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Systematic study of the isotopic behavior of the fusion cross section at energies near and below
the fusion barrier using the proximity formalism
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The isotopic behavior of the fusion cross sections and barrier curvature at energies near and below the barrier
are explored using the proximity formalism. For this purpose, various versions of the proximity potentials are
used to calculate the nuclear part of the interaction potential. Our study has been restricted to the isotopic systems
which obey the condition of 0.5 � N/Z � 1.6 for their compound nuclei. The obtained results show that the
barrier curvature and the fusion cross section follow a similar behavior at near- and below-barrier energies. In
fact, these quantities decrease nonlinearly (second order) with the addition of a neutron. In the present study, the
energy dependence of the fusion cross sections is also discussed for the considered isotopic systems.
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I. INTRODUCTION

The systematic study of the isotopic dependence of the
barrier characteristics such as barrier height (Vb) and position
(Rb) versus the N/Z ratio, where N (Z) is the neutron
(proton) number of the compound nucleus, has received a lot
of attention in recent years [1–6]. So far, those investigations
have been carried out by using different models [7–15] such
as the Skyrme energy density model, and the Ngo and Ngo,
Christensen and Winther, Bass, and Denisov potentials. The
obtained results of the previous studies show that by adding
a neutron, the barrier height decreases linearly whereas the
barrier position increases linearly for proton- or neutron-rich
systems. But in the whole range of N/Z the ratio (both
proton- and neutron-rich systems), the investigations confirm
a nonlinear dependence for these barrier characteristics [1–6].
Another important issue of the isotopic studies is the analysis
of the isotopic behavior of the fusion cross sections versus
the N/Z ratio. It must be noted that the isotopic trend of
the fusion cross sections is restricted to the above-barrier
energies in all of the mentioned studies. It is indicated that
the fusion cross sections increase linearly for both proton-
and neutron-rich nuclei [1–6]. It is well known that by adding
a neutron to each fusion system, the attractive nuclear force
increases. Therefore, one expects increasing and decreasing
trends for calculated values of the barrier positions and the
barrier heights, respectively. Moreover since the fusion cross
section is directly dependent on these mentioned parameters,
it is predictable that this quantity has an increasing trend, as a
function of N/Z ratio.

Recently, the isotopic behavior of fusion cross sections and
barrier characteristics were analyzed for proton- and neutron-
rich nuclei [6]. In that study, 125 fusion reactions were selected
under condition 0.5 � N/Z � 1.6 for their compound nuclei.
The obtained results revealed the linear trend of σfus versus the
ratio of N/Z at above-barrier energies.

In the present work, the analysis of the isotopic behavior
of the fusion cross sections is extended to energies near and
below the barrier. Our motivation to choose this issue is that
the fusion reactions take place by quantum tunneling at these

energies. Because of this different procedure, one may expect
a different isotopic trend for fusion cross sections at these
energies compared to the above-barrier ones. In this study,
the nuclear part of the interaction potential is calculated using
various versions of the proximity formalism such as AW 95
[16], Bass 80 [17,18], Denisov DP [19], and Prox.2010 [20]
potential models. Moreover, the Wong model [21] is employed
to calculate the theoretical values of the fusion cross sections.

The present paper is organized as follows. In Sec. II, we
discuss the theoretical framework used to calculate the nuclear
potential and fusion cross section. The analysis of isotopic
behavior of cross sections at near- and below-barrier energies is
presented in Sec. III and a review of our important conclusions
is discussed in Sec. IV.

II. THEORETICAL FORMALISM

It is well accepted that the interacting potential between
a colliding pair is a key factor in the calculation of fusion
cross sections. So first we give a brief review of how one can
calculate this potential. The total potential can be considered
as a sum of nuclear and Coulomb parts:

Vtot(r) = VN (r) + VC(r) = VN (r) + Z1Z2e
2

r
, (1)

where Z1 and Z2 are atomic numbers of the interaction nuclei.
In recent years many theoretical models have been introduced
for calculating the nuclear part. One useful model for achieving
this goal is the proximity formalism. Various versions of this
formalism are introduced in Refs. [20,22]. In the present
work, we calculate the interaction potential using proximity
potentials AW 95, Bass 80, Denisov DP, and Prox.2010 which
are briefly introduced as follows:

V AW95
N (r) = − V0

1 + exp
(

r−R0
a

) , (2)

V Bass80
N (r) = − R1R2

R1 + R2
�(s = r − R1 − R2), (3)

0556-2813/2014/89(6)/064612(6) 064612-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.89.064612


O. N. GHODSI AND A. MORADI PHYSICAL REVIEW C 89, 064612 (2014)

V DenisovDP
N (r) = −1.989843

R1R2

R1 + R2
�(s = r − R1 − R2

− 2.65)

