
PHYSICAL REVIEW C 89, 064611 (2014)

Microscopic optical potentials for 4He scattering
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We present a reliable double-folding (DF) model for 4He-nucleus scattering, using the Melbourne g-matrix
nucleon-nucleon interaction that explains nucleon-nucleus scattering with no adjustable parameter. In the DF
model, only the target density is taken as the local density in the Melbourne g matrix. For 4He elastic scattering
from 58Ni and 208Pb targets in a wide range of incident energies from 20 to 200 MeV/nucleon, the DF model with
the target-density approximation (TDA) yields much better agreement with the experimental data than the usual
DF model with the frozen-density approximation in which the sum of projectile and target densities is taken as
the local density. We also discuss the relation between the DF model with the TDA and the conventional folding
model in which the nucleon-nucleus potential is folded with the 4He density.
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I. INTRODUCTION

Microscopic derivation of nucleon-nucleus (NA) and
nucleus-nucleus (AA) optical potentials is a goal of nuclear re-
action theory. The optical potential is an important quantity to
describe not only elastic scattering but also more complicated
reactions such as inelastic scattering, breakup, and transfer
reactions. For the latter case, the optical potential is used as a
key input in theoretical calculations such as the distorted-wave
Born approximation (DWBA) and the continuum discretized
coupled-channels (CDCC) method [1–3].

The g-matrix folding model is a powerful tool for deriving
NA and AA optical potentials. In the model, the optical po-
tential is calculated by folding the g-matrix effective nucleon-
nucleon (NN) interaction [4–13] with the target density for
NA scattering and the projectile and target densities for AA
scattering; see, for example, Refs. [14–18] for the folding
procedure. The folding model for NA and AA scattering are
referred to as the single-folding model and the double-folding
(DF) model, respectively. For NA elastic scattering, the model
is quite successful in reproducing the experimental data
systematically with no free parameter, when the Melbourne
g matrix [11] is used as an effective NN interaction in
the folding calculations. As an important advantage of the
g-matrix folding model, the model takes account of nuclear
medium effects. The g matrix is calculated in nuclear matter
and hence depends on nuclear-matter density ρ. When the
optical potential is evaluated from the g matrix in the folding
procedure, the nuclear-matter density is replaced by the target
density at the location of the interacting nucleon pair. This
approximation is called the local-density approximation.

The NA potential thus derived is nonlocal and thereby not
so practical in many applications. It is, however, possible to
localize the potential with the Brieva-Rook approximation [6].
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Recently, the validity of the approximation was shown in
Refs. [19,20]. In fact, the local version of the g-matrix
folding potential describes NA scattering with no adjustable
parameter [21] and is close to the phenomenological NA
optical potentials [22–25].

From a theoretical viewpoint based on multiple scattering
theory [26–28], the multiple NN scattering series in an
AA collision [28] is more complicated than that in an NA
collision [26,27]. In this sense, a microscopic understanding
of the optical potentials is relatively more difficult for
AA scattering than for NA scattering. One of the simplest
composite projectiles is 4He, since it is almost inert. For 4He-
nucleus elastic scattering, a systematic analysis was made [29]
by using the g-matrix interaction proposed by Jeukenne,
Lejeune, and Mahaux (JLM) [5]. The JLM g-matrix folding
model reproduces measured differential cross sections for
4He elastic scattering at incident energies ranging from 10 to
60 MeV/nucleon, if the real and imaginary parts of the folding
potential are reduced by about 25% and 35%, respectively. In
the JLM g matrix, nuclear medium effects are included only
partly, so that normalization factors are always introduced.
This fact strongly suggests that a parameter-free analysis based
on the Melbourne g-matrix folding model should be made for
4He-nucleus elastic scattering.

