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Continuum-discretized coupled-channels calculations with core excitation
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The effect of core excitation in the elastic scattering and breakup of a two-body halo nucleus on a stable
target nucleus is studied. The structure of the weakly bound projectile is described in the weak-coupling limit,
assuming a particle-rotor model. The eigenfunctions and the associated eigenvalues are obtained by diagonalizing
this Hamiltonian in a square-integrable basis (pseudostates). For the radial coordinate between the particle and
the core, a transformed harmonic oscillator (THO) basis is used. For the reaction dynamics, an extension of the
continuum-discretized coupled-channels (CDCC) method, which takes into account dynamic core excitation and
de-excitation due to the presence of noncentral parts in the core-target interaction, is adapted to be used along

with a pseudostates (PS) basis.
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I. INTRODUCTION

Nuclei in the proximity of the proton and neutron driplines
are often weakly bound, or even unbound, and hence their
properties are influenced by positive-energy states. Collisions
of these systems with stable nuclei will also be influenced
by the coupling to the unbound states. This effect was first
noticed in deuteron-induced reactions, and later observed in
the scattering of other loosely bound nuclei, such as halo
nuclei. Several formalisms have been developed to account
for the effects of the coupling to breakup channels on
reaction observables: continuum-discretized coupled-channels
(CDCC) method [1,2], the adiabatic approximation [3,4],
the AGS (Alt, Grassberger, and Sandhas) formulation of
the Faddeev equations [5,6], and a variety of semiclassical
approximations [7-12].

Typically, these approaches make use of a few-body
description of the weakly bound nucleus. Furthermore, in their
standard formulations, the constituent fragments are consid-
ered to be inert and, therefore, possible excitations of them are
ignored. This is a good approximation for deuteron scattering,
for which both constituents can be considered inert at the
energies of interest in nuclear studies, but it is questionable for
more complex systems. Moreover, bound and unbound states
of the few-body system are considered to be well described
by pure single-particle configurations. This approximation
ignores possible admixtures of different core states in the
wave functions of the complete projectile. These admixtures
are known to be important, particularly in the case of well-
deformed cores, as for example, in the IBe halo nucleus.
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In this work, we concentrate in two-body weakly bound
nuclei composed of a core plus a valence particle. For such
systems, core excitation effects in elastic breakup have been
recently studied with an extension of the distorted wave
Born approximation (DWBA) formalism, which includes them
within a no-recoil approximation [13—15], referred to hereafter
as no-recoil XDWBA. These calculations have shown that
core excitation effects have a sizable influence on the mag-
nitude of the breakup cross sections [13,14]. Moreover, these
core excitation effects interfere with the valence excitation
mechanism, altering the diffraction pattern in the resonant
breakup angular distributions [15]. This method, being based
in the Born approximation, ignores higher order effects (such
as continuum-continuum couplings) and cannot be applied to
describe the effect of breakup on elastic scattering.

The effect of core excitation on elastic scattering has also
been studied [16], using an extension of the adiabatic model
of Ref. [17]. The formalism was applied to ®B + '>C, and
some contributions due to "Be core excitations were found at
large angles. Due to the use of the adiabatic approximation
this method is, however, restricted to intermediate and high
energies.

A recent attempt to incorporate core excitation effects
within a full-fledged coupled-channels calculation was done in
Ref. [18], using an extended version of the CDCC formalism
(XCDCC). The method was applied to the scattering of one-
neutron halo nuclei, using deformed valence-core and core-
target potentials to account for the core excitation mechanism.
These calculations suggested a very small effect of core
excitation,! in contrast with the results of Refs. [13—15].

'Some equation errors and bugs in the programming of Ref. [18]
(and subsequent related papers) were detected during the control
checks of the present work. An erratum to Ref. [18] has already been
published by its authors [19,20]. See also the comment in Sec. IV.A.
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In this work, we revisit the formulation of the XCDCC
method of Ref. [18] and perform calculations for the elastic
scattering and breakup of !'Be on several targets at low and
intermediate energies. The aim of this work is to provide an
improved description of the reaction dynamics, as compared
to the no-recoil DWBA method and also to pin down the
effect of core excitation in elastic scattering and breakup.
Our description of the reaction dynamics follows closely the
derivation of Ref. [18], but a new code to compute the required
coupling potentials has been developed in order to provide an
independent assessment of the importance of core excitation
effects in the scattering of halo nuclei. The main difference
between our approach and that of Ref. [18] relies on the
description of the states of the weakly bound projectile. In
Ref. [18], the wave functions for these states were obtained by
direct integration of the multichannel Schrodinger equation,
subject to the appropriate boundary conditions for bound
or unbound states. The latter were then grouped into bins,
constructed by superposition of scattering states, following the
standard average procedure. In this work, we use instead the
so-called pseudostate method, in which the projectile states are
approximated by the eigenstates of the Hamiltonian in a trun-
cated basis of square-integrable functions. Negative-energy
eigenvalues correspond to the bound states of the system,
whereas those located at positive energies, usually referred
to as pseudostates (PS), can be regarded as a finite and discrete
representation of the continuum spectrum. The method has
been successfully applied to two- [21-23] and three-body
problems [24-27]. In particular, we make use of a transformed
harmonic oscillator (THO) basis. This basis has been applied
to the case of spherical systems [23] and also to deformed
systems [28]. In both cases, the THO basis is used to describe
the relative motion between the clusters and it is obtained by
applying a local scale transformation (LST) to the harmonic
oscillator (HO) basis. The LST, adopted from a previous
work of Karataglidis et al. [29], is such that it transforms
the Gaussian asymptotic behavior into an exponential form,
thus ensuring the correct asymptotic behavior for the bound
wave functions. The combined XCDCC + THO formalism is
applied to Be + D, IIBe 4 %47n, and ''Be + 28Pb reactions
and the effect of core excitation is discussed in each case (light,
medium, and heavy target).

