From this it follows that
K ik k
Zezk[(j-‘r hE Toa] — N(=D)re™s  for N € zZ, (B9)
0 for % ¢Z.
If we then define the function
_[(=Di for ¢eZ,
a(a,b) = {0 for &¢7. (B10)
then Eq. (B4) becomes
E[e™] = ™ a(m,N)
o SN i, i
+ Zvn = [e M tmTma g (m +n,N)
n=1 N
+ " ey (m — n, N)). (B11)

+e(2N73)i%k +e(2N—1)i% _ ei%k{l +ezi%k +..-

+ 2N-2)i % _’_eZ(N—l)i%}' (B5)

The terms with a(m + n,N) will have m +n = jN where
Jj is an integer. Values of n which produce nonzero contribu-
tions must have n = jN — m. Because n > 0, this means that
JjN — m > Oand, therefore, j > m/N. The following relation
is then true:

X sin T
Uy MN e ImYn ot men gy (1 4 N)
n=1 N
UN-— m)rr
sin - ; .
—i(N=m)WiN-m iiNoa (__1VJ
Z OjN=m M et TR (=1

J>ﬂ

(B12)
The same argument can be made for the a(m — n,N) terms

where n=m — jN and j <m/N giving the following
relation:

o0 ' nr[
Z —r tn\lJ,, l(m n)sza(m —n,N)
n=1 N
00 (m—jN)m
sin ———— ) L )
N M= iNWojn pii N (__1YJ
Z Un—jN ~—Gn"iNm (m—jN)mw e A( 1) .
- _ N
j < %
(B13)
The two sets of terms can be combined as follows:
sin 2%
Z v, mrN [efmlll,l t(m+n)wAa(m +n N)
n=1 N
+ eil’l\lln ei(m—n)(pAa(m _ ”l,N)]
& sin(j — %)« ;
= 2 U ), D
e J—%)7
J# %
x e {UN=mWjn-ni giiN¢a (B14)
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With this relation, Eq. (B11) becomes

o .
. . S1
E[¢"] =" a(m.N)+ Y jy-m|

j=-00

: m
J# N

n(j—

(-5
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)ﬁ) T (_1)<ie—i(<iN—m)‘1’ume|eierﬂA' (B15)
T

If m is a multiple of N, every term in the second part of Eq. (B15) is O either because the term is excluded (j # m/N) or because
sin(j —m/N)m = 0. The first term, however, is 0 if m is not a multiple of N. The two sets of terms, therefore, contribute to
mutually exclusive sets of values of m. Equation (B15) can then be rewritten as

(=) eimes
00 sin(j—%)m
Zj:—oo V|jN—m| G-

E[eimw] — {

The asymptotic behavior of E[e¢"¢] agrees with what is
expected. If m =0, m is always a multiple of N and one
should use the equation for 5 € Z with m = 0 which gives
1. If m # 0, any fixed value of m will not be a multiple of
N as N — oo and one should use the equation for §; ¢ Z.
As N — oo, all other terms, except for the j =0 term,
become 0 because sin(j —m/N)wr — 0. The j =0 term
has sin(—%57)/(=%7) — 1 as N — oo, leaving a value of

U eim v, .

APPENDIX C: SYSTEMATIC BIAS OWING
TO PARTICLE SELECTION CRITERIA

As mentioned in Sec. VI for reference flow,

o
v{2} = (v) + 5, (ChH
(v)
_ 1 avz o
v{d} = (v) — im’ (C2)

where (v) is the mean value of the flow moment of interest and
o2 is the variance of that flow moment. This can be obtained
by assuming o/ (v)? < 1 and using [30]

2
(f) = E[f()] = (o) + %‘f”(,ux), (€3)

where E[x] is the expectation value of a random variable x,
f(x)is any function, u, is the mean of x, and o, is the standard
deviation of x. Below, the same calculations are done for the
two- and four-particle differential cumulants.