In the DF procedure, the frozen-density approximation
(FDA) is usually taken. Namely, one takes as the local density
the sum of projectile and target densities, ρP and ρT, at the
midpoint of the two interacting nucleons, one in the projectile
(P) and the other in the target (T):

g(ρ) = g(ρP + ρT). (1)

Very recently, the Melbourne g-matrix folding model with
the FDA was applied to 12C + 12C and 20–32Ne + 12C elastic
scattering at intermediate energies with success in reproducing
measured differential cross sections dσ/d� and total reaction
cross sections σR with no free parameter [18,30,31]. In
the calculations, the densities of unstable nuclei 20–32Ne
were evaluated by antisymmetrized molecular dynamics
(AMD) [32,33] with the Gogny-D1S interaction [34]. The
AMD wave functions successfully describe low-lying spectra
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of Ne isotopes [32]. The microscopic approach concluded that
30–32Ne in the “island of inversion” have large deformation
and 31Ne has a deformed halo structure [18,30,31]. This
indicates that the N = 20 magicity disappears. The Melbourne
g-matrix folding model is thus a powerful tool for not only
understanding the reaction mechanism but also determining
the structure of unstable nuclei.

In this paper, we microscopically describe 4He elastic
scattering from heavier targets such as 58Ni and 208Pb in a
wide range of incident energies from 20 to 200 MeV/nucleon,
using the Melbourne g-matrix DF model with no adjustable
parameter. After showing that the DF model with the FDA
cannot reproduce measured dσ/d� and σR for the scattering,
we propose a new approximation instead of the FDA. In the
approximation, only the target density is taken as the local
density. This approximation is referred to as the target-density
approximation (TDA) in this paper. The reliability of the
TDA is shown theoretically by using multiple scattering
theory [26–28] and phenomenologically by showing that
the DF model with the TDA well reproduces the data on
dσ/d� and σR. We also investigate the reliability of the
conventional nucleon-nucleus folding (NAF) model in which
the NA potential is folded with the 4He density.

In Sec. II, we recapitulate the Melbourne g-matrix DF
model and show the reliability of the TDA theoretically.
Numerical results are shown in Sec. III. Section IV is devoted
to a summary.

II. MODEL BUILDING

AA scattering can be described by the many-body
Schrödinger equation,(

TR + hP + hT +
∑

i∈P,j∈T

vij − E

)
�(+) = 0, (2)

with the realistic NN interaction vij , where TR stands for
the kinetic energy with respect to the relative coordinate
(R) between the projectile (P) and the target (T), E is the
total energy, and hP (hT) means the internal Hamiltonian
of P (T). Using multiple scattering theory [26,27] for AA
scattering [28], one can rewrite Eq. (2) as(

TR + hP + hT +
∑

i∈P,j∈T

τij − E

)
�̂(+) = 0 (3)

with the effective NN interaction τij defined by

τij = vij + vijG0τij (4)

with

G0 = PPPT

E − TR − hP − hT + iε
, (5)

where PP (PT) denotes the projection operator onto the space
of antisymmetrized wave functions of P (T). In the derivation
of Eq. (3), the antisymmetrization between nucleons in P and
those in T has been neglected, but it is shown in Refs. [36,37]
that antisymmetrization effects are well taken care of by using
a τij that is properly symmetrical with respect to the exchange
of colliding nucleons. Since the effective NN interaction τij

includes nuclear medium effects, the g matrix (gij ) is often
used as such a τij [4–12,16].

Since gij includes projectile- and target-excitation effects
approximately, Eq. (3) can be further rewritten into the single-
channel equation

[TR + U − Ein]ψ = 0, (6)

with the folding potential

U (R) = 〈	0|
∑

i∈P,j∈T

gij |	0〉, (7)

where the incident energy Ein is related to the total energy
E as E = Ein + e0(P) + e0(T) for the ground-state energies,
e0(P) and e0(T), of P and T. The wave function 	0 denotes the
product of the ground states of P and T, while ψ means the
relative wave function between P and T. This is nothing but
the g-matrix DF model. In the actual calculations, the FDA
shown in Eq. (1) is usually taken and the Coulomb potential
UCoul is added to the resulting U .