The work is structured as follows. In Sec. II we briefly recall
the THO basis used for the description of two-body systems
with core excitation. In Sec. III, the XCDCC formalism,
particularized to our basis functions, is revisited. In Sec. IV
the XCDCC + THO method is applied to several reactions
induced by the ' Be nucleus. Finally, in Sec. V the main results
of this work are summarized.

II. STRUCTURE OF THE PROJECTILE IN A THO BASIS

In this section, we briefly review the features of the PS
basis used in this work to describe the states of a two-body
composite projectile, made of a valence particle (v) and a core
nucleus (c) (see schematic in Fig. 1). The Hamiltonian of this
system, H,, is described in the weak-coupling limit and is
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FIG. 1. (Color online) Schematic sketch of the weakly bound
projectile composed by a core (c¢) and a valence particle (v). To
study the scattering of the composite projectile with an inert target,
within a three-body model, the relevant coordinates are the relative
coordinate of the valence particle with respect to the core () and
that between the center of mass of the projectile and the target (13).
Note that the valence-target and core-target coordinates (7, and 7.,
respectively) can be written in terms of 7 and R.

written as

where T(7) is the core-valence kinetic energy operator, V.
is the valence-core interaction, and A.(£) is the intrinsic
Hamiltonian of the core.

In the calculations presented in this work, the composite
system (projectile) is treated within the particle-rotor model
[30]. Therefore, we assume that the core nucleus has a
permanent deformation which, for simplicity, is taken to be
axially symmetric. Thus, we can characterize the deformation
by a single parameter, ;. In the body-fixed frame, the surface
radius is parameterized as R(é )= Roll + B Yzo(é)], with Ry
as an average radius. Starting from a central potential, V.9 (r),
the full valence-core interaction is obtained by deforming this
interaction as

Ve 7,6) = VO(r — 8,Y2(8)), 2)

with 8, = B, Ry, usually called deformation length. By trans-
forming this to the space-fixed reference frame and expanding
the spherical harmonics, this deformed potential reads (see,
e.g., Ref. [31])

Vie(r,0,0) = VAT Y Vi (Dho(e, B.7) Y3 (3)
A

with the radial form factors

~

)\‘ l
Vi =7 / Voelr — Y00 O Pow)du, (&)
—1

(with u = cos 6’ and A=V20+ 1). Dﬁo(a,ﬂ,y) is a rotation
matrix, depending on the Euler angles {«,,y} which define
the transformation from the body-fixed frame to the laboratory
frame.

The eigenstates of the Hamiltonian and their associated
wave functions can be obtained by solving a system of
differential equations, as done in Ref. [18]. Alternatively, they
can be obtained by diagonalizing the Hamiltonian matrix in a
finite basis of square integrable functions. In this work we use
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this second procedure. For that, we choose a basis of the form
¢TH 0

ra o, 78 = RO DVies);, () ® 91 sym,s  (5)

where the labelq o denotes the set of quantum numbers
{¢,s,j, I}, with £ (valence-core orbital anguljir momentum)
and 5 (spin of the valence) both coupled to j (total valence
particle angular momentum). The total spin of the projectile,
J »», 1 given by the coupling between ; and T (intrinsic spin
of the core). The valence-core relative motion is described by
the functions R} 9 (r) (radial part) and V) ; (#) (spin-angular
part), while the functlons @ (€) describe the core states. The
functions RTH O(r) are generated by applying a local scale
transformatlon (LST) to the spherical HO basis functions,

RI[O(r) = \/ZR”"[sm] (6)

where RH O[S(r)] (with i = 1,2, ...) is the radial part of the
HO functlons and s(r) defines the LST. For the latter we use
the analytical prescription by Karataglidis et al. [29]

1 1 m 1 m _i
- —|(- : 7
=7 [() *(yﬁ” @

that depends on the parameters m, y and the oscillator length b.
This transformation was shown in Ref. [29] to depend weakly
on m. The value m = 4 was proposed in Ref. [29] and adopted
here. Thus, the adopted LST depends on y and b. The ratio
y /b determines the range of the basis functions and the density
of eigenstates as a function of the excitation energy. As y /b
decreases, the basis functions explore larger distances and the
corresponding eigenvalues concentrate at smaller excitation
energies.