[
1 + 0.003525139

(
A1

A2
+ A2

A1

)3/2

−0.4113263(I1 + I2)

]
, (4)

V Prox.2010
N (r) = 4πγ

R1R2

R1 + R2
�(s = r − C1 − C2). (5)

Details of these formulas are more completely expressed in
Refs. [16–20,22]. Also the universal functions �(s) are defined
by Eqs. (20), (42), and (6) of Ref. [22] for Bass 80, Denisov DP,
and Prox.2010 potentials, respectively. Once the total potential
Vtot(r) is known, one can extract the barrier height (Vb) and
barrier position (Rb) using the relation

(
dVtot(r)

dr

)
r=Rb

= 0;

(
d2Vtot(r)

dr2

)
r=Rb

� 0. (6)

When the values of Vb and Rb are determined, one can calculate
the fusion cross section using the Wong model. According to
this model the fusion cross section is given by

σfus = π

k2

lmax∑
l=0

(2l + 1)Tl(Ec.m.), (7)

here k =
√

(2μEc.m.)/�2). Also μ is the reduced mass of the
interacting system and Ec.m. is the center-of-mass energy.
The quantum mechanical transmission probability through the
potential barrier for a specified angular momentum � and c.m.
energy, namely, T�(Ec.m.), is given as follows:

T�(Ec.m.) =
[

1 + exp

(
2π

�ω�

)
(Vb − Ec.m.)

]−1

, (8)

where �ω� is the curvature of the inverted parabola. If we
assume that the barrier position and width are independent of
the value of �, we can rewrite the definition of the fusion cross
section Eq. (4) as the form

σfus = 10R2
b�ω

2Ec.m.

ln

[
1 + exp

(
2π

�ω

)
(Vb − Ec.m.)

]
, (9)

here the barrier curvature in the case of � = 0 is denoted by �ω.
It can be proved that the fusion cross section defined by Eq. (6)
reduces to the following relation for subbarrier energies:

σfus = 10R2
b�ω

2Ec.m.

exp

(
2π

�ω

)
(Vb − Ec.m.). (10)

According to the Wong approach, the value of �ω can be
determined by [21]

�ω = �

[
1

μ

(
d2Vtot(r)

dr2

)
r=Rb

]1/2

. (11)

FIG. 1. Variation trend of �ω as a function of (N/Z − 1) based on the selected potentials (a) AW 95, (b) Bass 80, (c) Denisov DP, and
(d) Prox.2010. In each panel, the dotted and dash-dotted lines are related to ��ω(%) values in 0.5 � N/Z � 1 and 1 � N/Z � 1.6 regions,
respectively. The solid curves show a nonlinear fitting of the calculated values in the whole range of 0.5 � N/Z � 1.6.
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III. RESULTS AND DISCUSSION

In this study, we analyze the isotopic behavior of the barrier
curvature and fusion cross section using Eqs. (10) and (11) at
near- and below-barrier energies. For this purpose, we define
the percentage difference of σfus and �ω as follows:

�σfus(%) = σfus(Ec.m.) − σ 0
fus(Ec.m.)

σ 0
fus(Ec.m.)

× 100, (12)

��ω(%) = �ω − �ω0

�ω0
× 100, (13)

where σ 0
fus(Ec.m.) and �ω0 are the fusion cross section and

barrier curvature for N = Z cases, respectively.

A. Isotopic dependence of the barrier curvature

According to Eq. (10), one can see that the fusion cross
section depends on the three parameters of barrier height (Vb),
barrier position (Rb), and barrier curvature (�ω). The isotopic
trends of Vb and Rb are similar to those presented in Fig. 4
of Ref. [6]. So it is quite reasonable that we first examine the
isotopic dependence of the barrier curvature. In our calcula-
tions, we initially divide the isotopic reactions into proton-rich
(0.5 � N/Z � 1) and neutron-rich (1 � N/Z � 1.6) cases to
examine the isotopic trends of the mentioned quantities. The
calculated values of ��ω(%) based on the selected proximity

TABLE I. Calculated values of the constant coefficients αi and
α∗

i (with i = 1, 2).