The folding potential is a key quantity to describe not
only elastic scattering but also other direct reactions. Inelastic
scattering to noncollective excited states and transfer reactions
are analyzed with the DWBA, whereas breakup reactions are
investigated the using CDCC method. The folding potential
is an essential input of the DWBA and CDCC calculations.
For inelastic scattering to states excited by vibrational and
rotational modes, we can consider two methods: the DWBA
and the coupled-channel formalism in which coupling poten-
tials among elastic and inelastic channels are obtained by
folding gij with the corresponding transition densities of P
and T [35]. At the present stage, it is not clear which method
is more reasonable, since the gij includes projectile- and
target-excitation effects on the elastic channel approximately.
This is an interesting question to be clarified in future.

Now we consider 4He scattering from heavier nuclei. In the
scattering, the projectile (4He) is hardly excited, whereas the
target is excited easily. As a good approximation we can hence
neglect projectile excitations. Namely, we can replace hP by
the ground-state energy e0(P) and hence PPPT by PT:

G0 ≈ PT

E − TR − e0(P) − hT + iε
. (8)

After the approximation, the τij includes nuclear medium
effects from T, but not from P. We should therefore replace
τij by the g matrix depending only on ρT:

g(ρ) = g(ρT). (9)

This is the TDA proposed in the present paper. The reliability
of the TDA is confirmed also phenomenologically in Sec. III
by comparing the theoretical results with the experimental data
and showing that the TDA is much better than the FDA.

Next we recapitulate the single-folding model for NA
scattering and the DF model for AA scattering. For detail of
the models, for example, see Refs. [6,12,13,15,19,21] for NA
scattering and Refs. [12,14,17,18,20] for AA scattering. The
DF potential U = V + iW consists of the direct and exchange
parts, UDR and UEX [14,17]:

U (R) = UDR(R) + UEX(R) + UCoul(R) (10)
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with

UDR(R) =
∑
μ,ν

∫
ρ

μ
P (rP)ρν

T(rT)gDR
μν (s; ρμν)d rPd rT, (11)

UEX(R) =
∑
μ,ν

∫
ρ̃

μ
P (rP,rP − s)ρ̃ν

T(rT,rT + s)

× gEX
μν (s; ρμν) exp [−i K (R) · s/M]d rPd rT, (12)

where rP (rT) stands for the coordinate of the interacting
nucleon from the center of mass of P (T), s = rP − rT + R,
and each of μ and ν denotes the z component of isospin. Here
the one-body and mixed densities, ρ

μ
P (rP) and ρ̃

μ
P (rP,rP − s),

of P are defined by

ρ
μ
P (rP) =

∑
a

φ
∗μ
P;a(rP)φμ

P;a(rP), (13)

ρ̃
μ
P (rP,rP − s) =

∑
a

φ
∗μ
P;a(rP)φμ

P;a(rP − s) (14)

with the single-particle wave function φP;a(rP) of P classified
with the quantum number a. The one-body and mixed
densities, ρ

μ
T (rT) and ρ̃

μ
T (rT,rT + s), of T are defined in the

same way.
The nonlocal UEX has been localized in Eq. (12) with

the local semiclassical approximation [6], where the local
momentum �K (R) of P relative to T is defined by �K(R) ≡√

2μPT[Ein − U (R)] with the reduced mass μPT between P
and T, and M = APAT/(AP + AT) for the mass numbers, AP

and AT, of P and T. The validity of the localization is shown
in Refs. [19,20]. The direct and exchange parts, gDR

μν and gEX
μν ,

of the g matrix depend on the local density at the midpoint of
the interacting nucleon pair:

ρμν = ρ
μ
P (rP − s/2) + ρν

T(rT + s/2) (15)

in the FDA and

ρμν = ρν
T(rT + s/2) (16)

in the TDA; see Ref. [18] for the explicit forms of gDR
μν and

gEX
μν . In Eqs. (11) and (12), the folding potentials are calculated

by direct numerical integration in the coordinate space.
We now consider NA scattering at an incident energy EN

in.
The single-folding potentials Uμ = Vμ + iWμ for proton (μ =
−1/2) and neutron (μ = 1/2) scattering are also composed of
UDR