The eigenstates of the Hamiltonian (1) are expressed as an
expansion in the THO basis,

o) (76 = ZZCM N GR R )
i=1 «

where N is the number of radial functions retained in the
truncated THO basis, n is an index identifying each eigenstate,
and C}! g, are the expansion coefficients of the pseudostates
in the truncated basis. The sum in i can be performed to get

J,
o) 1,0 = 3 OB © @y, ©)

o

with
u,,a(r)_rZClaJ RIFO (). (10)

The negative eigenvalues of the Hamiltonian (1) are identified
with the energies of bound states whereas the positive ones
correspond to a discrete representation of the continuum
spectrum.

III. SCATTERING FRAMEWORK

Once the projectile wave functions have been obtained,
we proceed to solve the three-body scattering problem. The
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formalism has been derived and presented in detail in Ref. [18]
so we summarize here the main formulas and adapt them to our
PS scheme. We express the three-body wave functions W, y,

in terms of the set {CD( }

Wy, (RF,E) = Zx "R[YLR) ® B F.6)],

(1)

where, in addition to the prgjectile coordinates 7 and &, we
have the relative coordinate R between the projectile center of
mass and the target (assumed to be structureless); see Fig. 1.
The different quantum numbers are labeled by 8 = {L, J,, ,n}
where L (projectile-target orbital angular momentum) and J
both couple to the total spin of the three-body system JT. The
spin of the target is ignored for simplicity of the notation.

The radial coefficients, x A;{T(R), from which the scattering
observables are extracted, are calculated by inserting Eq. (11)
in the Schrodinger equation, giving rise to a system of coupled
differential equations. The main physical ingredients of these
coupled equations are the coupling potentials:

Uyt (R) = (B: Jr |V (RF.8) + Vu(RPIB Jr).  (12)
where we follow the notation used in Ref. [18],
(RF.£18:Jr) = [Y(R) @ ®Y)) F.6)], . (13)

The valence particle-target interaction (V,,) is assumed to
be central and will be represented by a phenomenological
optical potential describing the valence particle-target elastic
scattering at the appropriate energy per nucleon. On the other
hand, the core-target interaction is assumed to contain a
noncentral part, responsible for the dynamic core excitation
and de-excitation mechanism. In general, this interaction can
be expressed in the multipolar form:

Ve (R.7,8) = Vi (7 8) = VAT Y Voy(re,§)Y oy (Fe),  (14)
Qq

where 7. = R —aF (see Fig. 1), with a = m,/(m, + m.)
(m, and m, denote the core and valence particle masses,
respectively).

In some models, such as in the rotational model assumed
here, the multipole terms Vi, (r.,&) factorize into a radial part
and a structure part, i.e.,

Va(R.7.8) = Van Y VE(rITS, ()Y gq(e).  (15)
Qq

Note that Vct(ﬁ ,F,&) will contain, in general, both Coulomb
and nuclear parts, so in this formalism both interactions
are treated simultaneously. The matrix elements (12) were
explicitly evaluated in Ref. [18], giving rise to the expression

j A]/)(_])J,nLJT Z(_I)A[’\\z
A

A L L\[J, I, A
X
0 0 0)|L L J

Usly (R) =

F.;\pn:J]/,n’(R) .
(16)
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The form factors F' J‘})n: . (R) are given by

A . KQx KQMrA
FJ/,n:J,’,n/(R) - Z Ran:a’n’(R)Pa:a’ ’
K Qia,a’

with the radial integrals:

Jp*

RKO

where
oK R) = —
o (1 R) )

The coefficients PX %4

e are explicitly written as

pKora

(s o ) !

which, in addition to geometric coefficients, contain the
structure reduced matrix elements (I|Zo(&)||1"). Specific
models enter into these expressions through the radial form
factors Vc%)(rc) and the structure reduced matrix elements. We
give explicit expressions of these magnitudes for the model
used in the calculations presented in this work.