Proximity-model α1 α2 α∗
1 α∗

2

AW 95 −69.13 −50.27 −64.51 27.41
Bass 80 −56.71 −46.14 −54.89 15.98
Denisov DP −76.72 −57.16 −71.35 21.19
Prox.2010 −81.78 −53.76 −70.20 47.18

models are displayed in Fig. 1. It is shown that these values
linearly reduce with the increase of the N/Z ratio for each of
the proton- or neutron-rich regions. We employ the following
formula to parametrize these trends:

��ω(%) = α1

(
N

Z
− 1

)
, for N/Z � 1, (14)

��ω(%) = α2

(
N

Z
− 1

)
, for N/Z � 1, (15)

where the extracted values of the constant coefficients α1 and
α2 are presented in Table I. In Fig. 1, the isotopic trends of
��ω(%) are displayed based on the proximity potentials of
AW 95, Bass 80, Denisov DP, and Prox.2010 for different
colliding systems. An important result drawn from this figure
is that the linear behaviors of the barrier curvatures change

FIG. 2. Percentage difference of the fusion cross section �σfus(%) as a function of (N/Z − 1) based on the potentials (a) AW 95,
(b) Bass 80, (c) Denisov DP, and (d) Prox.2010 for Ec.m. = 0.95Vb. The dotted and dash-dotted lines show a linear fitting of the function
�σfus(%) in 0.5 � N/Z � 1 and 1 � N/Z � 1.6 regions, respectively. The solid curves show a non-linear fitting of the calculated values in
the whole range of 0.5 � N/Z � 1.6.
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FIG. 3. Same as Fig. 2, but for Ec.m. = 0.9Vb.

nonlinearly (second-order) for all proton- and neutron-rich
systems. Based on the considered potential models, these
behaviors can be formulated as follows:

��ω(%) = α∗
1

(
N

Z
− 1

)
+ α∗

2

(
N

Z
− 1

)2

. (16)

The values of the α∗
1 and α∗

2 constants are listed in Table I.

B. Isotopic dependence of the fusion cross section

Like the barrier curvature, we can analyze the isotopic
trend of σfus for each of the separated regions of the N/Z
ratio. For this purpose, the values of �σfus(%) have been sys-
tematically calculated at two different below-barrier energies:
Ec.m. = 0.9Vb and Ec.m. = 0.95Vb, for example. Our obtained
results reveal a linear trend for these values against the ratio of
N/Z in the isotopic regions N/Z � 1 or N/Z � 1, see Figs.
2 and 3. Moreover, the increase of neutrons in the considered
reactions gives rise to the decrease of the calculated fusion

cross sections. In the mentioned regions, one can parametrize
the regular behavior of this quantity as a function of the N/Z
ratio using the following relations:

�σfus(%) = β1

(
N

Z
− 1

)
, for N/Z � 1, (17)

�σfus(%) = β2

(
N

Z
− 1

)
, for N/Z � 1, (18)

where for selected energies of Ec.m. = 0.9Vb and Ec.m. =
0.95Vb the values of the constant coefficients β1 and β2 are
listed in Table II. As a second result of Figs. 2 and 3, it can be
pointed out that the isotopic behaviors of the obtained values
of �σfus(%) based on the selected proximity potentials are
nonlinear (second-order) in the whole range of N/Z ratio
(i.e., 0.5 � N/Z � 1.6). We parametrize these behaviors by
employing the relation

�σfus(%) = β∗
1

(
N

Z
− 1

)
+ β∗

2

(
N

Z
− 1

)2

, (19)

TABLE II. Calculated values of the constant coefficients βi and β∗
i (with i = 1, 2) for Ec.m. = 0.9Vb and Ec.m. = 0.95Vb energies.

Proximity-model β1 β1 β2 β2 β∗
1 β∗

1 β∗
2 β∗

2

Ec.m. 0.9Vb 0.95Vb 0.9Vb 0.95Vb 0.9Vb 0.95Vb 0.9Vb 0.95Vb

AW 95 −576.80 −232.65 −194.20 −141.49 −402.30 −119.51 604.20 141.02
Bass 80 −447.57 −174.38 −179.51 −118.75 −333.73 −158.79 419.20 82.49
Denisov DP −696.84 −245.43 −217.83 −157.91 −488.91 −219.93 709.15 128.21
Prox.2010 −809.40 −273.60 −198.56 −139.94 −507.96 −211.56 924.82 219.47
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FIG. 4. Behaviors of the constant coefficients (a) β1, (b) β2, (c) β∗
1 , and (d) β∗

2 as a function of the center-of-mass energy Ec.m.. The center
of mass energy is shown in units of Vb (barrier height).

where the values of the constant coefficients β∗
1 and β∗

2 for
each of two mentioned energies are listed in Table II.

It is remarkable that the isotopic behaviors of fusion cross
sections at below-barrier energies are in contrast with those
obtained at above-barrier ones, see previous studies such as
Refs. [1–6]. This difference is predictable because the fusion
reaction of two colliding nuclei takes place through quantum
tunneling at near- and below-barrier energies. Moreover by
comparing the isotopic behaviors of the fusion cross section
and barrier curvature, it seems that there are similar isotopic
trends between these quantities at subbarrier energies.