μ and UEX
μ :

Uμ(rμ) = UDR
μ (rμ) + UEX

μ (rμ) + UCoul(rμ) (17)

with

UDR
μ (rμ) =

∑
ν

∫
ρν

T(rT)gDR
μν (s; ρμν)d rT, (18)

UEX
μ (rμ) =

∑
ν

∫
ρ̃ν

T(rT,rT + s)

× gEX
μν (s; ρμν) exp [−i Kμ(rμ) · s]d rT, (19)

where s = rμ − rT with rμ the coordinate of an incident
nucleon from the center of mass of T, the local density ρμν

is obtained by Eq. (16), and the local momentum �Kμ(rμ)
between the incident nucleon (N) and T is defined by
�Kμ(rμ) ≡ √

2μNT[EN
in − Uμ(rμ)] for the reduced mass μNT

between N and T.
When AA scattering at high Ein is compared with NA

scattering at EN
in = Ein/AP for heavy targets satisfying AT 


AP > 1, the local momenta �Kμ(rμ) and �K (R) nearly
agree with their asymptotic values �Kμ(∞) and �K (∞),
respectively, that satisfy the relation

Kμ(∞) = K (∞)/M. (20)

Taking the relation (20) and the TDA, one can get

UDR(R) ≈
∑

μ

∫
ρ

μ
P (rP)UDR

μ (R + rP)d rP, (21)

UEX(R) ≈
∑

μ

∫
ρ

μ
P (rP)UEX

μ (R + rP)d rP. (22)

In the derivation of Eq. (22), we have also used the approx-
imation ρ̃

μ
P (rP,rP − s) ≈ ρ̃

μ
P (rP,rP) = ρ

μ
P (rP), which if good

in the peripheral region of T that is important for elastic
scattering [19]. For 4He scattering from heavier targets at
high Ein, the DF potential UDR + UEX with the TDA is thus
obtained with reasonable accuracy by folding the nucleon-
nucleus potential UDR

μ + UEX
μ with the projectile density ρ

μ
P .

This is the NAF model mentioned in Sec. I. This model is
quite practical, since one can use the phenomenological NA
optical potential instead of Uμ. The validity of this model is
also investigated later in Sec. III. The condition that the local
momenta �Kμ(rμ) and �K (R) are close to their asymptotic
values is well satisfied at large R, even if Ein is small. Since
4He scattering from heavy targets is quite peripheral at small
Ein, one can expect that the NAF model is good also for small
Ein. This is also discussed in Sec. III.

III. RESULTS

We analyzed the measured dσ/d� and σR for 4He elastic
scattering from 58Ni and 208Pb targets in the region 20 �
Ein/AP � 200 MeV, using the following three models:

(1) the DF model with the TDA (the DF-TDA model),
(2) the DF model with the FDA (the DF-FDA model), and
(3) the NAF model.

For the 4He density ρP, we use the phenomenological proton-
density [38] determined from electron scattering in which the
finite-size effect due to the proton charge is unfolded in the
standard manner [39]. The neutron density is assumed to have
the same geometry as the proton one. For the target density
ρT, we take the matter densities calculated by the spherical
Hartree-Fock (HF) model with the Gogny-D1S interaction [34]
in which the spurious center-of-mass motion is removed in the
standard manner [18].

Figure 1 shows dσ/d� as a function of transfer momentum
q for 4He + 58Ni scattering at Ein/AP = 20–175 MeV. For
lower incident energies of Ein/AP = 20–60 MeV, the DF-
FDA model (dotted line) overestimates the experimental data
[40–43], but this problem is solved by the DF-TDA model
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FIG. 1. (Color online) Differential cross sections as a function of transfer momentum q for 4He + 58Ni elastic scattering at (a) Ein/AP =
20–72 MeV and (b) Ein/AP = 85–175 MeV. The cross section at each Ein/AP is multiplied by the factor shown in the panel. The solid (dotted)
line stands the results of the DF-TDA (DF-FDA) model, whereas the dashed line denotes the results of the NAF model. The experimental data
are taken from Refs. [40–45].