For the Coulomb part of the core-target interaction, we use
the usual multipole expansion

4T Ze
coul /= _ t
Vc[ (rL’ag) - QX(I: 2Q + 1 r¢-Q+1

M(EQq)Yoq(Fe),  (21)

where M(E Qq) is the multipole electric operator. Compared
with the general expression (14) we have

4r 7,
Voy(re.) = ZQ%FQ:’] M(EQqg). 22)

For the nuclear part of the core-target interaction, we
follow the same approach as for the valence-core interaction,
that is, we start with a central interaction, VS,O )(rc), that is
deformed assuming a quadrupole deformation characterized
by a deformation length 8,. The resulting potential is expanded
in spherical harmonics and transformed to the laboratory
frame, giving rise to the result analogous to that of Eq. (3),

V3 (re,0,0) = VAT Y VI (oD@ By Yoy (o), (23)
Qq

with {&’,8’,y’} the corresponding Euler angles and the radial
form factors

A 1
V2o =2 f VI — 8, ¥oo(0,0) Po)du,  (24)
-1

with u = cos(#’). In comparison with Eq. (15) we have Ty, =

Dﬁ)*. The reduced matrix elements of this operator are to be
calculated between rotational states belonging to a rotational

an:a’n’(R) =I€ f Mn,ot(r)vcg[((r’R)R)‘(ar)Qi)\unf),o/(r)dr s

1 /“ VE@)
— rQ

c

Z/
0
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(1N SO A2 YN K x» A co)! /
= (=1 QKJM(O 0 0),/—%,[2@_M],UHTQ(QHH

a7
’ (18)
Px(u)du; u=R-7. (19)
J, J. A
A A Q”j i A’} pop ,
y Jj J AN, 20
>{A o-x K[l ¢ s[]7 0

(

band characterized by a projection of / along the symmetry
axis K. Explicitly (see, e.g., [32]),

(KI|D2*| K1) = ['{I'K QO|IK), (25)

where the convention of Bohr and Mottelson [30] for reduced
matrix elements has been assumed.

IV. APPLICATION TO ''Be REACTIONS

As an illustration of the formalism presented in the
preceding sections, we consider the scattering of the halo
nucleus ''Be on 'H, %Zn, and 2°®Pb targets, comparing with
available data for these reactions. The bound and unbound
states of the !'Be are known to contain significant admixtures
of core-excited components [33-35], and hence core excitation
effects are expected to be important. This has been in fact
confirmed in the case of resonant breakup of this nucleus on
'H [13,14] and '?C targets [15], using the no-recoil XDWBA
method.

As in previous works [13], the !'Be structure is described
with the particle-rotor model of Bohr and Mottelson with
the Hamiltonian of Ref. [36] (model Bel2-b), which consists
of a Woods-Saxon central part, with a fixed geometry (R =
2.483 fm, a = 0.65 fm) and a parity-dependent strength (V, =
—54.24 MeV for positive-parity states and V, = —49.67 MeV
for negative-parity ones). The potential contains also a spin-
orbit term, whose radial dependence is given by the derivative
of the central Woods-Saxon part, and strength V,, = 8.5 MeV.
For the °Be core, this model assumes a permanent quadrupole
deformation B, = 0.67 (i.e., 6, = R = 1.664 fm). Only
the ground state (07) and the first excited state (27, E, =
3.368 MeV) are included in the model space. For the valence-
core orbital angular momentum, we consider the values £ < 3.

The particle-rotor model that we assumed may seem
unrealistic, but it has been proved to provide a reasonable
description of 1'Be [13,37,38] and other nuclei, such as several
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odd carbon isotopes [18,37,39]. More realistic descriptions of
"'Be have indeed been proposed in the literature (see, e.g.,
Refs. [40—42]) but the use of these more sophisticated structure
models would make the evaluation of the coupling potentials
much more involved (this can be seen for example in the
microscopic cluster model recently applied to the description
of the scattering of “Li [43]). For the purpose of the present
work, we believe that the assumed rotor model provides a
simple but still reliable choice.

To generate the THO basis for all the studied cases here, we
use the LST of Eq. (7) withm = 4 and b = 1.6 fm. The number
of oscillator functions N and the y parameter are determined
specifically for each reaction and are specified below.

A. Application to "Be + p resonant breakup

We first apply the XCDCC 4 THO method to the breakup
of ''Be on a proton target at 63.7 MeV /nucleon and compare
with the data of Ref. [44]. The measured data consist in
angular distributions for two intervals of the neutron-'"Be
core energy: (i) Er =0-2.5 MeV and (ii) Ey = 2.5-
5.0 MeV. The first interval contains a narrow 5/2% resonance
at E = 1.28 MeV [45]. This resonance has a dominant
0Be(0") ® v1ds), parentage and a small '"Be(2*) ® 12512
component. The cross section for the second interval contains
presumably contributions coming from several resonances,
namely, E, = 2.64 MeV (3/27), 3.40 MeV (3/27, 3/21),
3.89 MeV (5/27), and 3.95 MeV (3/27) [45]. Previous
calculations [13,14], based on the no-recoil XDWBA method,
showed indeed that the main contribution to the lower energy
angular distribution arises from the single-particle excitation
mechanism populating the 5/ ZT resonance, whereas for the
higher energy angular distribution the main contribution comes
from the excitation of the 3/2; resonance due to the collective
excitation of the '°Be core.