1. v'{2}
The differential two-particle cumulant estimate, v'{2}, is
obtained by [10]
/
vy =
(v?)
where v is the flow moment of the RPs and v’ is the differential
flow moment of the POIs. Inserting Eq. (C1) for /(v?) and
again assuming 02/(v)? < 1 yields

,ZN(v’v) { lou2
v~ T < _§<v>2>‘

(C4

(€5)

for % €Z,
(— 1y e HuN=m¥m=iNes}  for m g7 (B16)
[
The main issue is then to determine (v'v). In general,
(v'v) = (V) {v) + poyo, (Co)

where p is the correlation coefficient between the reference
flow and the differential flow and is defined in the range
[—1,1], where specifically p = 1 in the case where v and
v’ are perfectly correlated, p = 0 when they are uncorrelated,
and p = —1 when they are anticorrelated. o,/ is the standard
deviation of the flow moment for POIs. This means

Oy Oy 1 O’Uz

(V)v) 2 (v>2) ’ ©

from which it is clearly seen that v'{2} can be either suppressed
or enhanced by flow fluctuations depending on the value of p.

V{2~ (V) (1 +r

2. v'{4)

The differential four-particle cumulant estimate, v’{4}, is
obtained by [10]

—(V'V3) + 2(v"v) (v?)

/ 4) —
v (4}

(C8)

Using Eq. (C2) this becomes
— (') 4+ 2(0'v) (v?) 3 02
1+ = . C9
Wy Tawr) @
—(v'v?) 4 2(v'v) (v?) must now be estimated. By using

var[ f(x)] = E[f(x)*]1 — E[f(0)]?

V'{4) =

~ [f' () varlx], (C10)
then
(V') = (V) (W) + ployoys (C11)
~ () () + 30, (v) + poy3(v)’o,  (C12)
= () ()’ +3() (W), +3p(v)’0y0,,  (C13)

where Eq. (C3) was also used for (v?). p’ is the correlation
between o,y and 0,3, applying the approximation in Eq. (C10)
to get to o, yields the correlation between o, and o, which is
p to first order. The next term to be estimated is

2(w'v) (V%) = 2((W')(v) + poyar) (o, + (v)?)
=20)(v)o; +2(v) (V) +2p(v)’0,0
(C15)

(C14)

+2p0,073.
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The last term in Eq. (C15) can be neglected. Inserting these
results into Eq. (C9) it is seen that flow fluctuations bias v'{4}
in the following way:

v{d} ~

(V) () = (W) ()oy — p(v)’oyo, (1 L3 03)
(v)? 2 (v)?
(C16)

Ov O ) (1 + 50—”2) (C17)
P o) 2 ()2

N Ll
<U)( 1Y §<v)2>,

which once again can lead to either suppression or enhance-
ment of flow fluctuations. In general, one can write

Oy Oy

(V) {v)

&

(C18)
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showing that the bias to the two- and four-particle cumulants
are similar but opposite.

APPENDIX D: DIFFERENTIAL MULTIPARTICLE
CORRELATORS

In this appendix we present generic equations for the
differential (or reduced) correlators up to and including order
four. All particles which are taken for the analysis are divided in
each event into two groups: RPs and POIs, which, in general,
can overlap. In each differential multiparticle correlator we
specify the first particle to be POI, and all remaining particles
to be RP. By adopting the original notation introduced by
Borghini et al. [10], we label azimuthal angles of POIs with
¥, and azimuthal angles of RPs with ¢. In practice, POIs will
correspond to particles in a differential bin of interest in an
event (e.g., particles in a narrow pr bin, particles in a narrow
n bin, etc.), while RPs correspond to some large statistical

) g 1 o2 sample of particles in an event (e.g., all charged particles).
v v . . . . . .
U/{4} ~ (V') <1 tp ) 0) + 5 { ;2) ) (C19) The average differential m-particle correlation in harmonics
v v ni,ny, ...,n, is given by the following generic definition:
J
m, M
Z Z Wi, W, * * + W e MYk 129k -+ P, )
1 m
ki ko, ..., ky, =1
: ki #hy # o # ko
(m,)ﬂ,nz ,,,, = (el(ml/fkl +Vl2§0k2+---+nm(ﬂkm)> = I - m (D1)
Z Z wkl wkZ T wkm
kl kz ..... km =
ki #ky # - F ki

In the above definition M is the number of RPs in an event,
mp, is number of POIs in a narrow differential bin in an
event, ¢ labels the azimuthal angles of RPs, 4 labels the
azimuthal angles of POIs, while w labels particle weights.
In general, we allow independent particle weights for RPs and
POIs. All trivial effects from autocorrelations are removed
by the constraint k; # ky # - - - # k,,, which enforces all
indices in all summands to be unique in definition (D1). The
only harmonic which corresponds to POIs is underlined to
distinguish it from the all other harmonics which correspond
to RPs.