(solid line), which well reproduces the data. For higher
energies around Ein/AP = 175 MeV, meanwhile, the DF-FDA
model underestimates the experimental data [44], but this prob-
lem is also solved by the DF-TDA model, which reproduces the
data. For intermediate energies of Ein/AP = 72–120 MeV, the
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FIG. 2. (Color online) Total reaction cross section σR as a func-
tion of Ein/AP for 4He + 58Ni scattering at Ein/AP = 20–175 MeV.
The circles (squares) stand the results of the DF-TDA (DF-FDA)
model, whereas the triangles denote the results of the NAF model.
The experimental data are taken from [44,46].

difference between the DF-TDA and DF-FDA results is rather
small, so both the models reasonably reproduce the data. In
great detail, for Ein/AP = 85 MeV, the DF-TDA result is better
than the DF-FDA result at q � 2 fm−1, whereas the latter is
better than the former at q � 3 fm−1. For Ein/AP = 97 MeV,
the DF-FDA model is slightly better than the DF-TDA model,
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FIG. 3. (Color online) R dependence of the absolute value of the
elastic S-matrix element for 4He + 58Ni elastic scattering at Ein/AP =
26, 85, and 175 MeV. The solid, dashed, and dotted lines represent
the elastic S-matrix elements calculated with the DF-TDA model at
Ein/AP = 26, 85, and 175 MeV, respectively.
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FIG. 4. (Color online) Optical potentials for 4He + 58Ni elastic scattering at Ein/AP = 175 MeV. The solid (dotted) line stands for the
DF-TDA (DF-FDA) potential, whereas the dashed line denotes the NAF potential.

but this seems to be accidental, since for σR the DF-TDA
model (circles) yields better agreement with the data [44,46]
than the DF-FDA model (squares), as shown in Fig. 2. From
these analyses, we can conclude that the DF-TDA model is
much better than the DF-FDA model.

Next we compare the DF-TDA model with the NAF model
in Figs. 1 and 2. For σR, the NAF model (triangles) well
simulates the DF-TDA result (circles) and hence yields much
better agreement with the data [44,46] than the DF-FDA
model (squares). For dσ/d� at higher energies of Ein/AP =
120–175 MeV, as expected, the NAF results (dashed lines)
well reproduce the DF-TDA results (solid lines). Also for
lower energies of Ein/AP = 20–43 MeV, the NAF model well
simulates the DF-TDA results, since the elastic scattering is
quite peripheral, as shown below. For intermediate energies
of Ein/AP = 60–97 MeV, however, the NAF results deviate
sizably from the DF-TDA results.

Figure 3 shows the absolute value of the elastic S-matrix
element as a function of R for 4He + 58Ni elastic scattering,
where R is estimated from the angular momentum L between P
and T with the semiclassical relation L = RK(∞). The solid,
dashed, and dotted lines correspond to the elastic S-matrix ele-
ments calculated with the DF-TDA model at Ein/AP = 26, 85,
and 175 MeV, respectively. The 4He scattering becomes more

peripheral as Ein/AP decreases. Particularly at Ein/AP =
26 MeV, the scattering is quite peripheral. This is the reason
why the NAF model well simulates the DF-TDA model for
lower energies of Ein/AP = 20–43 MeV. Eventually, the NAF
model is good not only for higher energies of Ein/AP =
120–175 MeV but also for lower energies of Ein/AP =
20–43 MeV.

Figure 4 shows the folding potentials U = V + iW for
4He + 58Ni elastic scattering at Ein/AP = 175 MeV. The FDA
has stronger Pauli-blocking effects than the TDA because
of ρP + ρT � ρP. As a result of this property, the DF-FDA
potential (dotted line) is less attractive and less absorptive
than the DF-TDA potential (solid line). The NAF model
(dashed line) well simulates the DF-TDA potential in R � 5
fm, as expected. This is the reason why at Ein/AP = 175 MeV
the NAF model well simulates the DF-TDA model for both
dσ/d� and σR.