We repeat the calculations of Refs. [13,14] using the more
sophisticated XCDCC formalism for the reaction dynamics
and the THO PS basis for the ''Be states. The LST was
generated with the parameter y = 1.6 fm'/2. The number
of oscillator functions was N = 14. Continuum states with
Jp = 1/2%, 3/2*, and 5/2% were found to be enough for
convergence of the calculated observables. The proton-neutron
interaction was represented by a simple Gaussian interaction
derived in Ref. [14], while for the core-target potential we used
the CH89 optical model parametrization [46], but modified
the real and imaginary depths in order to reproduce the
experimental available elastic and inelastic data of '’Be + p at
59.2 MeV /nucleon [47]. In order to reproduce the magnitude
of the inelastic data, this potential required a deformation
length of §, = 1.9 fm, which is somewhat larger than the
deformation used in our adopted rotor model for 'Be but
consistent with the values extracted in the DWBA analysis
done in Ref. [47] for the same data. For the nuclear part,
both monopole Q = 0 and quadrupole Q =2 terms were
included. For the Coulomb part, following the expression
given in Eq. (21), both terms are also considered even though
the Q = 0 term gives the main contribution for such a light
system. The value of (OF||M(E2)||2") was derived from
the experimental value of B(E2;0" — 2%) = 53(6) ¢? fm*
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FIG. 2. (Color online) Differential breakup cross sections, with
respect to the outgoing '"Be* c.m. scattering angle, for the breakup
of '"Be on protons at 63.7 MeV/nucleon. Top and bottom panels
correspond to the neutron-core relative energy intervals E.; = 0—
2.5 MeV and E = 2.5-5 MeV, respectively.

[48]. The reorientation term 27 <> 2 was also included, and
the value of the reduced matrix element (27| M(E2)||2*)
was derived from the computed value of (0" M(E2)|2"),
assuming that the 0" and 2 states of '°Be are members of the
same rotational band with K™ = 0%,

The results of these calculations are shown in Fig. 2.
The solid line corresponds to our full coupled-channels
calculation, including couplings to all orders. Considering
the experimental error bars, the agreement with the data is
fairly reasonable for both energy intervals, except for the first
data point in the higher energy interval. These results are
qualitatively similar to those found in Refs. [13,14] using the
no-recoil XDWBA approach.

To illustrate the importance of higher-order effects, we
include also the first-order calculation assuming a one-step
breakup mechanism (dashed lines). Differences between the
latter and the full calculations are small but not negligible,
indicating that, even at these relatively high incident energies,
higher order effects are significant and hence an accurate
description of these reactions require going beyond the simpler
DWBA approximation. We also include the results obtained
omitting the Q = 2 term in the nuclear part of the core-target
interaction, but keeping the deformation in the neutron-core
interaction (dotted line). This result differs significantly from
the full calculation, indicating very clearly the sizable effect
of the dynamic core excitation mechanism during the collision.
The difference is particularly noticeable in the higher energy
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interval, due to the fact that this interval is dominated by the
3/2% resonance, which is mostly populated by a core excitation
mechanism [13].

It is worth noting that our results differ qualitatively from
those performed in Ref. [49] for the same reaction, using
also the XCDCC formalism, but with a binning discretization
scheme. In benchmarking the results of the present work
with those from Ref. [49], several mistakes were found in
the equations of that reference, as well as in their numerical
implementation. These mistakes result in a significant under-
estimation of core excitation effects [19,20]. In addition, some
differences are expected due to the different choice of the p-n
interaction.

We have studied also the dependence of the core excitation
effect with the incident energy. For this, we have performed
additional XCDCC calculations for the same reaction at 10
MeV /nucleon and 200 MeV /nucleon. At both energies, we
use the CH89 parametrization for the '“Be + p interaction.
Because of the lack of experimental data at those energies,
we keep the deformation length obtained from the fit of the
inelastic data performed at 59.2 MeV (8, = 1.9 fm), and adjust
the potential depths in order to reproduce the elastic and
inelastic scattering of '"Be 4 p obtained with a microscopic
folding potential, generated with the effective nucleon-nucleon
interaction of Jeukenne, Lejeune, and Mahaux (JLM) [50] and
transition densities from antisymmetrized molecular dynamics
(AMD) calculations (see Ref. [51] for a similar approach).
The results are shown in Fig. 3. The calculations shown in the
middle panels are just the same as those shown in Fig. 2, but
are included here to facilitate the comparison using a wider
angular range. One can see that the core excitation energy
is important at the three incident energies, particularly in the
region containing the 3/2% resonance.

B. Application to !'Be + *Zn elastic and breakup

As a second example, we consider the IIBe + %47n reaction
at 28.7 MeV. Quasielastic (elastic + inelastic) and inclusive
breakup data from this reaction have been reported in Ref. [52]
and have been analyzed within the standard CDCC framework
in several works [53-55].