As in the case of reference multiparticle correlators studied
in the main part of this paper, we first observe that the
expressions in the numerator and the denominator of Eq. (D1)
are trivially related. Therefore, we introduce the following
shortcuts:

m, M

N Yy, = D D

ki kay ..., kp =1
ki # ka7 e # ko

wklwk2 ce W

m

s ! 11V 129y -t Gk, ) (D2)
m, M
DM Yy, = Y Wewgowg,  (D3)
kl k2 ,,,,, k,,, =1
ki #ky # - F k
= N(m')o.0....0 (D4)

We present our results for expressions (D2) and (D3) in
terms of weighted Q, p, and g vectors, that we now define. The
weighted Q vector is a complex number defined by

M
Qui =Y wje", (D5)
k=1

and filled with all particles labeled as RPs in an event (M in
total). The weighted p vector is constructed out of all POIs
(m, in total) in a narrow differential bin of interest in an event:

mp

Pny = Z w,i eV,
k=1

Last, the weighted ¢ vector is constructed only from particles
in a narrow differential bin of interest in an event which are
labeled both as POIs and RPs (m, in total):

(Do)

mgy

— 1 in
Gni = E wy e Vi,
k=1

The g vector was introduced to analytically remove all effects
of autocorrelations in our final results. The indices n and [ in
definitions (D5)—(D7) are determined from the original indices
ny,ny, ...,n, in (DI1), as will become clear shortly. In general,
we need Q, p, and g vectors evaluated for multiple values of
indices n and /, which will be determined by the precise nature

(D7)

064904-18



GENERIC FRAMEWORK FOR ANISOTROPIC FLOW ... PHYSICAL REVIEW C 89, 064904 (2014)

of the differential multiparticle correlator in question. The key point, however, is that to obtain Q, p, and g vectors for, in
principle, any number of different values of indices n and /, a single pass over all particles still suffices.

Given the above definitions, and by following the same strategy and notation as in the main part of the paper, we have obtained
the following analytic results for differential two-, three-, and four-particle correlations:

N<2/>ﬂ,n2 = P 1Qnal = Gny4mn 25 (D8)
D(2")n,.n, = N(2')0.0
= po,19Q0,1 — 40,2} (D9)
N3y mpns = Pyt Qnyt Onst = Gy 2@yt = Gy 032 Oyt
= P Qnotns 2 + 2qu,4+ny403.35 (D10)
D(3")n,.nym5 = N(3)0.0.0
= p01Q5,1 — P0.1Q02 — 2q02Q0.1 + 2q0.3: (D11)
N myinsins = Pyt Cnat Qs 1 Ot = Gnyanr2 @yt Qgt = Gy 052 Qa1 Qg1
= Pt Qnytny 2Oyt + 2Gn,+nyn3.3 Onat — Gnyns2 Oyt Oy
+ Gni414.2Onyns.2 — Py 1 Qa1 Onging 2 + Gny+nz 2 Qg 2
+ 2qn,112410.3 @31 = Pi1 @yt Onstng,2 + Gnytnn.2 Qg 2
+ 2G04 n3410.3 Qa1 + 2P0, 1 Qrytnstng.3 — OGuytnytnstng4s (D12)
D), nynsns = N(#)0,0.0.0
= po,1 Qg,l —3q0, Q(Z),l —3p0,100,10Q0,2 + 3¢0,200,2 + 640,3 Q0,1
+2po.1Q03 — 690.4. (D13)

The above relations are generic equations for differential multiparticle correlators, and they improve and generalize over the
limited results presented in Ref. [14], which were applicable only for the special case in which all harmonics ny,n,, ... ,n,
coincide. The further improvement consists of the fact that with these new results we allow for an independent weighting of
POIs and RPs straight from the definition [see Eqgs. (D5) and (D6)] which will have an obvious use case in experimental analyses
when reconstruction efficiency for POIs and RPs differs. Finally, we have preserved the full generality when it comes to different
possible outcomes of particle labeling; the results above are applicable for all three distinct cases of labeling, namely “no overlap,”

“partial overlap,” and “full overlap,” between RPs and POls.
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