C. Energy dependence of the fusion cross section

As we noted earlier, in the present study, the isotopic depen-
dence of the fusion cross sections has been explored at near-
and below-barrier energies Ec.m. = 0.9Vb and Ec.m. = 0.95Vb.
By comparing the obtained results in Figs. 2 and 3, one
can demonstrate that the calculated values of the percentage
difference of σfus depend not only on the ratio of N/Z, but
also on the center-of-mass energy. Since the extracted values
of coefficients βi and β∗

i (with i = 1, 2) change with increase of
Ec.m. in the three considered isotopic regions, such dependence
can be attributed to these coefficients.

To achieve a systematic behavior of the energy depen-
dence of the function �σfus(%), we evaluate the values of
this function at an arbitrary energy range Ec.m. = 0.9Vb to
Ec.m. = 0.98Vb. These calculations are performed for example
using the Prox.2010 potential. It is shown that the extracted

values of β1 and β2 parameters have a regular trend as a
function of Ec.m. for neutron- or proton-rich systems, see
Fig. 4. By considering such extra dependence, Eqs. (17) and
(18) are modified as follows:

�σ Mod.
fus (%) = β1(Ec.m.)

(
N

Z
− 1

)
, for N/Z � 1, (20)

�σ Mod.
fus (%) = β2(Ec.m.)

(
N

Z
− 1

)
, for N/Z � 1, (21)

where the energy-dependent forms of the β coefficients can be
parametrized by the relation

βi(Ec.m.) = γ0i + γ1iEc.m. + γ2iE
2
c.m., for (i = 1,2), (22)

where the values of the constant coefficients γ(0,1,2)i are
presented in Table III.

TABLE III. Extracted values of the constant coefficients γ(0,1,2)i

and γ ∗
(0,1,2)i .

γ constants (×106) γ ∗ constants (×106)

γ01 −0.0740 γ ∗
01 −0.0218

γ11 0.1462 γ ∗
11 0.0401

γ21 −0.0721 γ ∗
21 −0.0183

γ02 0.0115 γ ∗
02 0.1301

γ12 −0.0265 γ ∗
12 −0.2623

γ22 0.0150 γ ∗
22 0.1322
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It must be noted that the energy dependence of the function
�σfus(%) can be considered for the full range of N/Z ratios. As
a result of Fig. 4, the extracted values of β∗

i have also a regular
behavior versus the center-of-mass energy in the selected
energy range of Ec.m. = 0.9Vb to 0.98Vb. By imposing such
dependence in Eq. (19), the analytical form of the percentage
difference of the fusion cross section is modified as follows:

�σ Mod.
fus (%) = β∗

1 (Ec.m.)

(
N

Z
− 1

)
+ β∗

2 (Ec.m.)

(
N

Z
− 1

)2

,

(23)

where the energy-dependent forms of β∗
1 (Ec.m.) and β∗

2 (Ec.m.)
functions are given as

β∗
i (Ec.m.) = γ ∗

0i + γ ∗
1iEc.m. + γ ∗

2iE
2
c.m., for (i = 1,2), (24)

where the values of the constant coefficients γ ∗
(0,1,2)i are

presented in Table III.

IV. CONCLUSION

In the present study, four versions of the proximity
potential and also the Wong model are used to analyze the
isotopic dependence of the barrier curvature and fusion cross

section at near- and below-barrier energies. The selected
fusion reactions include different isotopes systems under the
condition 0.5 � N/Z � 1.6 for their compound nuclei. Our
obtained results for the three considered regions of N/Z ratio
can be summarized as follows: (i) For proton- or neutron-rich
systems, the calculated values of the barrier curvature and also
the fusion cross section decrease linearly by adding neutrons.
(ii) The reduction behavior of the considered quantities are also
maintained in the whole range of 0.5 � N/Z � 1.6 with this
difference that they follow a nonlinear (second-order) trend at
this range. (iii) As a result, it must be noted that the isotopic
dependence of the fusion cross sections is different at below-
and above-barrier energies. In fact, in the previous study, it is
shown that the fusion cross sections are enhanced by increasing
the N/Z ratio at above-barrier energies [6], whereas they
follow a decreasing trend at near- and below-barrier energies.
The most important reason for the observed difference between
the isotopic behaviors of the calculated fusion cross section
at these two energy ranges can be attributed to the quantum
tunneling phenomenon through the Coulomb barrier which
takes place at below-barrier energies. (iv) In addition to the
isotopic dependence, the results of the present study reveal an
energy dependence for the function of �σfus(%), see Figs. 2
and 3.
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