We compare these data with XCDCC calculations. For the
neutron-target interaction, we used the same optical potential
used in Ref. [54]. For the '°Be + *Zn interaction, we started
from the optical potential derived in Ref. [52] from a fit of the
elastic scattering data for this system. To account for the core
excitation mechanism, this potential is deformed with the same
deformation length used in the structure model, i.e., 6, = 1.664
fm. Coulomb multipoles (monopole and quadrupole) were also
included, as in the previous case, according to the expansion
(21). To recover the description of the 10Be + %47Zn elastic
data, once these additional couplings are included, the optical
potential depths were readjusted, giving rise to the modified
values Vo = —84.5 MeV and W, = —34.1 MeV, for the real
and imaginary parts, respectively.

For the !'Be projectile, continuum states up to J, = 7/2
(both parities) were included. These states were obtained by
diagonalizing the ''Be Hamiltonian in a THO basis with
N = 10 radial functions, £ < 3 and / = 0,2. For the LST,
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FIG. 3. (Color online) Energy dependence of the core excitation
effects in the breakup of ""Be on protons. The top, middle, and
bottom rows correspond to the bombarding energies 10, 64, and
200 MeV /nucleon, respectively. The left and right panels are for
the neutron-core energy intervals E. = 0-2.5 MeV and E = 2.5—
5 MeV, respectively. In each panel, the solid line is the full XCDCC
calculation, whereas the dotted line is the XCDCC calculation without
deformation in the p + °Be potential.

the parameter y = 1.8 fm'/? was used, although additional
tests were done with other choices to verify the independence
and stability of the results with respect to parameters b and y .
After diagonalization, only eigenstates below 13 MeV were
retained for the coupled-channels calculations. We verified
that including eigenstates up to 14 MeV had a very small
effect on the studied observables.

The calculated differential quasielastic cross section is
compared with the data in Fig. 4. The dotted line is the XCDCC
calculation neglecting the coupling to the breakup channels,
that is, including only the ''Be ground state and first excited
state. As expected, this calculation largely fails to describe
the data. The solid line is the full XCDCC calculation. This
calculation describes well the data in the full angular range. We
have also included the result obtained with the standard CDCC
calculation from Ref. [54]. Except for some small differences
around 6., & 30° it turns out to be very similar.

Although the data of Ref. [52] did not provide the
separate contribution of the inelastic cross section for the
1/2~ bound state at E, = 320 keV, it is worth comparing
the values computed with the two methods. In the CDCC
calculations of Ref. [54], the total inelastic cross section for
the population of this state was about 750 mb, whereas in
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FIG. 4. (Color online) Quasielastic differential cross section, rel-
ative to Rutherford, for the scattering of 'Be on *Zn at Ej,;, =
28.7 MeV. The dot-dashed line (red online) is the standard CDCC
calculation, without core excitation, from Ref. [54]. The solid line
(blue online) is the XCDCC calculation. The dotted line is the
XCDCC calculation neglecting the coupling to the breakup channels.
Experimental data are from Ref. [52].

the XCDCC calculation this value is reduced to ~566 mb.
The difference can be understood comparing the values of the
electric transition probability B(E1;g.s. — 1/27) for these
two models. The single-particle model used in Ref. [54] yields
B(El;g.s. — 1/27) = 0.260 e*fm?, whereas for the PRM
model used here it is B(E1;g.s. — 1/27) = 0.140 ¢*> fm?.
This value is in better agreement with the experimental one,
B(E1;g.s. — 1/27) = 0.116 ¢ fm® [56], so we expect that
the inelastic cross section calculated with XCDCC be more
realistic than that obtained with the standard CDCC method.
The same experiment also provided the inclusive '°Be an-
gular distribution. In Fig. 5 we compare the data from Ref. [52]

\ \ \
o DiPietro et al.
3 - - Standard CDCC 4
L — XCDCC: full ]

do/dQ (mb/sr)

B0 (deg)

FIG. 5. (Color online) Differential cross section, as a function
of the laboratory angle, for the '°Be fragments resulting from the
breakup of "Be on ®Zn at E};, = 28.7 MeV. The dashed line (red
online) is the standard CDCC calculation, without core excitation,
from Ref. [54]. The solid line (blue online) is the XCDCC calculation.
Experimental data are from Ref. [52].
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with the present XCDCC calculations and the standard CDCC
calculations from Ref. [54]. It is worth noting that the data
are referred to the '°Be laboratory angle. The calculation of
this observable within the XCDCC framework would require
an appropriate kimematical transformation, similar to that
developed in Ref. [57] for the standard CDCC method, but
this formalism is not yet available for XCDCC. Consequently,
we perform an approximate transformation, approximating the
10Be scattering angle by the !'Be* scattering angle.