Figures 5 and 6 show the folding potentials for 4He + 58Ni
elastic scattering at Ein/AP = 85 and 26 MeV, respectively.
The Pauli-blocking effects due to ρP, which is represented by
the difference between the DF-TDA and DF-FDA potentials,
become large as Ein/AP decreases, as expected. For Ein/AP =
26 MeV, the NAF potential reproduces the DF-TDA potential
for R � 5 fm, but the former largely deviates from the latter
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FIG. 5. (Color online) Optical potentials for 4He + 58Ni elastic scattering at Ein/AP = 85 MeV. See Fig. 4 for the definition of lines.
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FIG. 6. (Color online) Optical potentials for 4He + 58Ni elastic scattering at Ein/AP = 26 MeV. See Fig. 4 for the definition of lines.

for R � 5 fm. The deviation does not contribute to dσ/d�
and σR, since the elastic S-matrix elements are quite small for
R � 5 fm. This is the reason why the NAF model is good for
lower energies. For Ein/AP = 85 MeV, meanwhile, the NAF
potential is largely deviated from the DF-TDA potential for
R � 5 fm, whereas the elastic S-matrix elements are small
only for R � 3 fm. The NAF model is thus not good for
intermediate energies around Ein/AP = 85 MeV.

Finally, we briefly discuss 4He + 208Pb elastic scattering.
Figure 7 shows dσ/d� as a function of q for 4He + 208Pb
scattering at (a) Ein/AP = 26–85 MeV and (b) Ein/AP =

97–175 MeV. The same statement is possible also for the 208Pb
target. Namely, the DF-TDA model yields better agreement
with the experimental data [44,47–49] than the DF-FDA
model. The NAF model well simulates the DF-TDA model
for lower energies around Ein/AP = 30 MeV and also for
higher energies around Ein/AP = 175 MeV.

IV. SUMMARY

We presented a reliable double-folding model for 4He
scattering from heavier targets such as 58Ni and 208Pb in a
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FIG. 7. (Color online) Differential cross sections as a function of transfer momentum q for 4He + 208Pb elastic scattering at (a) Ein/AP =
26–85 MeV and (b) Ein/AP = 97–175 MeV. The cross section at each Ein/AP is multiplied by the factor shown in the panel. The solid (dotted)
line stands the results of the DF-TDA (DF-FDA) model, whereas the dashed line denotes the results of the NAF model. The experimental data
are taken from [44,47–49].
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wide range of incident energies from 20 to 200 MeV/nucleon:
the Melbourne g-matrix DF model with the target-density
approximation (TDA), i.e., the DF-TDA model. The reli-
ability of the DF-TDA model was shown theoretically by
using multiple scattering theory and phenomenologically by
showing that the model reproduces measured dσ/d� and
σR. The DF-TDA model yields much better agreement with
the experimental data than the usual DF model with the
frozen-density approximation.

We also investigated the reliability of the NAF model in
which the NA potential is folded with the 4He density. This
model is quite practical, since we can use the phenomeno-
logical NA optical potential instead of the microscopic NA
optical potential. The NAF model well simulates the DF-TDA
model for lower energies around Ein/AP = 30 MeV and also
for higher energies around Ein/AP = 175 MeV.

The success of the DF-TDA model for 4He scattering comes
from the fact that 4He is strongly bound and has no excited state

below 20 MeV. Weakly bound nuclei such as d and 6He do not
have these properties. This indicates that the DF-TDA and NAF
models are not good for explaining the scattering. However,
it is well known that the scattering well described by three-
and four-body models [1–3]. For a 6He projectile, for example,
the scattering is described by the 4He + n + n + T four-body
model [3] in which the potential between 4He and a target T is
obtained by using the double-folding model and the potential
between n and T is obtained by using the single-folding model
consistently. If the DF-TDA model is applied, it will provide
an accurate optical potential for the 4He + T subsystem.
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