The XCDCC calculation is found to be larger than the
CDCC result. This increase improves the agreement with
the data of Ref. [52] although some underestimation is still
observed. This remaining discrepancy could be due to the
limitations of the !'Be model used in the XCDCC calculations
but also to the contribution of nonelastic breakup events in the
data. It is worth noting that the CDCC and XCDCC methods
provide only the so-called elastic breakup component, that is,
the projectile dissociation in which both the neutron and core
survive and the target is left in the ground state. However, since
the neutrons were not detected in the experiment of Ref. [52],
the data might contain also contributions from other processes
involving the absorption of the neutron by the target and/or the
target excitation.

In the case of 'Be 4 p breakup at intermediate energies,
we found that the deformed part of the core-target interaction
gives rise to an increase of the breakup cross sections. Now
we study the effect of these terms in the !'Be +%Zn case.
For this purpose, we compare in Fig. 6 the full XCDCC
calculation, described above, with another XCDCC calcula-
tion, in which the '°Be + %Zn potential is described with the
central optical potential of Refs. [52,54]. Both calculations
give almost identical results for the quasielastic and breakup
data. This result indicates that, at these low incident energies
(a few MeV per nucleon) and for medium-mass targets, the
dynamic core excitation effect due to the core-target potential
is well represented by an optical potential describing the
corresponding elastic data. Consequently, at these energies,
the main effect of core excitation comes from the admixtures
of core-excited components in the projectile wave functions.

C. Application to !"Be 4 2%Pb breakup

As a final example, we consider the reaction of Be on
a 208Pb target. This reaction has been measured by several
groups [58-60] at intermediate energies (several tens of MeV
per nucleon) with the aim of obtaining information on the
dipole Coulomb response of ''Be as well as on the amount
of s-wave component in the ground state. We have performed
XCDCC calculations at 69 MeV /u, which corresponds to the
energy of the experiment performed at RIKEN by Fukuda et al.
[60].

Continuum states with J, = 1/2%, 3/2%, and 5/2% were
considered (test calculations revealed that the effect of the
5/27 states is negligible for the studied angles). These states
were generated with a THO basis with N = 15 states and
y = 1.8 fm!/2 (b = 1.6 fm as in the preceding cases). After
diagonalization, all eigenstates below 8 MeV were retained for
the coupled-channels calculation.
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FIG. 6. (Color online) Quasielastic differential cross section
(top) and breakup differential cross section (bottom) for ''Be on
%7Zn at Ej, = 28.7 MeV, compared with XCDCC calculations, for
different choices of the '°Be +%Zn potential. See text for further
details.

For the neutron-target interaction we used the parametriza-
tion of Koning and Delaroche [61]. The central part of the
core-target potential was taken from Ref. [62] (first line of
Table III). As in the previous case, this potential is deformed
with a deformation length of §, = 1.664 fm. At these relatively
high energies the breakup process is essentially a one-step
mechanism connecting the ground state directly with the
breakup channels. Moreover, at the very forward angles
measured in the experiment of Ref. [60] one expects that
the breakup is largely dominated by the dipole Coulomb
couplings. Consequently, at these angles the most strongly
coupled breakup states will be the 1/27 and 3/27. These
states cannot be populated by the dynamic core excitation
mechanism in first order since the quadrupole nature of
this excitation connects the ground state with positive-parity
continuum states. As a result, for this reaction (and in general
for other reactions induced by weakly bound nuclei on heavy
targets) the main core excitation effect is due to the presence
of core excitation admixtures in the projectile states.

The XCDCC calculations are compared with the data of
Ref. [60] in Fig. 7. The solid line is the full calculation.
Since the experimental distribution was integrated for relative
n-19Be energies below 5 MeV, the theoretical result was
obtained adding the angular distributions for positive-energy
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FIG. 7. (Color online) Breakup differential cross section for ''Be
on 28Pb at Ej,, = 69 MeV /nucleon, integrated in the n-'°Be relative
energy up to 5 MeV. The data are from Ref. [60]. The lines are
XCDCC calculations described in the text. The full calculation (solid
line) has been convoluted with the experimental angular resolution
for a meaningful comparison with the data.

pseudostates lying below this energy. The final distribution was
convoluted with the experimental angular resolution quoted
in Ref. [60]. This calculation is found to be in very good
agreement with the data (solid line in Fig. 7). It is worth
noting that no scaling factor is introduced in the calculation.
The analysis of this kind of experiment is usually done
assuming single-particle states for the initial and final states.
The final result is then renormalized by a scaling factor which,
in the present case, can be interpreted as the spectroscopic
factor for the '"Be ® s, s> configuration in the ground-state
wave function. In our calculations, this spectroscopic factor is

Nakamura et al. *
Palit et al.
Fukuda et al.
PRM model

| omo

dB(E1)/dE (e*fm°/MeV)

FIG. 8. (Color online) Dipole strength distribution for ''Be de-
duced from Coulomb breakup experiments (diamonds [58], squares
[59], and circles [60]) and from the PRM model of Ref. [36]. The
latter has been convoluted with the energy resolution corresponding
to the experiment of Ref. [60].
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already included in the description of the ground-state wave
function.

To illustrate the dominance of the dipole excitation mecha-
nism, we have plotted also in Fig. 7 the separate contribution
of the 1/2%, 3/2%, and 5/2% states. It can be seen that, at
sufficiently small angles, the breakup is largely dominated by
the coupling to the dipole states and, in particular, to the 3/2~
states.

This dominance of the dipole Coulomb couplings supports
the procedure followed in Ref. [60] to extract the B(E1) re-
sponse of the ' Be nucleus from the analysis of these exclusive
breakup data. In Ref. [60] this was done by comparing the
breakup data with first-order semiclassical calculations. The
extracted B(E1) distribution, quoted from Ref. [63], is com-
pared in Fig. 8 with the theoretical B(E'1) distribution obtained
with the PRM model adopted in our XCDCC calculations
(solid line). We include also the experimental distributions
from Refs. [58,59] deduced from similar Coulomb dissociation
experiments. It is seen that the theoretical B(E'1) distribution
agrees very well with the experimental B(E1) distribution
from Ref. [60], and this explains also the good agreement in
the corresponding breakup cross sections.

V. SUMMARY AND CONCLUSIONS

To summarize, we have studied the scattering of a two-
body halo nucleus (core plus a valence particle) on an inert
target within an extended version of the continuum-discretized
coupled-channels (XCDCC) formalism. The method takes
into account the effect of core excitation in the structure
of the projectile, by allowing the inclusion of core-excited
components in the projectile states, and also in the dynamics
of the reaction, by allowing core excitation and de-excitation
during the collision.

The projectile states are described in the weak-coupling
limit. Thus, the states of the composite system are expanded
as a superposition of products of single-particle configurations
and core states. The energies and wave functions of the
projectile are calculated using the pseudostate (PS) method,
that is, diagonalizing the model Hamiltonian on a basis of
square-integrable functions. For the relative motion between
the valence particle and the core, we use the analytical
transformed harmonic oscillator (THO) basis used in previous
works [28].

The method has been applied to the scattering of ''Be on
several targets. The ''Be nucleus is described in a simple
particle-rotor model, in which the '°Be core is assumed to
have a permanent axial deformation with B, = 0.67 [36].
The core-target interaction is obtained by deforming a central
phenomenological potential.

To study the dependence of core excitation on the target
mass, we have performed calculations for three different
targets: 'H, %Zn, and 2®Pb at incident energies for which
experimental data exist.

Inthe 'Be + p reaction, the calculations reproduce well the
breakup data from Shrivastava et al. [44] corresponding to an
incident energy of 64 MeV /nucleon. The XCDCC results are
qualitatively similar to those found in previous studies, using
a no-recoil XDWBA approximation [13,14]. In particular,
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we confirm the importance of the dynamic core excitation
mechanism, due to the noncentral part of the core-target
interaction, for the excitation of the low-lying 5/2% and 3/2%
resonances. Moreover, higher order couplings are found to
be non-negligible and therefore should be taken into account
for an accurate description of similar reactions. In particular,
inclusion of breakup beyond first order is found to improve the
agreement in the absolute cross section at excitation energies
around the 5/ ZT resonance.

The ''Be + %Zn reaction has been studied at 28.7 MeV,
for which quasielastic and inclusive breakup data are available
[52]. The experimental quasielastic cross sections are well
reproduced at all angles, except for some slight overestimation
at 6.m ~ 30°. The XCDCC result turns out to be very close
to the standard CDCC calculation from Ref. [52]. On the
other hand, the inclusive breakup cross sections are larger than
those found in the standard CDCC calculations, being in better
agreement with the data from Ref. [52]. For this medium-mass
target, the dynamic core excitation mechanism is found to be
small and the full calculations can be simulated using a central
core-target potential fitted to the '°Be + %Zn elastic data.

Finally, we have presented calculations for the !'Be + 2°Pb
reaction at 69 MeV /u. The calculated breakup angular distri-
bution is found to reproduce very well the data from Ref. [60].
For this heavy target, and at very small angles, the breakup
is dominated by the dipole Coulomb couplings connecting
the ground state with the dipole (1/2~ and 3/27) continuum
states. In our model, these states cannot be populated by a
direct core excitation mechanism, and hence core excitation
enters only through the admixture of different core and
valence configurations in the projectile wave functions. These
admixtures are nevertheless very important to account for the
correct normalization of the data.

In summary, the effect of core excitation in the structure is
found to be important for all targets. However, the dynamic
core excitation mechanism is important for light targets
(for which the dipole excitations are small compared to the
quadrupole collective excitations of the core) at all incident
energies explored here. Although all the calculations presented
in this work have been performed for the IIBe nucleus, we
believe that the results can be extrapolated to other weakly
bound nuclei and, consequently, the effects discussed here
should be taken in consideration for an accurate description
and interpretation of the data.
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